首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

2.
The adsorption of copper by individual soil components (organic matter fractions, oxides and clay minerals) was examined at equilibrium solution concentrations of copper within the range found in natural soils, the distribution of copper between solution and solid phases being measured by means of labelling with radioactive 64Cu. At these low solution concentrations it was found that the copper adsorption isotherms were essentially linear. The oxides and organic materials adsorbed the greatest amounts of copper. The concentration of copper in natural soil solutions will be controlled by these materials to a far greater extent than by the clay minerals, the influence of which may be negligible in some soils. Solution concentrations of copper are relatively unaffected by both the background concentration of major cations and by changes in pH within the ionic strength and pH range found in normal agricultural soils. Copper adsorption studies with humic and fulvic acids showed that total solution copper concentrations could be greatly enhanced above the equilibrium levels for ionic copper by the presence of soluble organic complexes. The importance of taking into account the presence of such copper complexes in soil copper studies is emphasised.  相似文献   

3.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

4.
Copper adsorption studies were conducted with 13 neutral to calcareous-alkaline soils. The data followed a Langmuir isotherm with two linear parts at low (part 1) and high (part 2) concentration of Cu in equilibrium solution. The ?pCu + 2pOH’? values show that part 1 and 2 stem largely from adsorption and precipitation reactions of Cu, respectively. The bonding energy and differential buffering capacity were significantly higher for part 1 while adsorption maximum and supply parameter were significantly higher for part 2 of the isotherms. Carbonate content, soil pH, organic matter, CEC and clay content were in that oder the predominant factors in elevating adsorption maximum, bonding energy coefficient and differential buffering capacity as well as decreasing supply parameter of soils. However, soil organic matter was the major determinant of strength of Cu adsorption. Copper potentials, adsorption maximum and differential buffering capacity were significantly correlated with dry matter production and Cu uptake in maize. The parameters of intensity factor predicted better the variation in yield and Cu uptake than the conventional soil test methods.  相似文献   

5.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

6.
The intensive use for over 100 years of copper sulphate (Bordeaux mixture) to fight mildew in vineyards has led to a substantial accumulation of copper (Cu) in surface soils. To assess the effects of such large concentrations, the surface soils of 10 Burgundy vineyards were sampled and analysed for total organic matter (carbon and nitrogen) and metal (copper and iron) contents. Physical (i.e. size fractionation) and chemical (sequential extraction) methods were used to determine the distribution of these elements. The most Cu‐contaminated plots showed the largest accumulation of organic carbon and Cu in the coarse sand and fine sand fractions. Copper was strongly correlated with organic carbon and organic nitrogen in the coarse sand fraction and with organic nitrogen in the fine sand fraction. Copper was also highly correlated with both Fe and organic nitrogen in the clay fraction but not significantly with organic carbon. The sequential extraction showed that Cu was bound mainly to the Fe oxides. However, in the most Cu‐contaminated plots, a part of added Cu was bound to organic matter. This study suggests that Cu protected indirectly the organic matter present in the coarse fractions against biodegradation, and therefore modified the distribution of organic carbon among the particle‐size fractions. Iron appeared as the main factor responsible for Cu accumulation in the clay fraction, mainly through inclusion of Cu in Fe oxyhydroxides and possibly in clay–humus complexes.  相似文献   

7.
Equilibrium adsorption of isoproturon on soil and pure clays   总被引:1,自引:0,他引:1  
The adsorption of isoproturon on soil and pure clay minerals has been investigated as a means of understanding its mobility in soils. Measured adsorption coefficients are correlated with soil and clay mineral properties. Soil organic matter controlled the adsorption of isoproturon at organic carbon contents exceeding 27 g kg?1, whereas at less than this threshold, clay mineral surfaces appeared to control adsorption. The effect of varying temperature suggests that adsorption of isoproturon is a physical process. From the comparison of the fits of linear, Freundlich, and Langmuir adsorption isotherms to the data, the adsorption is best described as a partition process.  相似文献   

8.
杀虫脒在红壤和菜园土中的吸附   总被引:6,自引:0,他引:6  
李勇  徐瑞薇  靳伟  安琼 《土壤学报》1999,36(2):261-266
本文研究了杀虫剂杀虫脒在红壤和菜园土中的吸附。结果表明,在吸附杀虫脒的土壤各种组分中,粘粒(〈0.002mm)及其矿物类型起着关键性的作用,同时土壤中各种氧化物也发挥一定的作用,而土壤有机质的作用则不明显。由于红壤和菜园土的土壤组成和性质存在差别,因此它们对杀虫脒的吸附特征也不一样,菜园土对杀虫脒的吸附强度和数量均高于红壤。  相似文献   

9.
STUDIES ON SOIL COPPER   总被引:11,自引:0,他引:11  
Adsorption isotherms were determined for the specific adsorption of copper by soils and soil constituents. Adsorption was found to conform to the Langmuir equation. The Langmuir constants, a (adsorption maximum) and b (bonding term), were calculated. Soils were found to have specific adsorption maxima at pH 5.5 of between 340 and 5780 μg g?1, and a multiple regression analysis revealed that organic matter and free manganese oxides were the dominant constituents contributing towards specific adsorption. Adsorption maxima for soil constituents followed the order manganese oxides > organic matter > iron oxides > clay minerals, which supported the findings for whole soils. The cation exchange capacities (non-specific adsorption) of the test soils were found to be far greater than the specific adsorption maxima. However, evidence suggests that, for the relatively small amounts of copper normally present in soils, specific adsorption is the more important process in controlling the concentration of copper in the soil solution.  相似文献   

10.
Abstract

The importance of various soil components on copper (Cu) retention by Spodosois was investigated. Copper sorption and extraction were conducted on samples from the B horizon from six Danish Spodosois. The investigation was conducted on untreated samples, on hydrogen peroxide‐treated samples (to remove organic matter), on oxalate‐treated samples [to remove amorphous to poorly crystalline aluminum (Al) and iron (Fe) oxides], on hydroxylamine‐treated samples [to remove manganese (Mn) oxides]. Subfractions treated with hydrogen peroxide (H2O2) were further treated with oxalate and citrate‐bicarbonate‐dithionite (CBD). Sorption of Cu from an initial 10‐6 M solution after 48 hours was determined in the pH range 3 to 7 using 0.1M sodium nitrate (NaNO3) as the background electrolyte. The pH‐dependent sorption curve (sorption edge) was shifted to a higher pH with decreasing Al oxide content in the soils, and for the treated sample after removal of organic matter and Al and Fe oxides. A negligible effect was seen after removal of the Mn oxides because of their low abundance. Extraction of sorbed Cu at pH 4 to 6 with 0.1M nitric acid (HNO3) for 24 hours confirmed the sorption results, in inasmuch as removal of the Al (and Fe) oxides increased Cu extractability. Therefore, it was concluded that in the soils investigated, Cu retention is mainly determined by the oxalate‐extractable Al fraction with a minor contribution due to crystalline Fe oxides.  相似文献   

11.
The present study investigated the impact of long‐term soil management on the metal retention capacity of soil. We examined the sorption behaviour of Cu, Cd and Zn in soils and in the various particle‐size fractions of these soils, which had been amended with farmyard manure, mineral fertilizers or were fallow for 38 years in a long‐term field experiment. The soils investigated contained different amounts and origins of organic matter and differed in soil pH, but the mineral phase showed less response to the different soil managements. Batch adsorption and desorption experiments as well as a sequential fractionation schema, which defines seven geochemical fractions, were used to investigate the retention properties of soil. Sequential extraction was conducted with original as well as with metal‐spiked soils. Results showed that amounts of Cu, Cd and Zn retained differed by a factor of more than 3 among the treatments in the long‐term field experiment, when a massive concentration of metal was added to soil. An increased sorption on smaller particle size fractions occurred (clay ≫ silt > fine sand ≥ coarse sand) due to the larger surface area as well as the greater carbon content in the smaller fractions. Soil sorption behaviour in another long‐term field experiment was estimated based on the present particle‐sorption data. Differences in the sorption behaviour were related to differences in soil mineralogy and amounts of Fe‐ and Mn‐oxides. Fractionation of the original and the metal‐spiked soil underlined the contribution of organic matter to sorption capacity (sequence: Cu ≫ Cd > Zn). Different organic matter contents and a different soil pH considerably changed the amounts of metals in the defined geochemical fractions. Freshly added Cu, Cd and Zn ions were found mainly in more mobile fractions. In contrast, metals in non‐spiked soils appeared in less‐mobile fractions reflecting their long‐term sorption behaviour.  相似文献   

12.
The adsorption of the toxin from Bacillus thuringiensis (Bt‐toxin), which is synthesized in genetically modified maize, on sterilized Na‐montmorillonite and on H2O2‐treated and untreated clay fractions of three soils from different sites were studied. All adsorption isotherms can be described by a linear isotherm. Although all clay fractions from the different soils show nearly the same mineralogical composition, we found different affinities ranging from k = 47.7 to k = 366.7 of the adsorbates for the Bt‐toxin. The H2O2‐treated clay fractions show no correlation between the adsorption affinity and the amount of soil organic matter. On the other hand, there is a correlation between the content of organic carbon and the adsorption affinity of the untreated clay fractions. This can be explained by the fact that due to the coatings of soil organic matter on aggregates, the Bt‐toxin polymers are not able to adsorb within the clay aggregates.  相似文献   

13.
Soil organic matter influence on Langmuir isotherms for Cu and Cd in four Italian soils of different pedogenetic origin was investigated. Adsorption processes were carried out either on the whole soils or on soils after destruction of organic matter. Organic matter removal produced a noteworthy decrease of Cu adsorption contrasted by a smaller decrease or even a slight increase of Cd adsorption. Addition of increasing amounts of Cu on soil previously enriched with Cd did not significantly change the Cu adsorption while a rather different pattern was observed when increasing quantities of Cd were adsorbed on the same soil after Cu enrichment. In this case Cu already present in the soil reduced the amount of Cd adsorbed. These findings suggest that the differences found in the adsorption process of such metals primarily depend on the different chelating effectiveness of soil organic matter in the respect to Cu and Cd.  相似文献   

14.
Abstract

Copper (Cu) deficiency exists in different rice growing areas of Malaysia. A study on Cu adsorption was carried out in three Malaysian rice soils (Idris, Tebengau, and Kangar series) using six levels of Cu (0, 100, 200, 300, 400, and 500 ug g‐1). The data on Cu adsorption were fitted into Langmuir, Freundlich, and Temkin equations. Adsorption data were also correlated with pH, cation exchange capacity, and organic matter content of the soils. The effect of Cu addition on redox potential (Eh) of the soils was also measured. The Eh values were correlated with equilibrium solution Cu concentrations. Copper adsorption increased gradually with increasing level of added Cu in all the soils. The rate of increase was the highest in Kangar series followed by Tebengau and Idris, respectively. Correlation between Cu adsorption and pH was significant (r=0.772) whereas correlation of adsorption with either organic matter content or cation exchange capacity was nonsignificant. Copper adsorption in two soils (Idris and Tebengau) fitted Langmuir, Freundlich, and Temkin equations whereas Cu adsorption in the Kangar soil fitted Freundlich and Temkin equations. Redox potential (Eh) of the soils increased gradually with increasing level of added Cu. The rate of increase was the highest in Idris followed by Kangar and Tebengau soils, respectively. The relationship between equilibrium solution Cu concentration and redox potential was significant. The results of this study indicated that copper adsorption is mainly dependent on soil pH. In soils with higher adsorption capacity, more Cu fertilizer may be needed to get immediate crop response.  相似文献   

15.
Abstract

Soil submergence for growing wet land rice creates typical chemical environment which is likely to affect availability of applied fertilizer copper (Cu) to the crop by transforming it into various soil fractions. An experiment was undertaken to study the effect of organic matter (as starch) application on the transformation of applied Cu in Alfisols under submergence. Copper was applied either at the beginning or after 15 days of submergence (presubmergence). Results show that more than 85% of the applied Cu was distributed in water soluble plus exchangeable (WSEX), organically complexed (OC), and amorphous iron oxides bound (AMOX) fractions at the beginning of incubation. Submergence caused decrease in WSEX, and OC [in Purulia district (S,) soil only] fractions and increase in AMOX and residual Cu fractions of applied Cu. About 15% of the applied Cu was transformed into inactive residual fraction at the end of 60 days of submergence. Copper applied in 15 days presubmerged soils transformed to a lesser extent into residual fraction than that applied in 0 day presubmerged (i.e., no presubmergence) soils. Application of organic matter in S, soil mobilized applied Cu from OC to AMOX fraction and reduced net transformation into residual fraction. Lower net transformation into residual fraction suggests that Cu may be applied in 15 days presubmerged soil for its higher use efficiency in rice crop grown in Cu deficient Alfisol.  相似文献   

16.
亚热带土壤不同矿物组分中铬的吸附   总被引:1,自引:0,他引:1  
Safe application of chromium (Cr)-containing organic industrial wastes to soil requires considering the ability of the soil to adsorb Cr.In this study,the maximum Cr adsorption capacity was assessed for the bulk samples and their clay and iron-free clay fractions of four subtropical soils differing in mineralogy.To this end,the samples were supplied with Cr(Ⅲ) nitrate solutions at pH 4.5 or 5.5.The results of Cr(Ⅲ) adsorption fitted to a Freundlich equation and the adsorption capacity was positively correlated with soil organic matter and iron oxide contents.The clay fractions adsorbed more Cr per unit mass than the bulk soils and the iron-free clay fractions.The Cr(Ⅲ) adsorption capacity increased with increasing soil pH due to more charges on adsorbing surfaces.Our results suggest that the soils rich in organic matter and iron oxides and having a pH above 4.5 are suitable for application of Cr(Ⅲ)-loaded industrial wastes.  相似文献   

17.
选择代表性的酸性、中性和石灰性紫色土为实验材料,采用平衡吸附和动力学吸附法研究了紫色土对可溶性有机碳(DOC)的吸附-解吸特征,分析了土壤理化性质与DOC吸附量之间的关系。结果表明,紫色土对DOC的吸附容量呈以下顺序:酸性紫色土〉中性紫色土〉石灰性紫色土。石灰性紫色土对DOC的解吸率明显高于酸性、中性紫色土,其迁移淋失问题值得重视。紫色土对DOC的吸附过程包括快速吸附和慢速吸附2个阶段,0~0.5 h内吸附速率最大,随后吸附速率逐渐减小,4~6 h内基本达到吸附平衡。土壤pH值、有机质、粘粒和活性铁铝氧化物含量是影响土壤DOC吸附量与解吸率的重要因素。通径分析表明,土壤理化性质对DOC吸附量的直接作用系数大小顺序为活性铝含量〉土壤pH值〉有机质,对DOC解吸率的直接作用系数大小顺序为活性铁含量〉粘粒〉有机质。多元线性回归模型能较好地预测土壤对DOC的吸附及解吸的变化。  相似文献   

18.
Retention processes play a major role in the fate and impact of organic contaminants in soils. The main goal of this study was to determine the influence of soil hydrophobic properties on the retention of diuron by using plots of a long‐term experiment in Versailles. We selected seven plots with pH 3.4 to 8.2 and low organic content. Sorption isotherms were obtained on soil slurries and kinetic measurements of diuron sorption were performed on undisturbed soil samples. The results showed that the Freundlich coefficient kf decreased as pH increased and that the Koc coefficient, kf/TOC, was linearly related to the contact angle measured on the clay fraction over a wide range of pH. A low initial adsorption rate and low adsorption equilibrium were observed for the plot treated with NaNO3. In this case, the structure in micro‐aggregates was assumed to limit the accessibility of adsorption sites. The CaCO3 and CaO treated plots had similar organic matter contents, pHs, CECs and bulk densities, although their < 2 μm:C ratio differed. The higher retention of diuron in the CaCO3 plot is attributed to the higher hydrophobicity of the < 2 μm fraction, probably masking part of the permanent clay negative charges. Thus, in addition to the different treatments, organic matter composition and distribution should also be included as specific soil properties. We conclude that the sorption properties of pesticides such as diuron can be a good tool to obtain greater understanding of soil properties and the degree of soil hydrophobicity/hydrophilicity in particular.  相似文献   

19.
The dependency of the retention of dissolved organic carbon (DOC) on mineral phase properties in soils remains uncertain especially at neutral pH. To specifically elucidate the role of mineral surfaces and pedogenic oxides for DOC retention at pH 7, we sorbed DOC to bulk soil (illitic surface soils of a toposequence) and corresponding clay fraction (< 2 μm) samples after the removal of organic matter and after removal of organic matter and pedogenic oxides. The DOC retention was related to the content of dithionite‐extractable iron, specific surface area (SSA, BET‐N2 method) and cation exchange capacity (pH 7). The reversibility of DOC sorption was determined by a desorption experiment. All samples sorbed 20–40 % of the DOC added. The DOC sorption of the clay fractions explained the total sorption of the bulk soils. None of the mineral phase properties investigated was able to solely explain the DOC retention. A sorption of 9 to 24 μg DOC m–2 indicated that DOC interacted only with a fraction of the mineral surface, since loadings above 500 μg m–2 would be expected for a carbon monolayer. Under the experimental conditions used, the surface of the silicate clay minerals seemed to be more important for the DOC sorption than the surface of the iron oxides. The desorption experiment removed 11 to 31 % of the DOC sorbed. Most of the DOC was strongly sorbed.  相似文献   

20.
Limited information is available on the changes of surface chemical properties of tropical soils with time during the pedogenesis. Soil samples of three profiles derived from basalts of 10, 1330 and 2290 kilo annum (ka) in age were collected from adjacent locations in a tropical region of Hainan Province, China. The changes in soil surface chemical properties and the mineralogy of the soil clay fraction with time were investigated using ion adsorption, micro-electrophoresis, and X-ray diffraction analysis. The content of 2:1-type clay minerals decreased, while those of kaolinite and gibbsite increased with increasing basalt age and degree of soil development. The content of pedogenic free iron (Fe) oxides and the ratio of free Fe oxides/total Fe oxides increased with soil development stage, while soil poorly crystalline Fe and aluminum (Al) oxides had an opposite trend. The positive surface charge of the soils increased with increasing basalt age and degree of soil development; this was consistent with the change in their contents of free Fe/Al oxides. However, the value of negative surface charge had an opposite behavior. The soil derived from 10-ka-basalt had much more negative charge than soils derived from 1330- and 2290-ka-basalt. Soil net surface charge and zeta potential of the soil clay-fraction decreased with the increase in basalt age. Both net charge–pH curves and zeta potential–pH curves shifted to positive values with increased basalt age and degree of soil development. Increasing age also elevated the point of zero net charge of the soil and the isoelectric point of soil colloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号