首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
Arsenic (As), which is present in all living tissues, water, and soil, is considered toxic to humans and animals. Because of the presence of arsenic-contaminated sites throughout the world, there is a renewed interest in studying the status of As in water, soil, and plants. Concentrations of As above the permissible limit have been reported in Lower Ganges Plains (West Bengal in India and Bangladesh). The present investigation aimed to examine the concentration of As in water, soil, and rice plants in the Upper/Trans-Ganges Plains covering Punjab in northwestern India. In total, 200 water samples were collected from different locations in Punjab. Corresponding soil, rice grain, and straw samples were collected from the same locations as the water samples had been collected. In addition to deep tube well water (>125 m deep), water samples from shallow hand pumps (<50 m deep) and canals were also collected. The samples were analyzed for total As concentration using an atomic absorption spectrophotometer equipped with a hydride generating system (AAS-HG). The concentration of As in tube well water samples varied from 5.33 to 17.27 μg As L–1, with about 40% samples having As concentrations greater than the permissible limit (10 μg As L–1). None of the hand pump and canal water samples had As concentrations greater than permissible limits. The As concentration of surface soils varied from 1.09 to 2.48 mg As kg–1. There was no trend in the distribution of As with depth of soil. The concentration of As in rice straw varied from 4.05 to 15.06 μg As kg–1 and that of grain from 1.48 to 6.87 μg As kg–1. The concentration of As was lower in edible grain than in inedible straw. There was a positive and significant correlation between As concentration in tube well water and As concentration in surface soils. The buildup of As in soils was directly related to the As concentration of tube well waters. There was a significant correlation between As in water and As in plants. However, a nonsignificant correlation existed between As in soil and As in plants. This indicates that plants absorbed more As from irrigation water than that from soil. This also suggests that irrigation with such waters over a longer period of time may have detrimental effects on soil and on plants, animals, and humans. There is thus a need to continuously monitor the As concentration in undergroundwater.  相似文献   

2.
Abstract

Arsenic (As) is a deadly poison at high concentrations. It is mysterious in the sense that people are exposed to it most of the time through drinking groundwater, fortunately at much lower concentrations than the deadly levels, and usually without knowing it. Arsenic content in alluvial aquifers of Punjab varied from 3.5 to 688 µg L?1. Arsenic status of groundwater is classified into low (<10 µg L?1), moderate (≥10 to <25 µg L?1), high (≥25 to <50 µg L?1), and very high (>50 µg L?1). In zone I, the concentration of As in groundwater varied from 3.5 to 42 µg L?1 with a mean value of 23.4 µg L?1. On the basis of these limits, only 8% of samples were low, whereas 51 and 41% of the total samples collected from this region fall in the moderate and high As categories. The concentration of As in groundwater of zone II varied from 9.8 to 42.5 µg L?1 with a mean value of 24.1 µg L?1. Arsenic concentration in the alluvial aquifers of the central plain of zone II is 2 and 52% in the low and moderate limits. In this region, 46% of groundwater sites contain high As concentrations. Arsenic concentrations in the aridic southwestern parts are significantly different from other two provinces. The As concentration ranged from 11.4 to 688 µg L?1 with average value of 76.8 µg L?1. Eleven percent of the aquifers of the southwestern region of zone III are in the moderate category, 54% in the high, and 35% in the very high. According to safe As limits (<10 µg L?1), only 3 and 1% of the groundwater samples collected from zones I and II were fit for dinking purposes with respect to As content. In the aridic southwest, zone III, all water samples contained As concentrations greater than the safe limits and thus are not suitable for drinking purposes. The presence of elevated As concentrations in groundwater are generally due to the results of natural occurrences of As in the aquifer materials. The concentration of other competitive oxyanions in waters such as phosphate, sulfate, and borate also depressed the adsorption of As on the sorption sites of aquifer materials and thereby eventually elevate the As concentration in groundwaters. In groundwater of alluvial aquifers of Punjab, released from sulfide oxidation and oxyhydroxide of iron, elevated (>10 µg L?1) concentrations of As were widespread because of high pH (>8.0) and higher concentrations of phosphate, borate, sulfate, and hydroxyl anions. It is conclusively evident that geochemical conditions, such as pH, oxidation–reduction, associated or competing ions, and evaporative environments have significant effects on As concentration in groundwater. These conditions influence how much As is dissolved or precipitated into the water and how much is bound to the aquifer materials or the solid particles in water.  相似文献   

3.
Abstract

A study was undertaken to determine the effects of different concentrations of arsenic (As) in irrigation water on Boro (dry‐season) rice (Oryza sativa) and their residual effects on the following Aman (wet‐season) rice. There were six treatments, with 0, 0.1, 0.25, 0.5, 1, and 2 mg As L?1 applied as disodium hydrogen arsenate. All the growth and yield parameters of Boro rice responded positively at lower concentrations of up to 0.25 mg As L?1 in irrigation water but decreased sharply at concentrations more than 0.5 mg As L?1. Arsenic concentrations in grain and straw of Boro rice increased significantly with increasing concentration of As in irrigation water. The grain As concentration was in the range of 0.25 to 0.97 µg g?1 and its concentration in rice straw varied from 2.4 to 9.6 µg g?1 over the treatments. Residual As from previous Boro rice showed a very similar pattern in the following Aman rice, although As concentration in Aman rice grain and straw over the treatments was almost half of the As levels in Boro rice grain. Arsenic concentrations in both grain and straw of Boro and Aman rice were found to correlate with iron and be antagonistic with phosphorus.  相似文献   

4.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

5.
This study was conducted to examine the spatial variability of groundwater quality factors and to determine soil physicochemical properties in order to distinguish their relationships with pistachio yield in the Rafsanjan area, Iran. One hundred fifty-seven water samples from the wells of the studied area were evaluated for electrical conductivity (EC), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), sulfate (SO4 2–), bicarbonate (HCO3 ), chloride (Cl), total hardness, and sodium adsorption ratio (SAR). Groundwater levels of the wells were also recorded. The EC and SAR values of groundwater for some of the wells separately compared with pistachio yield in the orchards irrigated with these wells. Six pistachio gardens with the same management but in different parts were selected, and each garden was divided in two (desired and undesired) parts. In each part of these orchards, soil samples were randomly taken in three replicates from depths of 0–40 and 40–80 cm to determine soil properties. One soil profile was also excavated for soil classification in each part of these gardens. Groundwater in most of the area had EC > 8 dS m–1 and SAR ≥ 13 (meq L–1)0.5. The lowest qualities of groundwater were found in the eastern, southern, and the northern parts of the area, where water's negative effects on pistachio yield have been reported. Statistical results for selected gardens showed that pistachio yield was affected considerably by salinity and clay content of the soils. Modern irrigation techniques and mixing high-quality water with poor-quality water in the area is necessary to prevent the reduction of the water table in the area. Preparing continuous soil salinity and texture maps are recommended for proper pistachio management in the area.  相似文献   

6.
设施蔬菜土壤剖面氮磷钾积累及对地下水的影响   总被引:16,自引:2,他引:14  
针对设施栽培中传统施肥灌溉带来的养分浪费和环境污染问题,采集河北省定州市设施蔬菜、农田土样及相应的地下水样品,分析了不同设施蔬菜种植年限土壤剖面中速效养分的累积规律及地下水受硝酸盐污染的程度。结果表明:0~200cm和0~400cm设施土壤的速效养分累积均高于对照农田。低龄棚硝态氮、速效磷、速效钾及水溶性磷含量分别为377.2mg·kg-1、448.8mg·kg-1、1405.6mg·kg-1、30.6mg·kg-1,分别是对照农田的4.7倍、4.6倍、1.4倍和11.5倍;老龄棚硝态氮、速效磷、速效钾及水溶性磷含量分别为629.1mg·kg-1、555.0mg·kg-1、2567.1mg·kg-1、35.2mg·kg-1,分别为对照农田的6.4倍、16.3倍、2.7倍和12.0倍。设施土壤速效养分深层累积比例随棚龄增加而增加。设施蔬菜栽培区表层地下水(地下饮用水,20m)受硝态氮污染严重,超标率和严重超标率为39.3%和7.1%;而深层地下水(农田和大棚灌溉水,40m)硝态氮含量7.4mg·L-1和9.6mg·L-1,超标率分别为25.0%和37.5%,无严重超标水样。  相似文献   

7.
As nitrogen (N) fertilizer-use efficiency rarely exceeds 50% in most agricultural systems, the potential leaching of N to the groundwater, particularly under irrigated conditions, has economic, health, and environmental implications. Research in the Akarsu irrigation district in the Lower Seyhan Plain in southern Turkey sought to determine spatial and temporal variability of groundwater (GW) nitrate (NO3) concentrations in 2007–2008. Shallow groundwater observation wells 3 m deep were installed at different locations to represent the whole irrigation district. Groundwater samples were collected (February, April, July, October) and analyzed for ammonium (NH4) and NO3 concentrations. Because NH4 values were negligible, only NO3 data were processed to determine spatial and temporal variability and then used to develop regional NO3 maps using geographic information systems. Groundwater NO3 concentrations ranged between 0.17 and 55.96 mg L–1 during the 2 years, only exceeding the critical 50 mg L–1 concentration in 1% of the area sampled. The areal mean of NO3 concentration was greatest in February, indicating a potential N leaching of unused N from the early season with intensive rainfall, especially in wheat-growing areas. Groundwater NO3 concentrations decreased after February; however, during the peak irrigation season in July, NO3 was relatively low because of crop uptake during spring and summer. In about half the area, groundwater NO3 concentrations ranged between 20 and 50 mg L–1 and were thus marginal relative to the critical pollution level. As N fertilizer use will continue to increase, especially with the expanded irrigation that is now occurring in the Mediterranean region, regular monitoring of groundwater NO3 is advisable under such conditions.  相似文献   

8.
Taking Cd as an example we introduce a procedure to estimate tolerable total content of heavy metals in soils with regard to a specific ground water quality criterion. Furthermore, we present a piston‐flow approach to estimate breakthrough times of a sorptive solute to the ground water. Both procedures are applied to the sandy soils in the 4300 ha wastewater irrigation area Braunschweig, Germany. Applicability of these procedures is tested by numerical simulations. The calculated breakthrough times of Cd for an input concentration of 3 μg L−1 and a mean water flux density of 570 mm yr−1 varies, as a function of depth of water table and sorption characteristics, between 10 and 805 years (mean = 141 years). The deviation between the piston‐flow approach and the numerical simulation is on the average 1.6%. We determined a mean tolerable total Cd content of 0.61 mg kg−1 with regard to a ground water quality criterion of 3 μg L−1. The limit of the German sewage sludge regulation (AbfKlärV, 1992) of 1 mg Cd kg−1 exceeds the calculated tolerable total content in 90% of the investigated Ap horizons. Moreover, the results of the numerical simulations show that the limit of 1 mg Cd kg−1 would lead to a concentration in seepage water significantly above 8 μg Cd L−1. We conclude that in the sandy soils of the wastewater irrigation area the current limit of 1 mg Cd kg−1 is not sufficient to keep the Cd concentration in seepage water below 3 μg L−1 and, thus, to ensure ground water protection in the long run.  相似文献   

9.
In the course of a series of studies conducted to investigate the long-term behavior of 129I (which has a half-life of 16 million years) in the environment, the concentration of stable iodine (127I) in precipitation, irrigation water and soil water to a depth of 2.5 m in a forest plot, an upland field and a paddy field in the upland area of Tsukuba, Japan, was determined. In the forest plot, the mean iodine concentrations in soil water at all the depths ranged from 0.13 to 0.21 μg L?1, about one-tenth of the values recorded in precipitation (weighted mean 2.1 μg L?1). This finding suggests that the major part of iodine in precipitation was sorbed onto the surface soil horizon under oxidative conditions. In the upland field, the mean iodine concentration in soil water was 2.2 μg L?1 at a depth of 0.2 m and it decreased to 0.34–0.44 μg L?1 at a depth of 0.5 m or more; these concentrations were about one-fifth of that in precipitation. This suggested that the major part of the iodine derived from precipitation was sorbed onto the subsurface soil horizon (at depths between 0.2 and 0.5 m). In the paddy field, during the non-irrigation period, the mean iodine concentrations in soil water at all the depths ranged from 1.8 to 4.8 μg L?1, almost the same values as those recorded in precipitation. During the irrigation period, the mean iodine concentrations at depths of 0.2 and 0.5 m were 18.8 and 16.7 μg L?1, values higher than the 10.9 μg L?1 value recorded in irrigation water and the 11.8 μg L?1 value recorded in ponding water. However, at a depth of 1.0 m or more, the mean iodine concentrations in soil water rapidly decreased from 7.3 to 1.8 μg L?1. These data suggested that a significant amount of iodine flowed out from the paddy field by surface runoff and a considerable amount of iodine that leached to a depth of 0.5 m was retained onto the mildly oxidative soil horizon (2Bw) that lay at depths between 0.5 and 1.0 m. At a depth of 2.5 m in the paddy field, the mean iodine concentration in soil water decreased to 1.8 μg L?1, but this level was much higher than those in the forest plot and upland field at the same depth, which suggested that a significant amount of iodine had leached into the groundwater-bearing layer. There was a negative correlation (r=-0.889) between the Eh of soil and the iodine concentration in soil water (0.2 m depth) of the paddy field. Particularly, when the Eh of soil fell below approximately 150 mV, the iodine concentration rapidly increased to above 10μg L?1. As for the chemical forms of iodine in precipitation, irrigation water, ponding water and soil water during the winter irrigation period in the paddy field with oxidative conditions, 58–82% of iodine consisted of IO? 3 and 17–42% of iodine consisted of I?. In the soil water during the summer irrigation period in the paddy field under reductive conditions, 52–58% of iodine consisted of I?, and 42–47% consisted of IO? 3.  相似文献   

10.
Heavy metal pollution of soils and sediments in Liaoning Province, Northeast China, was investigated. Fifty seven samples of agricultural soils and 8 samples of sediments were collected in 1996 from paddy or upland fields and irrigation channels, respectively, in Shenyang, Fushun, Liaoyang, Anshan, and Tieling regions, and concentrations of total and 0.1 mol L-1 HCI-extractable Cd, Cu, Pb, and Zn were analyzed using ICP spectrometry. Seventeen samples of unpolished rice were also collected from selected paddy fields and total concentrations of the four elements were determined.–

Both paddy and upland soils were polluted with Cd: average total concentration was 0.70, 0.57, and 0.53 mg kg-1 in the western and southern parts of Shenyang, and Anshan, respectively, and significantly higher than the background level of 0.32 mg kg-1. Cd concentrations of four samples exceeded even 1 mg kg-1, which corresponds to the critical level of Cd contamination in China. About 65% of the total Cd was extracted with 0.1 mol L-1 HCI, suggesting that Cd was relatively mobile compared with other metals. The level of Cd pollution was, however, lower than that previously reported and serious polIution was not observed for Cu, Pb, and Zn. Accordingly, Cd concentration in upland rice was within the range of the unpolluted level in this study. Nevertheless, Cd concentration in a sediment of irrigation channels in the western part of Shenyang exceeded 16 mg kg-1, indicating the possibility of further contamination of agricultural soils. In conclusion, soils and sediments were still polluted with Cd in the southern part of Shenyang, Anshan, and especially in the western part of Shenyang, and further countermeasures are urgently required to ensure safe food production in these regions.  相似文献   

11.
Manganese (Mn) release in 18 soil–water suspensions after their equilibration for 24 and 240 h periods at 25°C was studied in a laboratory experiment. Total dissolved Mn released into the soil solution was observed to increase from a range of 0.03–0.41 mg L?1 (mean = 0.13 mg L?1) to a range of 0.45–44.44 mg L?1 (mean = 22.40 mg L?1) with the increase in incubation periods from 24 to 240 h, respectively. The increase in Mn released was observed to be related with the redox potential (pe) induced by incubation conditions. After 24 h of equilibration period, pe of soil–water suspension ranged from ?1.75 to 0.77 (mean = ?0.24). Increasing the incubation period to 240 h, pe of soil–water suspensions declined in the range of ?4.49 to ?2.74 (mean = ?3.29). Laboratory results of redox pe and corresponding dissolved manganese concentrations of some soil–water equilibrated systems were compared with the leaf Mn content in wheat and rice plants grown in the fields, from where soil samples were collected for laboratory experiment. These results demonstrated that decline in pe due to longer equilibration period (240 h) of soil–water systems in the laboratory experiment or keeping standing water for a couple of weeks in the fields for cultivation of rice crop results in higher release of Mn and eventually its higher uptake in rice than in wheat plants. Leaf manganese content in rice ranged from 94 to 185 mg kg?1, which was markedly higher than its range from 25 to 62 mg kg?1 found in the wheat grown at 10 different sites. Pourbaix diagrams were drawn for different soil–water systems containing carbonate, phosphate, or sulfate along with manganese. The presence of carbonate and phosphate anions along with manganese oxides minerals in the soil–water systems of all soils results in its precipitation as MnCO3 and MnHPO4, respectively, in both oxidized and reduced soil field environment. In Punjab, wheat and rice crops are generally cultivated on soils heavily fertilized with P fertilizers. The presence of phosphate anion with manganese oxides minerals in the soil–water systems of all soils results in the precipitation MnHPO4 in both oxidized and reduced soil field environment. Thus, in P-fertilized soil, MnHPO4 compound is even more predominant than aqueous Mn2+ and its solubility actually controlled the availability of Mn2+ to plants.  相似文献   

12.
Arsenic pollution in ground water in India and Bangladesh is considered to be the largest contamination problem in the world. About 15?–?18% of the area of West Bengal, India comes under the threat of arsenic (As) contamination and around 5.36 million people are exposed to this hazard. A detailed isoline map corresponding to variations in arsenic concentration and their spatial distribution was prepared for the study area, which comprised two villages Ghentugachi and Gotera in Nadia district, West Bengal and the total area covered was 808 hectares. The pattern of arsenic contamination was highly irregular and diverse. About 11.2% of the study area was affected most (?>?0.50?mg As l?1) with sample As values reaching 0.71 and 0.80?mg?l?1. About 22.5% of the area had As content between 0.20 and 0.50?mg?l?1 and 33.9% of study area had As content below the WHO guideline of 0.01?mg As/l. Thus the local population living around these areas is vulnerable and exposed to arsenic contamination. None of the water samples exceeded the allowable limit (1.0?mg As l?1) of As for water used in irrigation purposes. The spatial distribution map helped to determine zones with different As concentrations, making it possible to identify high-risk zones.  相似文献   

13.
To compare the effects of the system of rice intensification (SRI) on yield, water use efficiency, and microbial biomass in associated rice soils, a field experiment was conducted in 2004 at the Agriculture Experimental Farm of Zhejiang University in Zhejiang Province, China. The treatments evaluated were traditional flooding (TF) vs. SRI cultivation methods. Grain yield in the SRI treatment was 26.4% greater than that in the TF treatment, reducing water use by 461.5 mm. Compared to TF, SRI increased water use efficiency by 91.3% and irrigation water use efficiency by 194.9%. Soil microbial indicators during the rice‐growing season also diverged between TF and SRI. Microbial biomass C (MBC) was in the range of 101–196 mg kg?1 for TF vs. 113–224 mg kg?1 for SRI; microbial biomass N (MBN) was in the range of 14–33 mg kg?1 for TF vs. 28–53 mg kg?1 in SRI. Compared to TF, SRI significantly increased both MBC and MBN, regardless of sampling date.  相似文献   

14.
This paper presents the results of monitoring the shallow groundwater quality around two municipal landfill sites in the Eastern Province of Saudi Arabia. Boreholes were installed at Dhahran and Juaymah sites upstream and downstream of the landfill. Twenty water samples were collected from each borehole and analyzed for various parameters mainly for BOD, COD, TOC, NH3-N, TKN, sulphate, chloride, hardness and metals. The result of the analysis of water samples from Dhahran boreholes shows an increase in the concentration of pollutants in downstream groundwater over that observed in upstream boreholes. The average concentration of BOD5, COD and TOC in the samples obtained from the downstream borehole was found to be 6.5, 23.5, and 34.3 mg L?1, respectively. On the other hand, the mean concentration of the same parameters in upstream monitoring wells was found to be less than 2.4, 11.5, and 10.0 mg L?1, respectively. The ammonia-N and organic-N in the downstream wells were 0.37 and 0.29 mg L?1, respectively, whereas, in upstream wells they were 0.11 and 0.15 mg L?1, respectively. At Juaymah, the average concentration of BOD and TOC in groundwater samples obtained from upstream boreholes were less than 3.0 and 7.2 mg L?1, respectively, while the concentration of the same parameters in downstream well samples were above 5.0 and 35.0 mg L?1, respectively. A similar trend of increment of ammonia-N, organic-N, phosphate, sulfate and metals in downstream samples was observed. Since the water from these shallow aquifers at both places is not being used for human consumptions or for any other commercial purpose, therefore, the minor increase in pollutants concentration at downstream level is not of a great concern.  相似文献   

15.
Groundwater samples were collected from shallow aquifers underneath an industrial complex in the Eastern Province of Saudi Arabia. Arsenic (As) concentrations in the groundwater samples varied between 10?8.6 and 10?6.8 M (0.18 and 11.14 µg L?1), with an average of 10?7.5 M (2.19 μ L?1). The analysis of variance for the analytical data showed that sampling locations had significantly affected As concentrations in the groundwater samples. Analytical and thermodynamic calculations showed that H2ASO4 ? was the most predominant As species in acidic groundwater samples, and HAsO4 2? was the most abundant species in alkaline groundwater samples. Concentrations of H3AsO4° and AsO4 3? were too low to be important in this study. Reduced As chemical forms were also expected to be very low. All the groundwater samples were undersaturated with respect to the thermodynamic solubility isotherms of Ca3(AsO4)2(c), Fe3(AsO4)2(c), and Mn3(AsO4)2(c) minerals. Lack of reliable thermodynamic data for these arsenates could be responsible for differences between the theoretical and measured concentrations of As in the shallow groundwater samples. The general trend in the distribution of HAsO4 2? activities in the groundwater samples was parallel to that of the Ca3(AsO4)2 solubility isotherm but different from those of Fe3(AsO4)2(c), and Mn3(AsO4)2(c). These data suggest that As concentrations in the groundwater samples were probably controlled by the precipitation and dissolution of Ca3(AsO4)2 type mineral. A three step hypothesis for As interactions in groundwater/soil system is proposed that combines both solid phase formation and adsorption of As onto the solid colloidal surfaces. This hypothesis is expected to better represent As behavior in groundwater/soil environment.  相似文献   

16.
Abstract

A hydroponic experiment was conducted to observe the effect of arsenic (As) on a number of physiological and mineralogical properties of rice (Oryza sativa L. cv. Akihikari) seedlings. Seedlings were treated with 0, 6.7, 13.4 and 26.8 µmol L?1 As (0, 0.5, 1.0 and 2.0 mg As L?1) for 14 days in a greenhouse. Shoot dry matter yield decreased by 23, 56 and 64%; however, the values for roots were 15, 35 and 42% for the 6.7, 13.4 and 26.8 µmol L?1 As treatments, respectively. Shoot height decreased by 11, 35 and 43%, while that of the roots decreased by 6, 11 and 33%, respectively. These results indicated that the shoot was more sensitive to As than the root in rice. Leaf number and width of leaf blade also decreased with As toxicity. Arsenic toxicity induced chlorosis symptoms in the youngest leaves of rice seedlings by decreasing chlorophyll content. Concentrations and accumulations of K, Mg, Fe, Mn, Zn and Cu decreased significantly in shoots in the 26.8 µmol L?1 As treatment. However, the concentration of P increased in shoots at 6.7 and 13.4 µmol L?1 As levels, indicating a cooperative rather than antagonistic relationship. Arsenic and Fe concentration increased in roots at higher As treatments. Arsenic translocation (%) decreased in the 13.4 and 26.8 µmol L?1 As treatments compared with the 6.7 µmol L?1 As treatment. Arsenic and Fe were mostly concentrated in the roots of rice seedlings, assuming co-existence of these two elements. Roots contained an almost 8–16-fold higher As concentration than shoots in plants in the As treatments. Considering the concentration of Mn, Zn and Cu, it was suggested that chlorosis resulted from Fe deficiency induced by As and not heavy-metal-induced Fe deficiency.  相似文献   

17.
本文通过对华北平原典型再生水灌溉区(河北省石家庄洨河流域)的包气带土壤、地表水和地下水进行采样分析,对硝酸盐在多种环境介质中的来源与环境行为进行了研究,识别了再生水灌溉区地下水硝酸盐污染来源,明确了不同灌溉条件对包气带土壤中硝酸盐迁移的影响。在受到城市再生水严重影响的洨河流域,地下水中的硝酸盐浓度分布范围在4.0 mg·L?1到156.6 mg·L?1之间,已经形成了距离河道2 km、深度70 m的硝酸盐高值区域,经过计算硝酸盐的垂向扩散速率为每年1~2 m。硝酸盐与氯离子的相关性表明,城市再生水是再生水灌溉区包气带、地表水和地下水中硝酸盐的主要来源。利用Geoprobe获取利用不同灌溉水农田土壤剖面样品,研究再生水对厚包气带NO3?-N垂向分布影响,再生水灌溉区和地下水灌溉区中包气带土壤的NO3?-N的平均含量为137.0 mg·kg-1和107.7 mg·kg-1,最高含量523.2 mg·L?1和725.9 mg·L?1,分别出现1.20 m和0.85 m深度,分布规律有着明显的差别。包气带土壤硝酸盐与氯离子的相关性分析表明,再生水灌溉区土壤硝酸盐主要来源于城市再生水,而地下水灌溉区可能来源于农田氮肥。地下水年龄和硝酸盐之间关系表明,地下水中1975年以前补给的硝酸盐浓度低于1975年以后补给,地下水硝酸盐污染与包气带氮入渗的历史过程密切相关。在华北平原特殊的地质水文背景下,农田面源污染对地下水的影响有限,但再生水灌溉区地下水硝酸盐污染的风险较高。  相似文献   

18.
A monitoring study was carried out in an alluvial fan area in Tsukui, Central Japan during the study period of 1999–2003, in order to explain selenium (Se) behaviors in ecosystem combined with air, soil and groundwater. Monthly Se concentrations in open bulk precipitation (rainfall+aerosol, gaseous deposition and etc.), soil solution (collected by porous ceramic-cup) and groundwater ranged from 0.1 to 1.4 μg L?1 (volume-weighted average: 0.34 μg L?1), 0.21 to 1.0 μg L?1 (0.48 μg L?1) and 1.6 to 2.4 μg L?1 (2.2 μg L?1), respectively. Se concentration in open bulk precipitation was negatively correlated with the rainfall amount. Se concentration in soil solution significantly increased with DOC concentration in soil solution. Besides, despite atmospheric Se input and rainfall to the grassland study area, Se concentration in soil solution and groundwater received no significant effect from the rainfall amount, pH, Se, DOC, SO4 2?, NO3 ? and EC in rainfall. Even though Se concentrations in groundwater were significantly correlated with soil solution volume, Se, DOC and NO3 ? and groundwater level, the result of multiple regression analyses (MRA) indicated that the groundwater Se was negatively influenced by groundwater level, which depended on groundwater recharge. Se was transported into the groundwater through the groundwater recharge that largely increased in this alluvial fan study area after heavy rain.  相似文献   

19.
《Journal of plant nutrition》2013,36(7):1071-1084
Calibration of field crop response to nutrient availability is the bases for making a fertilizer recommendation from soil and tissue analyses. The purpose of this study was to evaluate and summarize results from a series of experiments on silicon (Si) fertilization of rice in the Everglades Agriculture Area. Twenty-eight rice field experiments were conducted from 1992 through 1996. The experiments consisted of 2 to 5 rates of calcium silicate applied to soils (Histosols) of varying Si soil-test values. Soil samples were taken before planting and analyzed for acetic acid (0.5 mol L?1) extractable Si. Straw samples were collected at harvest and analyzed for total Si. Grain yield was determined. The “critical” levels for Si in the soil (point below which response to Si fertilizer is expected) calculated by the Cate & Nelson procedure was 19 mg Si L?1 soil. The amount of silicon to correct Si deficiency in the soil and to obtain optimum rice yield was 1500, 1120 and 0 kg ha?1 for low (<6 mg L?1), medium (6 to 24 mg L?1), and high (>24 mg L?1) level of soil Si, respectively. Silicon in the straw was classified as high when Si concentration was >34 g kg?1, medium when in between 17 and 34, and low when <17 g kg?1 (3.4 and 1.7%, respectively).

  相似文献   

20.
Abstract

Arsenic (As), ammonium‐nitrogen (N), nitrate‐N concentrations, and oxidation–reduction potential (ORP) in the water samples from the river, pond, dug well, and shallow and deep tube wells (TW) were investigated in a farming village of southwestern Bangladesh. Concentrations of As and ammonium‐N were the highest, whereas ORP was the lowest in the shallow TW water among the water sources. The ammonium‐N concentration correlated positively with the As concentration and negatively with ORP for all samples, irrespective of the water sources. A rise in the ammonium‐N concentration was hypothesized to enhance microbial activity, which in turn would lower ORP, and then As was released from sediments to the surrounding water in a reducing condition. The source of ammonium‐N in the shallow TW water was identified as N fertilizer, based on the δ15N analysis. Thus, the influence of N fertilizer application on As contamination in groundwater was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号