首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. Heavy-metal pollution of a rice production system can pose a threat to human health. Thus, it was necessary to develop a suitable extraction procedure that would represent the content of metal available to rice plants (Oryza sativa L.). The aim of this study was to predict, on the basis of single extraction procedures of soil heavy metals, the accumulation of heavy metals (cadium, lead, copper, and zinc) in rice plants. Six extracting agents [Mehlich 1, Mehlich 3, EDTA (ethylenediaminetetraacetic acid), DTPA–TEA (diethylenetriaminepentaacetic acid–triethanolamine), ammonium acetate (NH4OAc), and calcium chloride (CaCl2)] were tested to evaluate the bioavailability of heavy metals from paddy soils contaminated with lead–zinc mine tailings to rice. The extraction capacity of the metals was found to be of the order EDTA > Mehlich 3 > Mehlich 1 > DTPA–TEA > NH4OAc > CaCl2. The correlation analysis between metals extracted with different extractants and concentrations of the metals in the grain and stalk of the plant showed positive correlations with all metals. The greatest values of correlation coefficients were determined between the NH4OAc- and CaCl2-soluble fractions of soil and contents in plants in all four metals studied. Therefore, NH4OAc and CaCl2 were the most suitable extractants for predicting bioavailability of heavy metals in the polluted soils to rice. The results suggested that uptake of heavy metals by rice was mostly from exchangeable and water-soluble fractions of the metals in the soils. Soil-extractable metals were more significantly correlated with metal accumulation in the stalk than in the grain. The pH had more significant influence on availability of heavy metals in the soils than total content of metals and other soil properties. The bioavailability of metals for rice plants would be high in acidic soils.  相似文献   

2.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

3.
Abstract

The proportion of copper (Cu) that can be extracted by soil test extractants varied with the soil matrix. The plant‐available forms of Cu and the efficiency of various soil test extractants [(0.01 M Ca(NO3)2, 0.1 M NaNO3, 0.01 M CaCl2, 1.0 M NH4NO3, 0.1 M HCl, 0.02 M SrCl2, Mehlich‐1 (M1), Mehlich‐3 (M3), and TEA‐DTPA.)] to predict the availability of Cu for two contrasting pasture soils were treated with two sources of Cu fertilizers (CuSO4 and CuO). The efficiency of various chemical reagents in extracting the Cu from the soil followed this order: TEA‐DTPA>Mehlich‐3>Mehlich‐1>0.02 M SrCl2>0.1 M HCl>1.0 M NH4NO3>0.01 M CaCl2>0.1 M NaNO3>0.01 M Ca(NO3)2. The ratios of exchangeable: organic: oxide bound: residual forms of Cu in M1, M3, and TEA‐DTPA for the Manawatu soil are 1:20:25:4, 1:14:8:2, and 1:56:35:8, respectively, and for the Ngamoka soil are 1:14:6:4, 1:9:5:2, and 1:55:26:17, respectively. The ratios of different forms of Cu suggest that the Cu is residing mainly in the organic form, and it decreases in the order: organic>oxide>residual>exchangeable. There was a highly significant relationship between the concentrations of Cu extracted by the three soil test extractants. The determination of the coefficients obtained from the regression relationship between the amounts of Cu extracted by M1, M3, and TEA‐DTPA reagents suggests that the behavior of extractants was similar. But M3 demonstrated a greater increase of Cu from the exchangeable form and organic complexes due to the dual activity of EDTA and acids for the different fractions and is best suited for predicting the available Cu in pasture soils.  相似文献   

4.
Abstract

A study was conducted with the purpose of comparing the efficiency of Mehlich 1, Mehlich 3, and calcium acetate lactate (CAL) extractants for the deter‐ mination of available phosphorus (P) and exchangeable cations [potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na)] on 22 Ethiopian and 10 German agricultural soils. The Olsen and NH4OAc extractants were used as standards against which P and exchangeable cations values were compared. Results showed that, in general, highly significant correlations were found between all of the methods for available P and exchangeable cations determination on the Ethiopian soils. The highest correlation was, however, found with the Mehlich 3 extractant. On the ten soils from Germany, the Olsen method did not give significant cor‐ relation with the CAL method for P determination. The CAL and Mehlich 3 extrac‐ tants were also not good indicators of Na availability when compared with the NH4OAc method. It can be generalized that the Mehlich 3 is a suitable extractant for P, K, Ca, Mg, and Na in Ethiopian soils, but further study is recommended to confirm these findings under field conditions.  相似文献   

5.
Abstract

Different chemical reagents are used to assess plant‐available nutrients from soils with similar properties. The use of different extractants is a serious limitation when comparing results between different soil‐testing laboratories, often leading to large differences in fertilizer recommendations for similar crops.

In this study, 80 samples from acid soils from Galicia (Spain) were used to compare several soil nutrient extractants. Traditional and tested extractants for acid soil such as Bray 2 and ammonium acetate were used to evaluate multielement extractants such as ethylenediaminetetraacetic acid–ammonium acetate (EDTA‐aa), ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB‐DTPA), and Mehlich 3.

Linear regression analyses were performed to relate the amount of each nutrient obtained by traditional soil extractants to the amount obtained by multielement extractants. Strong correlation was found between extractable Bray 2 P and Mehlich 3 P (r2=0.97, slope=0.87, and intercept=?0.48). The slope of the regression line between EDTA‐aa‐extractable calcium (Ca) and that from ammonium acetate (Aa) approached 1∶1 (r2=0.86). Similar results were obtained for magnesium (Mg) (r2=0.99). Soil zinc (Zn) concentrations extracted by Mehlich 3 and EDTA‐aa were similar; slope of the regression line was 0.95 (r2=0.88). With regard to copper (Cu), Mehlich 3 extracted approximately 20% more Cu than EDTA‐aa.

The results showed that Mehlich 3 and EDTA‐aa are suitable for assessment of plant available phosphorus (P), potassium (K), Ca, Mg, Cu, Zn, and iron (Fe) in acid soils.  相似文献   

6.
Abstract

Eight methods to determine exchangeable cations and cation exchange capacity (CEC) were compared for some highly weathered benchmark soils of Alabama. The methods were: (1) 1N NH4OAc at pH 7.0 by replacement (for CEC only), (2) 1N NH4OAc at pH 7.0 (summation of basic cations plus 1N KCl extractable Al), (3) 1N NH4OAc at pH 7.0 (summation of basic cations plus exchangeable H+), (4) 0.1M BaCl2 (summation of basic cations plus exchangeable Mn, Fe and Al), (5) Mehlich 1 (summation of basic cations plus 1N KCl extractable Al), (6) Mehlich 1 (summation of basic cations plus exchangeable H+), (7) Mehlich 3 (summation of basic cations plus 1N KCl extractable Al), and (8) Mehlich 3 (summation of basic cations plus exchangeable H+). The 0.1M BaCl2 was chosen as the standard method for the highly weathered soils and the other methods compared to it. The results indicated that the 1N NH4OAc replacement method gave significantly higher CEC values compared to the summation methods. This was probably due to the overestimation of the field CEC caused by measurement of pH dependent cation exchange sites in these soils. There was, however, close agreement between the BaCl2 method and the summation methods that included extractable Al. The generally good agreement between these summation methods suggests that the Mehlich 1 and Mehlich 3 extractants, commonly used to determine available nutrients in the southeastem USA, may also be used to measure effective CEC of some acid‐rich sesquioxide benchmark soils of Alabama. However, 1N KCl extractable Al as opposed to exchangeable H+ should be included in the computation.  相似文献   

7.
Abstract

Eighty four soil samples collected from southeastern Norway were analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. The total Cd, pH, exchangeable K and Ca, dithionite-extractable Mn, available P and fine sand (0.2–0.02 mm) contents were the principal factors related to the extractable Cd, with some inter-extractant variations. Cadmium extracted by NH4NO3, NH4OAc, HCl and CaCl2 decreased with increasing soil pH, but the Cd extracted by all the extractants increased with increasing total Cd, exchangeable K and Ca, available P, and Mn-oxide contents in the soils. The Cd concentrations in plants were significantly related to the extractable Cd, exchangeable Ca and Mg, pH, Mn-oxides and organic matter content.  相似文献   

8.
Abstract

The purposes for this research were: to examine the long‐term residual effects of farmland applications of municipal sludges from four treatment technologies on the total and extractable Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations in Coastal Plain soils; to investigate the effects of sludge sources and rates on the effectiveness of soil extractants to remove the various metals; and to determine correlation coefficients for soil extractable versus plant accumulation in tobacco. The extractants evaluated were Mehlich 1 and 3, and DTPA‐pH 7.3. Composite Ap horizon soil samples and tobacco leaf samples were obtained in 1984 from research plots at two sites in Maryland that were established in 1972 and 1976, respectively, using sludge materials from three wastewater treatment facilities in the Washington, D.C. metropolitan region. Similar application rates were used at both sites.

A wide range in soil pH values was found among treatments at each site. Significant (p ≤ 0.05) increases were observed in total Zn, Cu, Fe, Pb, Ni, and Cd for all sludge sources with increased rates; however, values for total soil Mn exhibited high variability in all cases. The rankings among the extractants varied for some elements depending on the sludge sources. For Zn, the rankings were Mehlich 1 > Mechlich 3 > DTPA‐pH 7.3 across all sources and rates. For Cu, Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was found for soils amended with Blue Plains digested (BPD) and Piscataway limeddigested (PLD) sludges but Mehlich 1 ≥ DTPA pH 7.3 > Mehlich 3 for Blue Plains limed compost (BPLC) and Annapolis Fe and heat treated (AFH) sludges. Concerning extractable Mn, Mehlich Mehlich 1 > Mechlich 3 > DTPH pH 7.3 was the order for BPLC and AFH sludges but Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was observed for BPD and PLD sludges. The rankings among extractants for Fe (Mehlich 3 > Mehlich 1 > DTPA‐pH7.3), Ni (Mehlich 3 ≥ Mehlich 1 > DTPA‐pH 7.3), Pb (Mehlich 3 > DTPA‐pH 7.3 > Mehlich 1) and Cd (Mehlich 1 > Mehlich 3 > DPTA‐pH7.3) were somewhat similar across all sludge sources. Significant correlation coefficients were obtained for all three extractants for soil extractable vs. plant Zn, Cu, Ni, and Cd at both sites; however, Mehlich 3 was not significant for Mn. Also, neither of the extractants produced significant coefficients for Fe and Pb.  相似文献   

9.
Abstract

An experiment was designed to evaluate several of the commonly used extractants and methods for determining “available”; elements in soils. The purpose of the study was to evaluate the suitability of these extraction procedures for use on forest soils typical for New England commercial forests. The extraction procedures selected included NH4OAc pH 4.8, NH4OAc pH 7.0, NH4Cl, Double Acid, Bray, and Mehlich methods. The elements measured varied somewhat by procedure but included the base cations, Al, Fe, Mn, and P. As a bioassay of element availability, a greenhouse study was conducted using six forest soil materials from different horizon types (i.e. O, Ap, B) and three conifer seedling species (red spruce, balsam fir, and white pine). Relatively small differences among extraction procedures were found among the methods used for exchangeable Ca, Mg, K, and Na. Large differences, however, were found among the different horizon types in the amount of exchangeable base cations present. In contrast, significant differences were found among extraction procedures for Al, Fe, Mn, and P depending on the degree of buffering and acidity of the extracting solution. Of the elements measured in this study, only P appeared to be growth limiting with the NH4OAc pH 4.8 being best correlated with P uptake by seedlings. Further work under field conditions over longer time periods is required to evaluate these methods for measuring P availability in forest soils  相似文献   

10.
In this study, complexation extractants ammonium bicarbonate diethylene triamine pentaacetic acid (AB-DTPA), diethylene triamine pentaacetic acid (DTPA), and ethylene diamine tetraacetic acid (EDTA) and mild cation-exchange extractants calcium chloride (CaCl2) and ammonium nitrate (NH4NO3) were used to evaluate the bioavailability of soil cadmium (Cd) to cacao in the field. Among the five extractants, the extractable Cd generally followed the order EDTA > DTPA > AB-DTPA > CaCl2 > NH4NO3. Correlation analysis was done between the extractable Cd in soil and total Cd content of cacao tissues (nibs, shells, leaves, and pods). The Cd extracted by CaCl2 and NH4NO3 was significantly (P < 0.05) correlated with some of the tissues but their Pearson correlation coefficients were weak. In contrast, extractants AB-DTPA, DTPA, and EDTA showed stronger, significant correlations to the Cd concentration in all four tissues. Overall, regression analysis demonstrated that AB-DTPA, DTPA, or EDTA can be used to predict bioavailable Cd in soils for cacao. Of these, AB-DTPA and DTPA both showed the strongest correlations compared to EDTA. However, the ease of preparation and the superior shelf-life of DTPA over AB-DPTA make it the preferred reagent for Cd bioavailability extractions from cacao soils and is currently being used to develop cost-effective soil treatments to reduce bioavailable Cd to cacao plants.  相似文献   

11.
Most Brazilian soil-testing laboratories use Mehlich 1 and 1.0 M potassium chloride (KCl) solutions as extractants for the determination of phosphorus (P), potassium (K), and sodium (Na) and for exchangeable calcium (Ca), magnesium (Mg), manganese (Mn), and aluminum (Al) in agricultural soil samples. Other laboratories use a combination of exchangeable ionic resin and KCl procedures. With recent adoption of the inductively coupled plasma (ICP-OES) in routine soil-testing laboratories, soil extraction with 1.0 M ammonium chloride (NH4Cl) became an alternative due to the possibility of determining all exchangeable elements in one run (Ca, Mg, K, Mn, Na, and Al), leaving determination of phosphorus (P) with Mehlich 1 or exchangeable ionic resin. To evaluate the performance of the NH4Cl solution, an experiment was carried out with thirty-seven samples of soils representative of the southernmost state of Brazil, Rio Grande do Sul. Four extraction solutions [Mehlich 1 at soil/solution ratio of 1:10 and 1.0 M ammonium acetate (NH4OAc), 1.0 M KCl, and 1.0 M NH4Cl at soil/solution ratio 1:20] were used with three different shaking times (5, 30, and 60 min). Correlation coefficients among all methods were high. Mehlich 1 did not perform well against NH4OAc and NH4Cl, despite the high correlation coefficients, with values consistently lower for K, even when the time of extraction was increased from 5 to 30 or 60 min. However, for concentrations less than 0.30 cmol kg?1 (i.e., in the range of K deficiency), both solutions performed similarly. Calcium and Mg increased with time of shaking. Comparable values of exchangeable Ca, Mg, and K, as well as of Al and Mn, were obtained with 1.0 M NH4Cl with 60 min shaking and the standard procedures of 1.0 M NH4OAc and 1.0 M KCl. The determination of Al by traditional titration/back-titration of the 1.0 M KCl solution gave slightly greater results compared to ICP-OES obtained using extraction with 1.0 M NH4Cl. The results indicate that for Ca, Mg, Mn, and Al, it is possible to replace the traditional 1.0 M KCl extraction with 1.0 M NH4Cl solution, with 60 min shaking time and a soil/solution ratio of 1:20.  相似文献   

12.
Abstract

Rice (Oryza sativaL. CV. Lemont) was grown on 19 soils, and eight extractants were evaluated for determining the availability of Cu to rice plants. Correlation analyses were employed as criteria for evaluating methods that would provide the best index of Cu availability. The order of removal of Cu from soils was: 0.5NHC1 + 0.05NA1C13> 0.5NHNO3> 0.5 N HC1 > EDTA + NH4OAc > 0.1NHC1 > EDTA + (NH4)2CO3? DTPA‐TEA, pH 7.3 >>> 1 N NH40Ac, pH 4.8.

Uptake of Cu by rice plants was significantly correlated with soil Cu. Among the eight extractants evaluated, Cu extracted with DTPA‐TEA, pH 7.3 was better related to the concentration (r = 0.563 ) and uptake (r = 0.673 ) of Cu by rice plants grown on the soils with different chemical and physical properties.

A significant negative correlation was found between the concentration of Cu in rice plants and the organic matter content of the soils. Each one percent increase in the organic matter of the soils resulted in a corresponding decrease of approximately one mg/kg in the concentration of Cu in the rice‐plant tissue. Multiple regressions of extractable Cu by eight methods with soil organic matter content accounted for from 53.4 to 70.0% of the variations in the prediction of the concentration of Cu in the rice plants. Combinations of other soil chemical properties measured with extractable Cu did not significantly improve the predictability  相似文献   

13.
Evaluation of nutrient status in soil is important for nutritional, environmental, and economical aspects. The objective of this work was to find out the most suitable universal extractant for determination of available phosphorus (P) and nitrate (NO3-) and exchangeable potassium (K), calcium (Ca), and magnesium (Mg) from soils using 0.01 M calcium chloride (CaCl2), 0.01 M barium chloride (BaCl2), 0.1 M BaCl2, 0.02 M strontium chloride (SrCl2), Mehlich 3, and ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractants. Composite surface soil samples (0–20 cm) were collected from the Eastern Harage Zone (Babile and Haramaya Districts), Wolaita Zone (Damot Sore, Boloso Bombe, Damot Pulasa, and Humbo Districts), and Dire Dawa Administrative Council by purposive sampling. The experiment was carried out in a completely randomized design (CRD) with three replications. Results indicated that the greatest correlations were found between Mehlich 3 and Olsen method and also between 0.02 M SrCl2 and Olsen method for available P. The amount of NO3 extracted by 0.02 M SrCl2 was significantly correlated to the amount determined by 0.5 M potassium sulfate (K2SO4). The amounts of exchangeable K, Ca, and Mg determined by ammonium acetate (NH4OAc) method were significantly correlated to the amount determined by universal extractants tested. In general, both 0.02 M SrCl2 and Mehlich 3 can serve as universal extractants for the macronutrients considered in this study with the former being more economical when NO3 is included.  相似文献   

14.
Abstract

Information on the redistribution of applied micronutrients into different fractions as a result of lime application is important to predict plant accumulation of nutrients and to select appropriate chemical extraction procedures for evaluation of micronutrient availability. The present work was carried out to study the influence of liming on the availability and redistribution of zinc (Zn) and copper (Cu) among soil fractions. Additionally, the effect of liming was evaluated on the recovery of these micronutrients by different chemical extractants (Mehlich‐1, Mehlich‐3, and diethylenetriaminepentaacetate (DTPA), which were correlated with Zn and Cu concentrations in corn (Zea mays L.) plants and soil fractions (exchangeable, organic matter, amorphous iron oxides, and crystalline iron oxides). The results showed that Zn added to soil samples that did not receive lime was retained mainly in the exchangeable and organic matter fractions. The liming resulted in distribution of Zn into iron oxides and as a result decreased the plant accumulation of Zn. Mehlich‐3 was the most efficient extractant to predict the plant accumulation of Zn in the acid soils, whereas DTPA was the most efficient in the limed soils. The oxide crystalline fraction was the major fraction responsible for retaining Cu in the soils. However, Cu added to soil was distributed mainly into organic matter. Mehlich‐3 was the most suitable extractant for predicting the bioavailability of Cu in limed or unlimed soils.  相似文献   

15.
Abstract

Many soil extractants have been developed for determination of zinc (Zn) availability to plants. The optimum soil Zn extractant should be useful not only for prediction of plant Zn concentration but also for detection of applied Zn levels. The objectives of this study were: i) to compare soil Zn extradants for detecting applied Zn and for predicting peanut leaf Zn over a range of soil pH levels, and ii) to correlate other soil‐extractable Zn levels with Mehlich‐1. Soil and peanut leaf samples were taken from a field study testing pH levels as the main plots and Zn application rates in the sub‐plots. Extractable Zn was determined on soil samples using Mehlich‐1, Mehlich‐3, DTPA, MgNO3, and many dilute salt extradants of varied strength and pH. Correlation of extractable soil Zn to cumulative applied Zn levels revealed Mehlich‐1, Mehlich‐3, DTPA, and AlCl3 extradants to be among the best indicators of applied Zn. Leaf Zn concentration was best correlated with soil Zn extracted by dilute salts, such as KCl, CaCl2, NH4Cl, CaSO4, and MgCl2. Including soil pH as an independent variable in the regression to predict leaf Zn considerably improved R‐square values. The DTPA‐extractable soil Zn levels were very well correlated with Mehlich‐1‐extractable Zn. Mehlich‐3 extracted about 20% more soil Zn than Mehlich‐1, but Mehlich‐3 soil Zn was not as well correlated to Mehlich‐1 soil Zn as DTPA soil Zn. Lower pH solutions extracted more of the applied Zn, but more neutral solutions extracted Zn amounts which were better correlated with Zn uptake. On the other hand, Mehlich‐1, which had a lower pH, had better correlations with both applied Zn and leaf Zn than did Mehlich‐3. Shortening the DTPA extraction time to 30 minutes resulted in better correlations than the standard two hour extraction time. Chloride (Cl) was the best anion tested in relation to soil applied Zn recovery in combination with potassium (K), calcium (Ca), and aluminum (Al), and Cl optimized leaf Zn correlations for ammonium (NH4), K, Ca, and magnesium (Mg). The larger the valence of the cation, the better the correlation with applied Zn and the poorer the correlation with leaf Zn.  相似文献   

16.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

17.
Abstract

Three extracting reagents were evaluated by correlation analyses to provide the best index of Zn, Cu, Mn and Fe availability to wheat (Triticum aestivum L.) plants growing under open field conditions. Twenty one soils were selected to obtain the widest range in properties of soils of the land wheat cultivated. The magnitude of the extractive power varied in the following order: 6NHCl ? EDTA + NH4OAC, pH4.65 > DTPA‐TEA, pH 7.3. The mild extractants, EDTA and DTPA, gave the same order of removal of micronutrients being Zn < Cu < Fe < Mn. The acid extractant was on the contrast more effective on Cu and Fe with respect to Zn and Mn, respectively. Wheat concentrations of Zn, Mn and Fe were significantly correlated to soil micronutrients. Highly significant relationships were found for Zn extracted by DTPA solution (r = 0.737***) and for Mn and Fe extracted by EDTA solution (r = 0.710*** and r = 0.564**). Plant Zn and Mn were also well predicted by the acid extraction. The absence of correlation for plant Cu vs. soil Cu occurred probably because of wheat concentrations almost constant, ranging from 5.0 to 8.0 mg/kg.  相似文献   

18.
Although Ni is officially recognized as an essential micronutrient for all higher plants, the majority of the published research on soil availability of Ni focuses on its hazardous role as a heavy metal. The objective of the study was to evaluate certain Ni soil tests in uncontaminated soils for an initial estimation of its sufficiency critical levels. Nickel was extracted from 30 cultivated soils employing the following extraction methods: DTPA, AB‐DTPA, AAAc‐EDTA, Mehlich‐3, 0.1 M HCl, and 0.1 M HNO3. Ryegrass (Lolium perenne L.) was grown in pots containing the soils, harvested five times, certain plant parameters were determined, and the Cate–Nelson procedures were used for Ni critical levels determination. Among the six methods, HCl was the least reliable extractant for the evaluation of soil available Ni, whereas the most significant (p ≤ 5%) relationships between Ni concentration or Ni uptake by ryegrass and Ni soil tests were consistently obtained for AAAc‐EDTA or Mehlich‐3 extractable Ni. In many cases, > 80% of the variability of Ni concentration or uptake by ryegrass was explained by these two soil tests without the inclusion of other soil properties that affect Ni bioavailability. Sufficiency critical levels of Ni in soil were ≈ 2 mg kg–1 for both methods. Consequently, as an initial approach, concentrations of AAAc‐EDTA or Mehlich‐3 extractable Ni < 2 mg kg–1 are probably a good guide to indicate soils that will respond to Ni fertilization.  相似文献   

19.
Abstract

The ammonium acetate (NH4OAc)‐EDTA soil phosphorus (P) extraction method was compared to either the Bray‐1 soil P extraction method for non‐calcareous soils or the Olsen soil P extraction method for calcareous soils to predict com and wheat plant tissue P concentration and grain yield responses. The NH4OAc‐EDTA method predicted yield and tissue P concentration responses to P fertilizer applications more accurately than the Olsen method at three of five sites. Both the Bray‐1 and NH4OAc‐EDTA methods were successful in predicting corn and wheat yield responses to P fertilizer applications in non‐ calcareous soils in many locations. However, a direct comparison of extracted soil P levels showed that the NH4OAc‐EDTA method extracted soil P at levels which were more closely related to the Bray‐1 method than the Olsen method.  相似文献   

20.
Abstract

Since only one extraction is required to determine a large number of nutrients, many laboratories employ universal extractants to determine the available nutrients in a soil sample. This paper compares the universal ammonium bicarbonate‐DTPA (AB‐DTPA) method developed by Soltanpour and Schwab (1977) with the traditional methods, ammonium acetate (NH4OAc) test for exchangeable cations and the Lindsay and Norwell (1969) test for the micronutrients. Results from the analysis of 28 soils by these methods were compared. Most soils were selected from those used by the Spanish Working Group for the Standardization of Analytical Methods. In most cases, statistical correlations between methods presented good agreement for each element, but depending on the soil pH range, some elements needed two correlations. Also, when results for wet and dry soils were compared, variability was lower when the AB‐DTPA extraction method was used. We concluded that, besides being faster, the AB‐DTPA method is valid for Spanish soils, even for calcium (Ca) extraction in calcareous soils, where the ammonium acetate method fails due to excessive Ca solubilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号