首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1546 typical cropland soil profiles, the paddy field and dryland SOC storage among six regions of China were systematically quantified to characterize the spatial pattern of cropland SOC storage in China and to examine the relationship between mean annual temperature, precipitation, soil texture features and SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.  相似文献   

2.
The suitability of loss‐on‐ignition (LOI) as an alternative to direct measurement of organic carbon (OC) has been debated for decades without resolution. The literature contains an abundance of different linear regression models to describe the LOI–OC relationship, most based on untransformed values of LOI and OC. Such regression is suspect because the variables are unable to occupy Euclidean space. Logratio transformation—based on relative rather than absolute differences—eliminates this constraint. Re‐analysis of the relationship on new and 10 previously published datasets using logratio techniques reveals that the relationship is nonlinear and that the profusion of regression models is in part a function of the range of LOI. Although LOI may offer a crude estimate of OC at high LOI levels, OC/LOI ratios when LOI is less than about 25% are too variable for reliable OC estimation, and interstudy comparisons remain dubious. Direct measurement of OC is recommended.  相似文献   

3.
The influence of differing soil management practices on changes seen in soil organic carbon (SOC) content of loamy Haplic Luvisol was evaluated. The field experiment included two types of soil tillage: 1. conventional tillage (CT) and 2. reduced tillage (RT) and two treatments of fertilization: 1. crop residues with nitrogen, phosphorus, and potassium (NPK) fertilizers (PR+NPK) and 2. NPK fertilizers (NPK). The results of SOC fluctuated from 9.8 to 14.5 g kg?1 and the tillage systems employed and fertilization status did not have a statistically significant influence on SOC. The SOC content was higher in RT (12.4 ± 0.86 g kg?1) than in CT (12.2 ± 0.90 g kg?1). On average, there was a smaller higher value of SOC in PR+NPK (12.4 ± 1.02 g kg?1) than in NPK (12.3 ± 0.88 g kg?1). During a period of 18 years, reduced tillage and application of NPK fertilizers together with crop residues build up a SOC at an average speed of 7 and 16 mg kg?1 year?1, respectively, however conventional tillage and NPK fertilizer applications caused a SOC decline at an average speed of 104 and 40 mg kg?1 year?1, respectively.  相似文献   

4.
Land Use and Soil Organic Carbon in China’s Village Landscapes   总被引:2,自引:0,他引:2  
Village landscapes, which integrate small-scale agriculture with housing, forestry, and a host of other land use practices, cover more than 2 million square kilometers across China. Village lands tend to be managed at very fine spatial scales (≤ 30 m), with managers both adapting their practices to existing variation in soils and terrain (e.g., fertile plains vs. infertile slopes) and also altering soil fertility and even terrain by terracing, irrigation, fertilizing, and other land use practices. Relationships between fine-scale land management patterns and soil organic carbon (SOC) in the top 30 cm of village soils were studied by sampling soils within fine-scale landscape features using a regionally weighted landscape sampling design across five environmentally distinct sites in China. SOC stocks across China’s village regions (5 Pg C in the top 30 cm of 2 × 10 6 km 2 ) represent roughly 4% of the total SOC stocks in global croplands. Although macroclimate varied from temperate to tropical in this study, SOC density did not vary significantly with climate, though it was negatively correlated with regional mean elevation. The highest SOC densities within landscapes were found in agricultural lands, especially paddy, the lowest SOC densities were found in nonproductive lands, and forest lands tended toward moderate SOC densities. Due to the high SOC densities of agricultural lands and their predominance in village landscapes, most village SOC was found in agricultural land, except in the tropical hilly region, where forestry accounted for about 45% of the SOC stocks. A surprisingly large portion of village SOC was associated with built structures and with the disturbed lands surrounding these structures, ranging from 18% in the North China Plain to about 9% in the tropical hilly region. These results confirmed that local land use practices, combined with local and regional variation in terrain, were associated with most of the SOC variation within and across China’s village landscapes and may be an important cause of regional variation in SOC.  相似文献   

5.
Release of Soil Nonexchangeable K by Organic Acids   总被引:4,自引:0,他引:4  
The amounts of soil nonexchangeable K extracted with 0.01mL/L oxalic acid and citric acid solutions and that with boiling 1mL/L HNO3 for ten minutes were remarkably significantly correlated with each other,and the amount extracted with the oxalic acid solution was higher than that with the citric acid solution.The soil nonexchangeable K release was comprised of two first-order kinetic processes.The faster one was ascribed to the interlayer K in outer sphere,while the slower one to that in inner sphere.The rate constants of the soil nonexchageable K were significantly correlated with the amounts of nonexchangeable K ex tracted with boiling 1mL/L HNO3 for ten minutes.Study on the fitness of different kinetic equations indicated that the first-order,parabolic diffusion and zero-order equations could all describe the release of soil nonexchangeable K well,but Elovich equation was not suitable to describe it.  相似文献   

6.
In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Province, China, with three methods: the soil profile statistics (SPS), GIS-based soil type (GST), and kriging interpolation (KI). The GST method, utilizing both pedological professional knowledge and GIS technology, was considered the most accurate method of the three estimations, with SOCD estimates for SPS 10% lower and KI 10% higher. The SOCD range for GST was 84% wider than KI as KI smoothing effect narrowed the SOCD range. Nevertheless, the coefficient of variation for SOCD with KI (41.7%) was less than GST and SPS. Comparing SOCD‘s lower estimates for SPS versus GST, the major sources of uncertainty were the conflicting area of proportional relations. Meanwhile, the fewer number of soil profiles and the necessity of using the smoothing effect with KI were its sources of uncertainty. Moreover, for local detailed variations of SOCD, GST was more advantageous in reflecting the distribution pattern than KI.  相似文献   

7.
Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 µM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 µmol oxalic acid g?1 biomass h?1 (A. niger) and 20 µmol citric acid g?1 biomass h?1 (P. bilaiae), in the presence of the contaminated soil, but only 5 µmol organic acids g?1 biomass h?1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg?1 from initial levels of 3,800, 1,600, and 370 mg kg?1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg?1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated.  相似文献   

8.
The long-term crop residue retention coupled with external nutrient inputs are crucial for maintaining soil phosphorus (P) and soil organic carbon (SOC) in Vertisols of Central India. A study was conducted to evaluate the long-term effect of three wheat residue management practices (residue burning, incorporation, and surface retention) in combination with three supplementary nutrient inputs (SNI) [control, fertilizer, and farmyard manure (FYM)] on stratification of P and SOC in the soybean–wheat system in Vertisol. The wheat residue either incorporated or retained on the soil surface increased the availability of P and SOC content as compared to the common practices of residue burning. Residue retention or incorporation increased stratification of P and soil organic carbon over the residue burning. Irrespective of the nutrient treatments, greater stratification ratio of SOC and P were registered under wheat residue incorporation or retention compared to residue burning. It is evident from the study that wheat residue incorporation or retention plus addition of FYM could be an effective strategy for increasing the soil fertility in a soybean–wheat system of Vertisols of Central India.  相似文献   

9.
A laboratory experiment was conducted to study the changes in inorganic and organic forms of nitrogen (N) in a Typic Haplustept soil treated with mustard cake vis-à-vis humic acid in the presence and absence of inorganic N. Results revealed that irrespective of treatments, significantly higher amount of soluble nitrate (NO3-), hydrolysable ammonium (NH4+), non-hydrolysable and total N were accumulated in the soil treated with mustard cake in the presence of inorganic N. However, on the other hand, a humic acid-treated system showed significantly higher content of exchangeable NH4+ and hexosamine N. Application of humic acid alone leads to the accumulation of a significantly higher amount of total hydrolysable and unidentified N in the soil. Among the different treatments, NH4+ fixation was more in mustard cake followed by humic acid-treated soil. Humic acid is more susceptible to mineralization than mustard cake, particularly with respect to total N accumulation in soils.  相似文献   

10.
Measurement of soil carbon (C) is important for determining the effects of Everglades restoration projects on C cycling and transformations. Accurate measurement of soil organic C by automated carbon–nitrogen–sulfur (CNS) analysis may be confounded by the presence of calcium carbonate (CaCO3) in Everglades wetlands. The objectives of this study were to compare a loss‐on‐ignition (LOI) method with CNS analysis for assessment of soil C across a diverse group of calcareous Everglades wetlands. More than 3168 samples were taken from three soil depths (floc, 0–10, 10–30 cm) in 14 wetlands and analyzed for LOI, total C, and total calcium (Ca). The LOI method compared favorably to CNS analysis for LOI contents ranging from 0 to 1000 g kg?1 and for soil total Ca levels from 0 to 500 g Ca kg?1. For all wetlands and soil depths, LOI was significantly related to total C (r2 = 0.957). However, LOI was a better predictor of total C when LOI exceeded 400 g kg?1 because of less interference by CaCO3. Total C measurement by CNS analysis was problematic in soils with high total Ca and low LOI, as the presence of CaCO3 confounded C analysis for LOI less than 400 g kg?1. Inclusion of total Ca in regression models with LOI significantly improved the prediction of total C. Estimates of total organic C by CNS analysis were obtained by accounting for C associated with CaCO3 by calculation, with results being similar to total organic C values obtained from LOI analysis. The proportion of C in organic matter measured by the LOI method (51%) was accurate and applicable across wetlands, soil depths, and total Ca levels; thus LOI was a suitable indicator of total organic C in Everglades wetlands.  相似文献   

11.
Abstract

The actual content of the soil organic carbon (SOC) has to be periodically measured for soil classification and nutrient management purposes. Traditional SOC tests are relatively time consuming and costly. A rapid field test would be valuable to delineate soil map units with similar SOC to simplify the process of land evaluation while increasing precision. The objectives of this study were to develop and evaluate a new field measurement technique for the quick assessment of SOC. The new method measures the emitted CO2 concentration 3 min after treatment of the soil sample with acidic potassium (K) permanganate solution. The inorganic carbonate content of the soil is measured separately with the addition of sulphuric acid only. Carbon dioxide concentration from both procedures is measured with a portable infrared gas analyzer. The difference between the concentrations measured after the two separate reactions provide an estimate of SOC. Samples from brown forest soils (ca Hapludalf) (0.19–5.53% SOC) were used for the method development. The correlation coefficient between the SOC determined by the new method and laboratory wet combustion method content was 0.76 for the full range of SOC and 0.81 for the soil samples with less than 20% carbonate.  相似文献   

12.
Estimates of changes and possible causes of regional soil organic carbon (SOC) are critical for evaluation of potential responses of terrestrial biosphere to global changes. A total of 382 soil samples, collected in the 1980s from four counties in the Corn Belt of northeastern China, and of 1,514 samples collected in 2005 from the same area, were examined for SOC concentrations. Spatial and temporal SOC concentrations were evaluated after the 25-year interval using geostatistics and kriging interpolation method. Results indicated that the average topsoil SOC concentrations of the study area increased from 1.24% in the 1980s to 1.47% in 2005. Spatial distributions of SOC in the two separate evaluations showed greater SOC concentrations in the middle part of the study area and lower SOC concentrations in the remaining areas. From the 1980s to 2005, SOC concentrations in the central part increased, whereas those in the northeastern and southwestern parts decreased. The increasing trend of SOC concentrations might be attributed to the land-use and land cover changes, crop productivity increase, and agricultural management.  相似文献   

13.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

14.
There is a well-recognized need for improved fractionation methods to partition soil organic matter into functional pools. Physical separation based on particle size is widely used, yielding particulate organic matter(POM, i.e., free or "uncomplexed" organic matter 50 μm) as the most labile fraction. To evaluate whether POM meets criteria for an ideal model pool, we examined whether it is:1) unique, i.e., found only in the 50 μm fraction and 2) homogeneous, rather than a composite of different subfractions. Following ultrasonic dispersion, sand( 50 μm) along with coarse(20–50 μm) and fine(5–20 μm) silt fractions were isolated from a silt loam soil under long-term pasture at Lincoln, New Zealand. The sand and silt fractions contained 20% and 21% of total soil C, respectively.We adopted a sequential density separation procedure using sodium polytungstate with density increasing step-wise from 1.7 to 2.4 g cm~(-3) to recover organic matter(light fractions) from the sand and silt fractions. Almost all(ca. 90%) the organic matter in the sand fraction and a large proportion(ca. 60%–70%) in the silt fractions was recovered by sequential density separation. The results suggested that POM is a composite of organo-mineral complexes with varying proportions of organic and mineral materials. Part of the organic matter associated with the silt fractions shared features in common with POM. In a laboratory bio-assay, biodegradability of POM varied depending on land use(pasture arable cropping). We concluded that POM is neither homogeneous nor unique.  相似文献   

15.
The status of available macronutrients [phosphorus (P) and potassium (K)] and soil organic carbon (SOC) of the surface soil under a rice–wheat cropping system was studied in 40 districts of the Indo-Gangetic Plains (IGP) of India. The soil samples were collected from the farmers' fields in four transects (Trans-, Upper, Middle, and Lower Gangetic Plains) of the IGP. The selection of farmers, villages, blocks, and districts within an agro-climatic zone (ACZ) was done on the basis of a multistage statistical approach. The available macronutrients were characterized as low, medium, and high. In Trans-Gangetic Plains, SOC, available P, and available K were in the ranges of 0.06–0.86%, 6.7–85.1 kg ha?1, and 50–347 kg ha?1, respectively. In Upper Gangetic Plains, the respective values were in the ranges of 0.05–2.55%, 4.5–155.0 kg ha?1, and 45 to 560 kg ha?1. Similarly, in Middle Gangetic Plains, these values were in the ranges of 0.04–2.01%, 4.7–183.7 kg ha?1, and 72–554 kg ha?1, respectively. In Lower Gangetic Plains, respective values were 0.12–1.78%, 2.2–112.0 kg ha?1, and 83–553 kg ha?1. In Trans-Gangetic plains, the majority of the soils in the midplains ACZ representing intensively cultivated rice–wheat system area were low to medium in SOC and available P, whereas available K status was medium to high. Irrespective of the agroclimatic variations, more than 90% of the soils were low to medium in SOC and available P with a marginal deficiency of K. The majority of the coarse-textured soils in Shiwaliks were found to have low to medium SOC and available P, whereas less intensively cultivated arid zone soils were high in SOC, available P, and available K. In Upper and Middle Gangetic Plains, the majority of the soils tested medium for SOC and medium to high in available P and K. The dominance of medium status of available P in these soils could be due to mining of soil P by the rice–wheat cropping system practiced in these regions for more than 300 years. In Lower Gangetic Plains, the SOC was medium to high in most of the soils, whereas available P and K were high. Recent introduction of the rice–wheat system on intensive scale in these traditionally rice-growing areas resulted in less mining of SOC, P, and K.  相似文献   

16.
Long-term field experiment was established in 1978 on a coastal paddy soil to determine the effect of application of pig manure, rice straw and chemical N fertilizer on the physical property and humus characteristics of soil. Results showed that the porosity, the microstructural coefficient, the reactivities of organic C and N, the OlogK value, the degree of oxidation stability, the contents of o-alkyl C and alkyl C, and the ratio of aliphatic C to aromatic C of humic acid from soils received organic manure increased; whereas, the ratio of<10μm to >10μm of microaggregates, the humification degree of humus, the degree of organo-mineral complexation, the number-average molecular weight, the C/H ratio, the contents of carboxyl and aromatic C of HAs in them decreased. These results indicated that the application of organic manure not only improved the physical property of the paddy soil but also made the HA more aliphatic in structure and younger in origin.  相似文献   

17.
Eurasian Soil Science - The problem of assessing carbon fluxes and pools in forests is acute due to climate change and contribution of forests to carbon reserves. The papers provides a comparative...  相似文献   

18.
ABSTRACT

Veterinary antibiotics can enter the environment especially agricultural soils via animal manure application in which Sulfadiazine (SDZ) is considered as one of the most used antibiotic. After soil application, it may be transported into subsurface water. The sorption behavior of SDZ is not only influenced by the soil type but also by soil organic matters as well. Hence, an experiment was executed aimed to study sorption/desorption processes of SDZ under experimental conditions in three various soils treated by different bio fertilizers including rice husk compost (RHC), rice husk biochar (RHB) and Micrococcus yunnanensis (My) bacterium. Sorption/desorption data of soils with and without bio-fertilizers were well fitted with Freundlich model (R2 = 0.97). Results showed that bio-amended soils had higher values of kd sorption ranged from 1.16 to 52.4 without and with bio-fertilizers application respectively, proposing low sorption of SDZ with substantial risk of leaching without bio-fertilizers application. Also for the desorption cycle values of Kd increased from 1.03 to 39.1 without and with bio-fertilizers application, respectively. Furthermore, there was a hysteresis effect using organic matter. As a result of bio-fertilizers application, a significant value of SDZ was strongly adsorbed on the soil particles which was not desorb through desorption process.  相似文献   

19.
Soil organic carbon (C) is a major determinant for the sustainability of agricultural systems. The changes in C pools (active or total) reflect the changes in an agricultural system. The C management index (CMI) can be used to monitor the soil over time, and it also tells whether a new system or practice is declining or rehabilitating the soil. Carbon management index was calculated for a long‐term experiment after 10 cycles of rice–wheat cropping to assess the influence of rice straw compost application either alone or in combination with inorganic fertilizers on soil C buildup. Total and labile C was greater in rice straw compost–amended soil as compared to unamended control or soils receiving inorganic fertilizers only. Application of rice straw compost increased the mean CMI (47.1) as compared to control (21.0). Labile C was positively related to mean weight diameter, and seemingly it plays an important role in the maintenance of physical fertility of soils and thus sustainability of the cropping system.  相似文献   

20.
以田间实验为基础,分析了在不同厚度的有机物覆盖层下土壤温度变化的机制并与未覆盖条件下的土壤温度进行了比较。实验结果表明,有机物覆盖使土壤的日最高温度和日平均温度降低,但却使土壤的日最低温度得以提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号