首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Rice (Oryza sativaL. CV. Lemont) was grown on 19 soils, and eight extractants were evaluated for determining the availability of Cu to rice plants. Correlation analyses were employed as criteria for evaluating methods that would provide the best index of Cu availability. The order of removal of Cu from soils was: 0.5NHC1 + 0.05NA1C13> 0.5NHNO3> 0.5 N HC1 > EDTA + NH4OAc > 0.1NHC1 > EDTA + (NH4)2CO3? DTPA‐TEA, pH 7.3 >>> 1 N NH40Ac, pH 4.8.

Uptake of Cu by rice plants was significantly correlated with soil Cu. Among the eight extractants evaluated, Cu extracted with DTPA‐TEA, pH 7.3 was better related to the concentration (r = 0.563 ) and uptake (r = 0.673 ) of Cu by rice plants grown on the soils with different chemical and physical properties.

A significant negative correlation was found between the concentration of Cu in rice plants and the organic matter content of the soils. Each one percent increase in the organic matter of the soils resulted in a corresponding decrease of approximately one mg/kg in the concentration of Cu in the rice‐plant tissue. Multiple regressions of extractable Cu by eight methods with soil organic matter content accounted for from 53.4 to 70.0% of the variations in the prediction of the concentration of Cu in the rice plants. Combinations of other soil chemical properties measured with extractable Cu did not significantly improve the predictability  相似文献   

2.
Abstract

Mustard (Brassica juncea) is an important oilseed crop of northern India, which is widely grown in Delhi and adjoining States. This crop has a relatively high requirement of sulphur (S), and is sensitive to S‐deficiency. For predicting response of mustard to S application, several extractants have been tried with variable results. Since selection of a promising extractant for a particular soil needs careful consideration, the present investigation was planned to select the most promising extractant to predict the availability of S to mustard grown on Inceptisols of Delhi. For this purpose, a greenhouse experiment was conducted with twenty soils (two from each often important soil series from the cultivated alluvial soil belt of Delhi. Nine extractants, commonly used for estimating the availability of S, were evaluated and S in soil extract and in plant digest was estimated using the turbiditimetric method. The results indicate that the phosphate salt methods extracted comparatively more S than other extractants. The amount of S extracted by these extractants was found in the following order: KH2PO4‐500 ppm P>Ca(H2PO4)2‐500 ppm P>0.001 M HCl>NaOAc+HOAc>heat soluble S>0.15% CaCl2>l% NaCl> water soluble S>NH4OAc+HOAc. Simple correlation coefficients of the amounts of S extracted by different extractants and the forms of S with the plant parameters were worked out. To determine the combined effect of soil characteristics on S extraction by different extractants, stepwise multiple regression analysis was carried out. Based on this study, the suitability of the extractants for mustard crops in Inceptisols of Delhi may be arranged as follows: 0.15% CaCl2>water soluble S>0.001 M HCl>Ca(H2PO4)2‐500 ppm>1%NaCl>NH4OAc+HOAc>NaOAc+HOAc>KH2PO4‐500 ppm P>heat soluble S.  相似文献   

3.
Abstract

Eighteen soils from northwestern Switzerland were used to study the value of seven universal extractants (CaCl2; DB‐DTPA; Mehlich 1, 2, and 3; Morgan‐Wolf; and NH4OAc‐EDTA) for predicting plant available potassium (K) as compared to a bioassay (a modified Neubauer test with winter rye). These extractants were evaluated on the basis of K uptake by the bioassay test and the soil K status. In order to create the sufficiency level of exchangeable K for plant growth, soils were treated with 0, 20, 40, 80, and 160 mg K/kg of soil. The range of K uptake by the bioassay tests was between 89.2 and 403.0 mg/kg of soil for the control pots, and 136.6 to 495.8 for the K treatments with optimal conditions for plant growth. The average amounts of K extracted by the seven universal extractants, in ascending order, were: CaCl2 < Morgan‐Wolf < Mehlich 1 < Mehlich 2 < NH4OAc‐EDTA < Mehlich 3 < DB‐DTPA. The highest simple correlation with K uptake versus the bioassay test was obtained with the DB‐DTPA (r = 0.89) extractant and the lowest with the Mehlich 1 (r = 0.53) extractant. The DP‐DTPA, NH4OAc‐EDTA and Mehlich 3‐K procedures showed an advantage over K procedures based on water soluble and exchangeable K pools in the investigated soils in order to predict the amount of plant‐available K. A simple regression and the Cate‐Nelson graphic method offer the possibility of assessing the soil‐K status using K values obtained by these universal extractants and to calibrate them against K forms as follows: exchangeable, water soluble, and non‐exchangeable.  相似文献   

4.
In this study, complexation extractants ammonium bicarbonate diethylene triamine pentaacetic acid (AB-DTPA), diethylene triamine pentaacetic acid (DTPA), and ethylene diamine tetraacetic acid (EDTA) and mild cation-exchange extractants calcium chloride (CaCl2) and ammonium nitrate (NH4NO3) were used to evaluate the bioavailability of soil cadmium (Cd) to cacao in the field. Among the five extractants, the extractable Cd generally followed the order EDTA > DTPA > AB-DTPA > CaCl2 > NH4NO3. Correlation analysis was done between the extractable Cd in soil and total Cd content of cacao tissues (nibs, shells, leaves, and pods). The Cd extracted by CaCl2 and NH4NO3 was significantly (P < 0.05) correlated with some of the tissues but their Pearson correlation coefficients were weak. In contrast, extractants AB-DTPA, DTPA, and EDTA showed stronger, significant correlations to the Cd concentration in all four tissues. Overall, regression analysis demonstrated that AB-DTPA, DTPA, or EDTA can be used to predict bioavailable Cd in soils for cacao. Of these, AB-DTPA and DTPA both showed the strongest correlations compared to EDTA. However, the ease of preparation and the superior shelf-life of DTPA over AB-DPTA make it the preferred reagent for Cd bioavailability extractions from cacao soils and is currently being used to develop cost-effective soil treatments to reduce bioavailable Cd to cacao plants.  相似文献   

5.
Abstract

The proportion of copper (Cu) that can be extracted by soil test extractants varied with the soil matrix. The plant‐available forms of Cu and the efficiency of various soil test extractants [(0.01 M Ca(NO3)2, 0.1 M NaNO3, 0.01 M CaCl2, 1.0 M NH4NO3, 0.1 M HCl, 0.02 M SrCl2, Mehlich‐1 (M1), Mehlich‐3 (M3), and TEA‐DTPA.)] to predict the availability of Cu for two contrasting pasture soils were treated with two sources of Cu fertilizers (CuSO4 and CuO). The efficiency of various chemical reagents in extracting the Cu from the soil followed this order: TEA‐DTPA>Mehlich‐3>Mehlich‐1>0.02 M SrCl2>0.1 M HCl>1.0 M NH4NO3>0.01 M CaCl2>0.1 M NaNO3>0.01 M Ca(NO3)2. The ratios of exchangeable: organic: oxide bound: residual forms of Cu in M1, M3, and TEA‐DTPA for the Manawatu soil are 1:20:25:4, 1:14:8:2, and 1:56:35:8, respectively, and for the Ngamoka soil are 1:14:6:4, 1:9:5:2, and 1:55:26:17, respectively. The ratios of different forms of Cu suggest that the Cu is residing mainly in the organic form, and it decreases in the order: organic>oxide>residual>exchangeable. There was a highly significant relationship between the concentrations of Cu extracted by the three soil test extractants. The determination of the coefficients obtained from the regression relationship between the amounts of Cu extracted by M1, M3, and TEA‐DTPA reagents suggests that the behavior of extractants was similar. But M3 demonstrated a greater increase of Cu from the exchangeable form and organic complexes due to the dual activity of EDTA and acids for the different fractions and is best suited for predicting the available Cu in pasture soils.  相似文献   

6.
Abstract

Four extractants for soil Mn were compared for their sensitivity to changes in Mn availability caused by rates and sources of added soil Mn and soil pH variations. Their ability to extract amounts of Mn correlated with plant Mn concentrations was also determined. Two field experiments were conducted on a sandy, high water table soil (Ultic Haplaquod‐Arenic Plinthaquic Paleudult) which included 5 Mn rates, 4 Mn sources and 3 soil pH levels. Soybeans [Glycine max (L.) Merr. cultivar Ransom] were grown and leaf tissue and soils sampled at the late pod‐fill stage. All four extractants separated the high‐ Mn rates, but the small exchange method did not separate the low Mn rates. Few differences were observed among extractants due to Ma sources. The DTPA method was the only procedure to correctly distinguish soil pH levels by showing decreasing extractable Ma with increasing soil pH. Including pH in multiple regressions significantly increased the plant Mn‐soil Mn correlation coefficients. The DTPA method and the 0.1N H3PO4 method had the highest correlation coefficients and the double acid method the lowest. The small exchange method was intermediate. Considering all the results, the DTPA was the most promising method for extracting Mn from this sandy, southern Coastal Plain soil.  相似文献   

7.
Abstract

Effects of long-term use of phosphate fertilizers on extractable soil Cd in relation to its concentrations in plants were investigated. “Paired” soil samples were collected from newly and long-term cultivated fields and analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. Plant samples were also collected and analyzed for Cd. Significant differences in extractable Cd by all the extractants except NH4NO3 were observed between the newly and long-term cultivated soils. The Cd concentrations in plants were not increased by the elevated extractable Cd. Although significant relationships were observed between plant Cd and extractable soil Cd, none of the extractants used alone gave a good assessment of plant-available Cd for all the samples used in this study.  相似文献   

8.
Abstract

The amount of sulphur (S), nitrogen (N), and organic carbon (C) in different layers of soils from some Alfisols varied considerably with location. The amount of S extracted by different extractants as a percentage of the total S was in the order of organic (3.5%)>0.05 (N) NH4OAc+0.25 (N) HOAc (1.9%)>0.1 (N) H3PO4 (1.8%)>0.025 (N) CaCl2 (1.8%)>0.03 (N) NaH2PO4 (1.7%)>0.001 (N) HCl (0.6%). In all the soil series SO4 2?‐S mineralization decreased up to the second week after incubation, followed by a slight increase up to the fourth week, a subsequent decline up to the sixth week, and a slight increase up to the eighth week. The C:N, C:S, N:S, and C:N:S ratios averaged 9.4:1, 63.7:1, 6.9:1, and 94:10:2.08, respectively.  相似文献   

9.
Abstract

Five soil extractants, namely, 0.005 M diethylene triamine pentaacetic acid (DTPA) (pH 7.3), 0.005 M DTPA+1 M ammonium bicarbonate (pH 7.6), Mehlich 3, 0.01 M ethylene diamine tetraacetic acid (EDTA)+0.05 M ammonium carbonate (pH 8.6), and 1 M magnesium chloride (MgCl2) (pH 6.0), were evaluated to predict the response of wheat to zinc (Zn) application in Mollisols. These extractants could be arranged in the following decreasing order of their Zn extracting power: Mehlich 3>0.005 M DTPA+1 M ammonium bicarbonate>0.01 M EDTA+0.05 M ammonium carbonate>0.005 M DTPA>1 M MgCl2. The critical limits of Zn in soil, below which the yield response to late sown wheat (var. UP‐2338) to Zn application could be expected, were 0.57 mg 0.005 M DTPA (pH 7.3) extractable and 1.72 mg Mehlich 3–extractable Zn kg?1 soil. The critical limit of Zn in whole shoot at 60 days after emergence was found to be 26.1 mg Zn kg?1 plant tissue. The DTPA and Mehlich 3–extractable soil Zn also correlated significantly and positively with Zn concentration in whole shoot at 60 days after emergence and total Zn uptake by wheat at harvest.  相似文献   

10.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

11.
Abstract

Three extracting reagents were evaluated by correlation analyses to provide the best index of Zn, Cu, Mn and Fe availability to wheat (Triticum aestivum L.) plants growing under open field conditions. Twenty one soils were selected to obtain the widest range in properties of soils of the land wheat cultivated. The magnitude of the extractive power varied in the following order: 6NHCl ? EDTA + NH4OAC, pH4.65 > DTPA‐TEA, pH 7.3. The mild extractants, EDTA and DTPA, gave the same order of removal of micronutrients being Zn < Cu < Fe < Mn. The acid extractant was on the contrast more effective on Cu and Fe with respect to Zn and Mn, respectively. Wheat concentrations of Zn, Mn and Fe were significantly correlated to soil micronutrients. Highly significant relationships were found for Zn extracted by DTPA solution (r = 0.737***) and for Mn and Fe extracted by EDTA solution (r = 0.710*** and r = 0.564**). Plant Zn and Mn were also well predicted by the acid extraction. The absence of correlation for plant Cu vs. soil Cu occurred probably because of wheat concentrations almost constant, ranging from 5.0 to 8.0 mg/kg.  相似文献   

12.
Abstract

Twenty surface soil samples were collected from Nainital Tarai (foothills of Himalya) where “Khaira”; disease (Zn deficiency of rice) is prevalent. Rice (Oryza sativa L. variety IR‐8) was grown in pots for 8 weeks after transplanting. Experiments were conducted to determine the suitability of five soil Zn extractants: dilute acid (HCl + H2SO4) mixture; DTPA‐(NH4) 2CO3, pH 7.3; dithizone; NH4OAc, pH 4.6; and 2N MgCl2 to predict Zn deficiency. Critical values for soil available Zn were established for rice by the old and new Cate and Nelson procedures1.

Zinc extracted from the soils with dithizone; NH4OAc, pH 4.6; 0.2N MgCl2. and DTPA‐(NH4) 2CO3 pH 7.3 was significantly correlated with the uptake of Zn by the rice plants. The correlation between Zn extracted with the dilute acid (HCl + H2SO4) mixture and plant Zn was not statistically significant. The ex‐tractants which extracted greater quantities of Zn gave higher critical values and vice versa. It is concluded that all extracting solutions except the dilute acid (HCl + H2SO4) mixture were found to he suitable for predicting available Zn in rice soils of Tarai.  相似文献   

13.
Abstract

The purposes for this research were: to examine the long‐term residual effects of farmland applications of municipal sludges from four treatment technologies on the total and extractable Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations in Coastal Plain soils; to investigate the effects of sludge sources and rates on the effectiveness of soil extractants to remove the various metals; and to determine correlation coefficients for soil extractable versus plant accumulation in tobacco. The extractants evaluated were Mehlich 1 and 3, and DTPA‐pH 7.3. Composite Ap horizon soil samples and tobacco leaf samples were obtained in 1984 from research plots at two sites in Maryland that were established in 1972 and 1976, respectively, using sludge materials from three wastewater treatment facilities in the Washington, D.C. metropolitan region. Similar application rates were used at both sites.

A wide range in soil pH values was found among treatments at each site. Significant (p ≤ 0.05) increases were observed in total Zn, Cu, Fe, Pb, Ni, and Cd for all sludge sources with increased rates; however, values for total soil Mn exhibited high variability in all cases. The rankings among the extractants varied for some elements depending on the sludge sources. For Zn, the rankings were Mehlich 1 > Mechlich 3 > DTPA‐pH 7.3 across all sources and rates. For Cu, Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was found for soils amended with Blue Plains digested (BPD) and Piscataway limeddigested (PLD) sludges but Mehlich 1 ≥ DTPA pH 7.3 > Mehlich 3 for Blue Plains limed compost (BPLC) and Annapolis Fe and heat treated (AFH) sludges. Concerning extractable Mn, Mehlich Mehlich 1 > Mechlich 3 > DTPH pH 7.3 was the order for BPLC and AFH sludges but Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was observed for BPD and PLD sludges. The rankings among extractants for Fe (Mehlich 3 > Mehlich 1 > DTPA‐pH7.3), Ni (Mehlich 3 ≥ Mehlich 1 > DTPA‐pH 7.3), Pb (Mehlich 3 > DTPA‐pH 7.3 > Mehlich 1) and Cd (Mehlich 1 > Mehlich 3 > DPTA‐pH7.3) were somewhat similar across all sludge sources. Significant correlation coefficients were obtained for all three extractants for soil extractable vs. plant Zn, Cu, Ni, and Cd at both sites; however, Mehlich 3 was not significant for Mn. Also, neither of the extractants produced significant coefficients for Fe and Pb.  相似文献   

14.
Abstract

Twenty surface soil samples wore collectod from Nalnltal Tarai (foot‐ hills of Himalya) where ‘Khaira’ disease (Zn deficiency disease of rice) was prevalent. Rice (Oryza sativa L. variety IR ‐ 8) was grown in pots for 8 weeks after transplanting. Experiments were carried out to find the suitability of five soil Zn extractants viz. dilute acid (HC1 ‐ H2SO4) mixture, DTPA‐ (NH4) 2CO3, pH 7.3, dithizono, NH4 ‐ Ac, pH 4.6 and MgCl2. Critical limits of available Zn in soils were established for rice crop by old and new Cate and Nelson procedures.

Zn extracted from the soil with NH4 ‐ Ac, pH 4.6, dithlzono, MgCl2, and DTPA‐(NH4) 2CO3, pH 7.3 was significantly correlated with the uptake of Zn by the rice plants. The correlation of Zn uptake with dilute acid mixture extractable Zn was not significant. The extractant which extracted more Zn gave higher values of critical limit and vice versa. It is concluded that all extracting solutions except dilute acid mixture were found to be suitable for predicting available Zn in rice soils of Taral.  相似文献   

15.
Abstract

Eighty four soil samples collected from southeastern Norway were analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. The total Cd, pH, exchangeable K and Ca, dithionite-extractable Mn, available P and fine sand (0.2–0.02 mm) contents were the principal factors related to the extractable Cd, with some inter-extractant variations. Cadmium extracted by NH4NO3, NH4OAc, HCl and CaCl2 decreased with increasing soil pH, but the Cd extracted by all the extractants increased with increasing total Cd, exchangeable K and Ca, available P, and Mn-oxide contents in the soils. The Cd concentrations in plants were significantly related to the extractable Cd, exchangeable Ca and Mg, pH, Mn-oxides and organic matter content.  相似文献   

16.
Twenty-four surface soils (0–15 cm) were collected from Tal land soils (vertisols) in the southern part of Bihar state in India. Six extractants were used to predict the extractability and their suitability for measuring available zinc (Zn) in these soils. Pot experiment with chickpea (Cicer arietinum cv. C-235) as test crop was conducted with five levels of Zn (0, 2.5, 5.0, 7.5, and 10.0 mg kg?1) to determine critical levels of Zn in soils and chickpea. The efficiency rating of different extractants in extracting available Zn from soils followed the order ethylenediaminetetraacetic acid (EDTA)–ammonium carbonate [(NH4)2CO3] > diethylenetriaminepentaacetic acid (DTPA)–ammonium bicarbonate (NH4HCO3) > DTPA– calcium chloride (CaCl2) > DTPA–sodium bicarbonate (NaHCO3) > magnesium nitrate [Mg (NO3)2] > magnesium chloride (MgCl2). The DTPA-CaCl2-extractable Zn was significantly and positively correlated with clay, organic carbon, cation exchange capacity, dry-matter yield, and plant Zn concentration and uptake but significantly and negatively correlated with soil pH. These properties attributed 87% variability in DTPA-CaCl2-extractable Zn.  相似文献   

17.
Abstract

A modified selenium (Se) fractionation procedure was used to study Se distribution in three soils (two silt loams and one silty clay). This sequential procedure consisted of: i) 0.2 M potassium sulfate (K2SO4)‐soluble fraction, ii) 0.1 M potassium dihydrogen phosphate (KH2PO4)‐exchangeable fraction, iii) 0.5 M ammonium hydroxide (NH3H2O)‐soluble fraction, iv) 6 M hydrochloric acid (HCl)‐extractable fraction, and v) residual fraction digested with perchloric (HClO4) and sulfuric (H2SO4) acids. The fractionation procedure had high recovery rates (92.5 to 106%). The Se distribution in soil was controlled by soil properties, such as pH, oxide, clay, and calcium carbonate (CaCO3) contents. In the untreated soil samples, residual Se fraction was dominant. In the Se‐enriched soils, the silty clay had significantly more Se in the NH3H2O and residual fractions while in the two silt loams the largest were KH2PO4 and residual fractions. The Se availability in the two silt loams was higher than in the silty clay. The Se availability pattern in the untreated soils was: unavailable (HCl + residual fractions) >> potentially available (KH2PO4 + NH3H2O fractions) > available (K2SO4 fraction), while in the Se‐enriched soils it was potentially available > unavailable > available.  相似文献   

18.
Abstract

A greenhouse experiment was conducted for three years to study the effect of different pH levels on metal concentrations in plants and the cadmium (Cd) extractability by DTPA and NH4NO3. The soils used were an alum shale (clay loam) and a moraine (loam), which were adjusted to pH levels of 5.5, 6.5, 7.0, and 7.5. Wheat (Triticum aestivum), carrot (Daucus carota L.), and lettuce (Lactuca sativa) were grown as test crops. Crop yields were not consistently affected at increasing soil pH levels. The concentration of Cd in plant species decreased with increasing soil pH in both soils and in all three years. Significant concentration differences between soil pH levels were only seen in wheat and carrot crops. Increasing soil pH also decreased the nickel (Ni) and zinc (Zn) concentrations in plants in the first year crop but the copper (Cu) concentration was not consistently affected by soil pH. The effect of pH was more pronounced in the moraine then the alum shale soil. The DTPA‐and NH4NO3‐extractable Cd was decreased with the increasing soil pH and the pH effect was more pronounced with NH4NO3 extractable Cd. Both extractants were found equally effective in relation to the Cd concentration in plants in this study.  相似文献   

19.
Abstract

Twenty‐six garden soils from Aspen, Colorado, contaminated with old silver mine dumps, were extracted with diethylenetriamine pentaacetic acid (DTPA) and NH4HCO3‐DTPA (AB‐DTPA). Total soil digests (HNO3‐HClO4‐HF) were carried out on 21 highly contaminated soils. All soil extracts and digests were analyzed for Pb, Cd, and Zn using inductively‐coupled plasma atomic emission spectrometry (ICPS). Linear regression equations for DTPA versus AB‐DTPA values gave 0.96, 0.99 and 0.99 “r”; values for Pb, Cd, and Zn, respectively. Linear regression equations for total Pb, Cd, and Zn levels versus their respective AB‐DTPA extractable levels were developed with “r”; values of 0.92, 0.93, and 0.89, respectively. It was concluded that AB‐DTPA test can be used to screen soils contaminated with the above‐mentioned elements.  相似文献   

20.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. Heavy-metal pollution of a rice production system can pose a threat to human health. Thus, it was necessary to develop a suitable extraction procedure that would represent the content of metal available to rice plants (Oryza sativa L.). The aim of this study was to predict, on the basis of single extraction procedures of soil heavy metals, the accumulation of heavy metals (cadium, lead, copper, and zinc) in rice plants. Six extracting agents [Mehlich 1, Mehlich 3, EDTA (ethylenediaminetetraacetic acid), DTPA–TEA (diethylenetriaminepentaacetic acid–triethanolamine), ammonium acetate (NH4OAc), and calcium chloride (CaCl2)] were tested to evaluate the bioavailability of heavy metals from paddy soils contaminated with lead–zinc mine tailings to rice. The extraction capacity of the metals was found to be of the order EDTA > Mehlich 3 > Mehlich 1 > DTPA–TEA > NH4OAc > CaCl2. The correlation analysis between metals extracted with different extractants and concentrations of the metals in the grain and stalk of the plant showed positive correlations with all metals. The greatest values of correlation coefficients were determined between the NH4OAc- and CaCl2-soluble fractions of soil and contents in plants in all four metals studied. Therefore, NH4OAc and CaCl2 were the most suitable extractants for predicting bioavailability of heavy metals in the polluted soils to rice. The results suggested that uptake of heavy metals by rice was mostly from exchangeable and water-soluble fractions of the metals in the soils. Soil-extractable metals were more significantly correlated with metal accumulation in the stalk than in the grain. The pH had more significant influence on availability of heavy metals in the soils than total content of metals and other soil properties. The bioavailability of metals for rice plants would be high in acidic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号