首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Ion exchange resin methods were applied to 78 different soils to assess their phosphorus (P) status for predicting their response to P fertilization. The techniques used were anion exchange resin membranes eluted with hydrochloric acid (HCl) (AEM) and cation‐anion exchange resin membranes eluted with HCl (CAEM‐HC1), sodium chloride (NaCl) (CAEM‐NaCl) or water with directly color development (CAEM‐H2O). Greenhouse studies were conducted with the same soils in order to validate laboratory data. Ryegrass was grown with two levels of P: nil and 150 mg P kg‐1 of soil. Results indicate that soil P levels are significantly correlated (p<0.001) if extracted with AEM or CAEM, both eluted with HCl, although the CAEM technique had extracted larger amounts of P. Concerning the type of elution, results did not show significant differences (p<0.05) between CAEM‐HC1 and CAEM‐NaCl, but both were significantly correlated (p<0.001) with the results obtained with CAEM‐H2O. All the techniques used to measure extractable P correlated significantly with relative yield and P uptake by ryegrass, showing their ability to predict soil P availability. Nevertheless, CAEM extraction had higher values of r2. Among the three techniques for elution, the levels of correlation with the biological parameters were equivalent. From these results, it was concluded that: (i) exchange resins, specially CAEM, is an accurate method to assess the P fertility status of soils, and (ii) the traditional step of elution can be avoided, allowing the process to be less time consuming, thus more suitable for routine use.  相似文献   

2.
Abstract

Soil phosphorus (P) deficiency is a constraint to crop production in many regions of sub‐Saharan Africa, which could be overcome through use of either soluble P fertilizer or sufficiently reactive phosphate rock (PR). A field study was conducted with corn (Zea mays L.) for three growing seasons (18 months) on a P‐deficient, acid soil in Kenya to compare a soluble P source (triple superphosphate, TSP) and relatively reactive Minjingu PR from Tanzania. In the 18 months following application of 250 kg P ha‐1, bicarbonate extractable inorganic soil P (Pi) was higher for application of TSP than PR, but Pi extracted with a mixed anion‐cation resin was comparable for TSP and PR. Inorganic P extracted by 0.1M NaOH, without prior extraction of resin and bicarbonate Pi, decreased during the 18 months following TSP application, but increased following PR application. After 18 months, about 7% of the added PR‐P remained as Ca‐bound P that was extracted with 1M HCl. The 1M HCl extractable P., however, underestimated residual PR‐P that gradually dissolved and supplied plant‐available P, as indicated by recovery of <40% of PR‐P added to soil in laboratory incubations even though PR solubility in HCl was >90%. Minjingu PR was an effective source of P for corn. Corn yields were comparable for TSP and PR, and the relative agronomic effectiveness of PR averaged 107% in Season 1 and 79% in Season 3. Anion resin and mixed anion‐cation resin appeared to be superior to bicarbonate and NaOH as a soil P test for use with both TSP‐ and PR‐treated soils.  相似文献   

3.
We measured phosphorus (P) chemical pools of genetic horizons of five representative pedons from central southern Cameroon. Our objectives were to assess the relative abundance of P pools and to empirically model their interrelations and contributions to a P availability index. The fractionation scheme followed a modified Hedley sequential procedure with anion exchange resin, 0.5 M sodium bicarbonate (NaHCO3; Pi and Po), 0.1 M sodium hydroxide (NaOH; Pi and Po), 0.5 M hydrochloric acid (HCl; Pi), and 2 M sulfuric acid (H2SO4) after soil ignition at 550 oC. Resin P, sodium bicarbonate (NaHCO3-P; Pi and Po), and HCl-Pi–extractable pools accounted for 1.0, 5.7 and 0.7 % of total P (TP) respectively. The NaOH-P and residual P pools measured through 2 M H2SO4 emerged as the largest and most variable pools, accounting for 86.2% of TP. The relative abundance of extracted P pools decreased in the order resin P < NaHCO3-P ≤ HCl-P < NaOH-P < H2SO4-P. Bray 1 P was significantly correlated with all P pools except NaHCO3-Pi, NaOH-Pi, and residual pools.  相似文献   

4.
The role of soil organic phosphorus (P) in plant nutrition was assessed using data from a glasshouse pot experiment carried out on seven soil types using two contrasting plant species (Lolium perenne, Pinus radiata) and 12 different extractants (five salts (0.025 M ethylenediaminetetraacetic acid (EDTA), 0.025 M EDTA pH 7, Olsen, Mehlich-III, and 6% NaOCl pH 7.5) and seven exchange resins (Hampton chelating resin, Bio-Rad Chelex-100, Dow MAC-3, Amberlite IRC76, Diaion WT01S, Lewatit MP500A, Diaion WA30)). The contribution from mineralization of soil organic P was inferred by consistent increases in correlation coefficients between extractable P and plant P uptake when organic P was considered in addition to inorganic P. The best correlated extractants for combined inorganic and organic P were NaOCl (r = 0.84), Hampton chelating resin (r = 0.78), and MP500A resin (r = 0.73), which compared favorably with Olsen P (r = 0.66) and EDTA (r = 0.72). 31P nuclear magnetic resonance analysis of selected extracts from two soils confirmed that the Hampton-chelating-resin-extractable P was mainly monoester and diester forms of organic P, while there was no monoester or diester organic P in the IRC76 resin extract—poorly correlated with plant uptake. The findings of this study suggest that readily extractable forms of organic P in soil contribute to short-term plant P uptake, and this P should be considered for inclusion in routine tests for soil P availability.  相似文献   

5.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

6.
Ion exchange resin?/?soil cores are a common in situ approach to estimating soil nitrogen (N) mineralization rates. However, no studies compare the two common methods of core preparation (disturbed and undisturbed). The objective of our study was to compare N mineralized and soil temperature in disturbed versus undisturbed cores of manured agricultural soils. Undisturbed cores were prepared by driving aluminum tubes (25 cm long with 10 cm inner diameter) into soil, removing the tubes, and then inserting an ion-exchange resin bag beneath the soil at the bottom of the tube. Disturbed cores were prepared with the same materials, but soil was excavated, mixed, and then filled into tubes fitted with ion-exchange resin bags at the bottom. Soil from six agricultural fields (five of which had more than 10 years of regular dairy manure application) was incubated over four time periods during summer and winter. A total of 13 soil?/?incubation-period combinations were tested. Disturbed cores tended to have more N mineralized than undisturbed cores (P < 0.10), especially in cores prepared with the lowest clay content soil. However, variability of N mineralized was lower in disturbed cores than undisturbed cores for 11 of the 13 soil?/?incubation periods. This lower variability was significant in two of the four incubation periods (P < 0.10). There was little difference in mean soil temperatures in disturbed versus undisturbed cores or within cores versus outside but adjacent to cores. However, in summer, the daily temperature range inside cores was significantly greater than the temperature range in soil outside cores (P < 0.01).  相似文献   

7.
A rhizosphere-based method (a low-molecular-weight organic acid solution) was evaluated for the assessment of cadmium (Cd), chromium (Cr), and lead (Pb) bioavailability to barley (Hordeum vulgare) roots from rhizosphere soils (n = 36) following a 15.71 g dry weight kg?1 application of a metal-spiked sewage sludge under greenhouse conditions. Statistically significant correlation coefficients were found: r = 0.758, P < 0.001 for Cd, r = 0.762, P < 0.001 for Cr, and r = 0.723, P < 0.001 for Pb. The correlations were greater in acidic soils (n = 6; r = 0.983, P < 0.001 for Cd, r = 0.888, P < 0.01 for Cr, and r = 0.898, P < 0.01 for Pb). This extraction failed to assess heavy-metal bioavailability in basic soils (n = 30; r = 0.111, P > 0.05 for Cd, r = 0.002, P > 0.05 for Cr, and r = 0.037, P > 0.05 for Pb). The overall predictability was greatly improved when soil properties were considered (n = 36; r2 = 0.730, P < 0.001 for Cd, r2 = 0.800, P < 0.001 for Cr, and r2 = 0.719, P < 0.001 for Pb), and texture was observed in all the prediction models.  相似文献   

8.
Abstract

Land use patterns affect soil nutrient transformation and availability. The study determined the distribution of phosphorus (P) fractions and sorption in five pasture fields composed of Andropogon gayanus, Brachiaria decumbens, Chloris gayana, Digitaria smutsii, and Stylosanthes guianensis. The objectives were to characterize P fractions in improved pastures and to determine the effect of forage species on soil P lability. Total P (Pt) across the pastures was not significantly different. Organic P (Po) accounted, on the average, for 64% of Pt. Resin‐P, considered the plant‐available P, ranged from 4 to 10 mg kg?1, suggesting acute P deficiency in the pastures. The sum of P fractions extracted by 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl, together with the resin‐P, accounted for less than 35% of Pt. Factor analysis indicated that plant‐available P approximated by resin‐P was furnished by ?HCO3‐Po mineralization and HCl‐P. The highest concentrations of ?HCO3‐Po and ?OH‐Po were maintained by Brachiaria decumbens. Grouping Pi and Po fractions into labile and nonlabile fraction showed that Brachiaria decumbens maintained the greatest concentration of labile P as a proportion of its Pt. The pasture soils sorbed between 31 and 65% of added P from a standard concentration of 50 mmol kg?1. Phosphorus sorbed by soils from the pasture fields was in the order: Digitaria smutsii=Stylosanthes guianensis>Brachiaria decumbens=Chloris gayana>Andropogon gayanus, whereas resin recovery of sorbed P was greater in Brachiaria decumbens than other pastures. Between 82 and 92% of sorbed P was bound irreversibly. It was concluded that the relatively high concentration of labile P maintained by soil under Brachiaria decumbens was probably related to its capacity to sequester more carbon than the other pastures.  相似文献   

9.
The effects of humic acid (HA) and phosphorus (P) applications on plant growth and nutrient content of lettuce, together with available soil phosphorus remaining after harvest were examined. The amounts of phosphorus used were 0, 120, and 240 kg ha?1 and those of humic acid were 0, 100, 200, and 300 kg ha?1. Phosphorus increased the nitrogen content of lettuce significantly (P<0.01) while the application of humic acid did not have significant effect. Humic acid, phosphorus, and HA×P interaction increased the nitrogen content of lettuce significantly (P<0.05). All effects were not significant for plant K, Ca, Mg, Fe, Cu, and Mn contents. Application of phosphorus decreased Zn content significantly (P<0.05). Increased amount of phosphorus caused significant increases in residual soil phosphorus (P<0.01). It was concluded that the application of 120 kg ha?1 of phosphorus together with 300 kg ha?1 of humic acid was convenient for the head weight of lettuce.  相似文献   

10.
The relationship of solvent retention capacity (SRC) values with four solvents, alveograph and farinograph properties, and cookie‐baking performance was evaluated with 20 Chinese soft wheat genotypes, including four cultivars and 16 advanced lines grown in the 2009–2010 season. Significant positive correlations were observed between water SRC (WSRC), sodium carbonate SRC (SOSRC), lactic acid SRC, and sucrose SRC (SUSRC) values. WSRC, SUSRC, and SOSRC showed significant positive correlations with farinograph water absorption (WA), alveograph P (tenacity), and P/L (ratio of tenacity to extensibility). Cookie diameter was significantly correlated with wet gluten (r = –0.491, P < 0.05), WSRC (r = –0.882, P < 0.001), SUSRC (r = –0.620, P < 0.01), SOSRC (r = –0.712, P < 0.001), P (r = –0.787, P < 0.001), L (r = 0.616, P < 0.01), P/L (r = –0.766, P < 0.001) and WA (r = –0.620, P < 0.01), respectively. SRC values were effective predictors of cookie quality in Chinese soft wheat. Alveograph parameters were more closely correlated to cookie quality than were farinograph parameters.  相似文献   

11.
Background, aims, and scope  Increasing soil acidification is a growing concern in southern China. The traditional green manures applied in the fields mostly comprise legumes that tend to accelerate soil acidification. Moreover, acid deposition can act as a source of nitrogen. Hence, we looked for new plant species that would enhance nutrient concentrations when used as green manure and would reduce soil acidity or at least not worsen it. Materials and methods  We studied the use of Erigeron annuus (L.) Pers. for ameliorating acid soil in a pot experiment with simulated acid rain (SAR) treatments (pH 5.8 to 3.0) in an open area in Guangzhou City. The pots were divided into two groups named A and B groups. On day 0, pots of A group were filled with soil and planted with Erigeron annuus seedlings. Pots of B group were only filled with soil as the control. On day 40, seedlings of E. annuus were harvested and buried in the corresponding pots. On day 54, two seeds of Phaseolus vulgaris L. were sown in each pot in both groups. The growth and bean yield of P. vulgaris seedlings were then used to evaluate the effects of E. annuus on acid soil. Plant and/or soil samples were collected on days 0, 40, 54, and 150; corresponding parameters were measured. Results  Results showed that E. annuus could maintain a good growth even on very acid soil. On day 40, the pH decreased significantly (P < 0.0001) in the B group pots without E. annuus compared with the A group. On day 54, after E. annuus was buried as a manure, the soil pH of all A group treatments except the pH 4.0 treatment showed a significant increase compared to day 40 (P < 0.01). At the same time, the application of E. annuus as a manure produced a significant increase of soil K and P (P < 0.001), Ca (P < 0.05), and Mg (P < 0.001) concentrations of all A group SAR treatments compared to their B group counterparts (except control pots for Ca). The soil exchangeable K and available P concentration doubled, and Ca and Mg increased by around 25% in the presence of the E. annuus manure application. Discussion  The higher soil pH in the A group than B group on the day 40 was due to a great absorption of NO3 by the roots of E. annuus. The soil pH increase after E. annuus was applied to the soil of A group was attributed to the release of high amount of K, the mineralization of organic N, and the oxidation of organic acid anions. Nutrient increase in the A group after E. annuus application was mostly the result of the nutrient release during the residue decomposition. The amelioration of the soil was effective as demonstrated by the enhanced growth and bean yield of P. vulgaris seedlings on the manured soil compared to the seedlings grown on a control that was not manured. Conclusions   E. annuus could maintain a good growth in the acid lateritic field soil. Cultivating this plant and applying it to the soil with a rate of 1.6 ton ha−1 doubled the soil K and P concentrations and increased soil exchangeable Ca and Mg concentrations by around 25%. This species would be a good green manure candidate for growing in the acid soils of southern China. Application of E. annuus also has beneficial effects on crop growth through reduced Al toxicity and cation leaching. Recommendations and perspectives  Since E. annuus would improve soil pH and nutrient concentrations with minimum care, it is recommended for treating acid soils with poor yield whenever a low-cost solution is required.  相似文献   

12.
Quantifying microbial biomass phosphorus in acid soils   总被引:10,自引:0,他引:10  
 This study aimed to validate the fumigation-extraction method for measuring microbial biomass P in acid soils. Extractions with the Olsen (0.5 M NaHCO3, pH 8.5) and Bray-1 (0.03 M NH4F–0.025 M HCl) extractants at two soil:solution ratios (1 : 20 and 1 : 4, w/v) were compared using eight acid soils (pH 3.6–5.9). The data indicated that the flushes (increases following CHCl3-fumigation) of total P (Pt) and inorganic P (Pi) determined by Olsen extraction provided little useful information for estimating the amount of microbial biomass P in the soils. Using the Bray-1 extractant at a soil:solution ratio of 1 : 4, and analysing Pi instead of Pt, improves the reproducibility (statistical significance and CV) of the P flush in these soils. In all the approaches studied, the Pi flush determined using the Bray-1 extractant at 1 : 4 provided the best estimate of soil microbial biomass P. Furthermore, the recovery of cultured bacterial and fungal biomass P added to the soils and extracted using the Bray-1 extractant at 1 : 4 was relatively constant (24.1–36.7% and 15.7–25.7%, respectively) with only one exception, and showed no relationship with soil pH, indicating that it behaved differently from added Pi (recovery decreased from 86% at pH 4.6 to 13% at pH 3.6). Thus, correcting for the incomplete recovery of biomass P using added Pi is inappropriate for acid soils. Although microbial biomass P in soil is generally estimated using the Pi flush and a conversion factor (k P) of 0.4, more reliable estimates require that k P values are best determined independently for each soil. Received: 3 February 2000  相似文献   

13.
To understand the ecological significance of arbuscular mycorrhizal (AM) associations in semi-arid and arid lands, the temporal and spatial dynamics of AM fungi and glomalin were surveyed in Mu Us sandland, northwest China. Soil samples in the rhizosphere of Artemisia ordosica Krasch. were collected in May, July and October 2007, respectively. Arbuscular, hyphal and total root infection and spore density of AM fungi peaked in summer. The mean contents of total Bradford-reactive soil proteins (T-BRSPs, TG) and easily extractable Bradford-reactive soil proteins (EE-BRSPs, EEG) reached maximal values in spring. Spore density and two BRSPs fractions were the highest in the 0-10 cm soil layer, but the ratios of two BRSPs fractions to soil organic carbon (SOC) were the highest in the 30-50 cm soil layer. Hyphal infection was negatively correlated with soil enzymatic activity (soil urease and acid phosphatase) (P < 0.05). Arbuscular infection was negatively correlated with soil acid phosphatase (P < 0.01). Spore density was positively correlated with edaphic factors (soil available N, Olsen P, and SOC) and soil enzymatic activity (soil acid and alkaline phosphatase) (P < 0.01). Two BRSPs fractions were positively correlated with edaphic factors (soil available N and SOC) and soil enzymatic activity (soil urease, acid and alkaline phosphatase) (P < 0.01). TG was positively correlated with soil Olsen P (P < 0.05). We concluded that the dynamics of AM fungi and glomalin have highly temporal and depth patterns, and influenced by nutrient availability and enzymatic activity in Mu Us sandland, and suggest that glomalin are useful indicators for evaluating soil quality and function of desert ecosystem on the basis of its relationship to AM fungal community, soil nutrient dynamics and carbon cycle.  相似文献   

14.
Diffusive gradients in thin‐films (DGT) technology provides an alternative assessment of available phosphorus (P) for a range of crops, suggesting a preliminary examination of the performance of the new DGT‐P test, compared to existing bicarbonate extractable Olsen and Colwell P tests, for pastures is justified. This study utilized historic data from the Australian National Reactive Phosphate Rock (NRPR) study (1992–1994) that included 25 experimental sites representing a wide range of soil types and climates used for pasture production. Stored (~19 yr) soil samples were analysed for DGT‐P, Olsen P and a single point P buffering index (PBI) and re‐analysed for Colwell P. Results showed the traditional bicarbonate extractable Colwell (r2 = 0.45, P < 0.001) and Olsen P (r2 = 0.27, P < 0.001) methods predicted relative pasture P response more accurately, compared to the novel DGT‐P test (r2 = 0.09, P = 0.03) when all 3 yr of data were examined. We hypothesize that the harsher bicarbonate extraction used for the Olsen and Colwell methods more accurately reflects the ability of perennial pasture roots to access less labile forms of P, in contrast to the DGT‐P test, which does not change the soil pH or dilute the soil and appears unable to fully account for a plants ability to solubilize P. Further studies are needed to compare the capacity of DGT‐P to measure P availability in perennial pasture systems and to better understand the soil chemical differences between pasture and cropping systems.  相似文献   

15.
Magnetic susceptibility (χ, mass specific) is useful for easy indirect estimation of other soil properties at a low cost. The aim of this study was to assess the use of χ as measured with an analytical balance for predicting properties with a substantial influence on the management of Typic Haplustalfs in southern Brazil. To achieve this 48 topsoil samples were taken at the intersection points in a rectangular grid of 20 m × 20 m cells, with 38 of these used for calibration and 10 for validation in regression analyses. The obtained χ values were slightly higher than, and highly correlated (r = 0.970; P < 0.001) with those measured with a susceptibility meter. Highly significant (P < 0.001) correlations were also found between χ and other soil properties relevant to soil classification and management such as clay content (r = 0.68), cation exchange capacity (r = 0.62), P sorption capacity (r = 0.76) and haematite content (r = 0.82). Results from a principal component analysis of eight properties important for soil classification explained 11% of the variance in the data set. The good predictive ability of χ was consistent with current knowledge on the formation pathways for pedogenic ferrimagnets. In summary, χ, which can be readily measured with an analytical balance, has the potential for quantifying soil attributes and may therefore be used in pedotransfer functions.  相似文献   

16.
The number of horses in Sweden has increased, from 77 300 in 1970 to 283 000 in 2003 (ca. 250%). These horses are kept on 300 000 ha, which represents 10% of total agricultural land in Sweden. Maximum recommended livestock density in Sweden is 2.5 units/ha for grazed pasture, but no limits have yet been set for outdoor keeping and feeding areas (paddocks) for horses. This study characterized the potential risk of phosphorus (P) losses from a horse paddock established on a heavy clay soil with a stocking rate of 3.75 livestock units/ha compared with nearby arable land. The horse paddock received 15 kg P/ha/yr and 75 kg N/ha/yr through horse excreta, while annual input of P and N to the adjacent arable land was 13 and 112 kg/ha, respectively. There was no significant difference in water‐soluble P (WSP) in fresh and dried soil samples between the horse paddock (mean values: 0.62 and 0.43 mg/100 g soil; n = 15) and the arable field (mean values: 0.52 and 0.37 mg/100 g soil; n = 5). In contrast, phosphorus extractable in ammonium acetate lactate (extractable P) in the topsoil of the horse paddock (mean: 15 mg/100 g soil) was significantly higher (P = 0.03; n = 15) than in the arable land, whereas total P extracted with nitric acid (total P) showed no statistically significant differences. Furthermore, there was no significant difference in lactate‐extractable iron and aluminium (extractable Fe and Al), organic carbon (C), total nitrogen (N) or phosphorus sorption index between the two parcels of land. However, the degree of P saturation in soil was significantly higher (P = 0.02; n = 15) in the horse paddock. Extractable Al and Fe were highly correlated to extractable P (P < 0.001; n = 69), the correlation being negative for Al. No relationship was found with calcium, but soil C content was found to be correlated with extractable P (P < 0.001; n = 69). Over the past 8 yr, high P concentrations (up to 1.5 mg/L), mainly in dissolved reactive form, have been recorded in drainage water from the grazed catchment. We concluded that horse grazing at high stocking rates (>2.5 livestock units/ha) may pose a risk of high P losses to nearby water bodies.  相似文献   

17.
Abstract

The study aimed at quantifying the rates of soil CO2 efflux under the influence of common tillage systems of moldboard plow (PT), chisel plow (CT), rotary tiller (RT), heavy disc harrow (DT), and no-tillage (NT) for 46 days in October and November in a field left fallow after wheat harvest located in southern Turkey. The NT and DT plots produced the lowest soil CO2 effluxes of 0.3 and 0.7 g m?2 h?1, respectively, relative to the other plots (P < 0.001). Following the highest rainfall amount of 87 mm on the tenth day after the tillage, soil CO2 efflux rates of all the plots peaked on the 12th day, with less influence on soil CO2 efflux in the NT plot than in the conventional tillage plots. Soil evaporation in NT (64 mmol m?2 s?1) was significantly lower than in the PT (85 mmol m?2 s?1) and RT (89 mmol m?2 s?1) tillage treatments (P < 0.01). The best multiple-regression model selected explained 46% of variation in soil respiration rates as a function of the tillage treatments, soil temperature, and soil evaporation (P < 0.001). The tillage systems of RT, PT, and CT led, on average, to 0.23, 0.22, and 0.18 g m?2 h?1 more soil CO2 efflux than the baseline of NT, respectively (P≤0.001).  相似文献   

18.
Abstract

Anion‐exchange resins (AER) have been used to determine plant available phosphorus (P) since the fifties and their results have shown strong relationships with plant growth and P uptake irrespective of soil properties. However, this procedure is still not widely used by laboratories because of difficulties in handling resin beads under routine conditions. New kinds and different shapes of resins are being produced each with specific characteristics that must be evaluated before use in laboratory procedures. Thus the objective of this work was to evaluate an AER manufactured in membranes reinforced with a Modacrylic fabric. These anion‐exchange membrane (AEM) sheets are commercially available, making them suitable for soil testing. The membranes were cut in pieces (1.0×7.5 cm) identified as AEM‐strips. The AEM‐strips were soaked in 0.5M HCl for a few days and transferred, after being rinsed with deionized water (DI), to 0.5M NaHCO3 to convert them to HCO3 form. The AEM‐strips and resin beads in nylon bags recovered 98.4 and 98.0% of the P content in an aqueous P solution, respectively. Three eluent solutions were evaluated with different shaking times. The 0.1M H2SO4 and 1.0M NaCl in 0.1M HCl were equally suitable for the molybdenum blue color development without any pH adjustment, while the pH of the 0.5M HCl was too low. The elution of P from the AEM‐strips was independent of time with a 15‐min shaking being adequate for removal of all P from the strips. A comparison of soil sample preparation demonstrated that it was not necessary to vigorously grind or sieve the soil to improve the repeatability of the results. The AEM‐strips were compared with other methods (Pi impregnated filter paper, Mehlich I and Bray 1) using 32 soils from Guatemala with widely varying physico‐chemical and mineralogical properties. Phosphorus extracted by the AEM and Pi procedures (similar principle) were highly correlated and gave similar results irrespective of soil type. The acid extraction (Mehlich I and Bray 1 methods) attacked soil components (apatites) resulting in higher and inconsistent amounts of P extracted which may not be available to plants; the correlation between these methods within soils of similar properties was good, but when all soils were considered together the relationship was not significant. This demonstrated that the acid extraction method for P is not suitable for soils containing apatites, while those based on a sink for P (AEM and Pi) can be applied irrespective of the type of soil.  相似文献   

19.
A pot scale trial investigated the agronomic performance of two organomineral fertilizers (OMF15—15:4:4 and OMF10—10:4:4) in comparison with urea and biosolids granules to establish ryegrass (Lolium perenne L.). Two soils of contrasting characteristics and nitrogen (N) application rates in the range of 0–300 kg ha?1 were used over a period of 3 years. Fertilizer effects were determined on: (1) dry matter yield (DMY) and crop responses, (2) nitrogen use efficiency (NUE), and (3) selected soil chemical properties. Ryegrass responded linearly (R2 ≥ 0.75; P < 0.001) to organomineral fertilizers (OMF) application increasing DMY by 2–27% compared with biosolids but to a lesser extent than urea (range: 17–55%). NUE was related to concentration of readily available N in the fertilizer: urea and OMF showed significantly (P < 0.05) greater N recoveries than biosolids. Total N in soil and soil organic matter showed increments (P < 0.05), which depended on the organic-N content in the fertilizer applied. Soil extractable P levels remained close to constant after 3 years of continuous OMF application but increased with biosolids and decreased with urea, respectively (P < 0.05). The application of biosolids changed soil P Index from 5 to 6; hence, there is a need to monitor soil P status. Both OMF10 and OMF15 formulations are suitable for application in ryegrass.  相似文献   

20.
An Eutric Histosol soil was irrigated for 4 years with municipal wastewater to compare its characteristics with a soil under natural rainfall that had never received wastewater and a soil that was irrigated with normal tap water. Four years irrigation of the soil with wastewater caused significant (P<0.001) increase in dehydrogenase, urease, acid and alkaline phosphate activities and CO2 evolution, and reduced the redox potential (P<0.05). The influence of treatments and plant cover on soil properties were significant (P<0.05) under both salix and grasses, except for few properties (redox potential and urease and alkaline phosphatase activities). It is suggested that, although different toxicants, e.g. heavy metals, may accumulate in wastewater-treated soils, enrichment of soil with organic substances and nutrients stimulated CO2 evolution and enzyme activities in the irrigated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号