共查询到3条相似文献,搜索用时 0 毫秒
1.
E. Rafique M. Mahmood-ul-Hassan K. M. Khokhar G. Nabi T. Tabassam 《Journal of plant nutrition》2013,36(2):307-316
ABSTRACT Zinc (Zn) deficiency is a global nutritional problem in crops grown in calcareous soils. However, plant analysis criteria, a good tool for interpreting crop Zn requirement, is scarcely reported in literature for onion (Allium cepa L.). In a greenhouse experiment, Zn requirement, critical concentrations in diagnostic parts and genotypic variation were assessed using four onion cultivars (‘Swat-1’, ‘Phulkara,’ ‘Sariab Red,’ and ‘Chilton-89’) grown in a Zn-deficient (AB-DTPA extractable, 0.44 Zn mg kg?1), calcareous soil of Gujranwala series (Typic Hapludalf). Five rates of Zn, ranging from 0 to 16 mg Zn kg?1 soil, were applied as zinc sulphate (ZnSO4·7H2O) along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and boron (B). Four onion seedlings were transplanted in each pot. Whole shoots of two plants and recently matured leaves of other two plants were sampled. Zinc application significantly increased dry bulb yield and maximum yield was produced with 8 mg Zn kg?1. Application of higher rates did not improve yield further. The cultivars differed significantly in Zn efficiency and cv. ‘Swat-1’ was most Zn-efficient. Fertilizer requirement for near-maximum dry bulb yield was 2.5 mg Zn kg?1. Plant tissue critical Zn concentrations were 30 mg kg?1 in young whole shoots, 25 mg kg?1 in matured leaves, 16 mg kg?1 in tops and 14 mg Zn kg?1 in bulb. Zinc content in mature bulb also appeared to be a good indicator of soil Zn availability status. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(8):1293-1309
Boron (B) deficiency hampers cotton (Gossypium hirsutum L.) growth and productivity globally, especially in calcareous soils. The crop is known as a heavy feeder of B; however, its reported plant analysis diagnostic norms for B-deficiency diagnosis vary drastically. In a 2-year field experiment on a B-deficient [hydrochloric acid (HCl)–extractable 0.47 mg B kg?1], calcareous, Typic Haplocambid, we studied the impact of soil-applied B on cotton (cv. CIM-473) growth, productivity, plant tissue B concentration, and seed oil composition. Boron was applied at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kg B ha?1, as borax (Na2B4O7·10H2O), in a randomized complete block design with four replications, along with recommended rates of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Boron use improved crop growth, decreased fruit shedding, and increased boll weight, leading to seed cotton yield increases up to 14.7% (P < 0.05). Improved B nutrition of plants also enhanced seed oil content (P < 0.05) and increased seed protein content (P < 0.05). Fiber quality was not affected. Fertilizer B use was highly cost-effective, with a value–cost ratio of 12.3:1 at 1 kg B ha?1. Fertilizer B requirement for near-maximum (95% of maximum) seed cotton yield was 1.1 kg B ha?1 and HCl-extractable soil B requirement for was 0.52 kg ha?1. Leaf tissue B requirement varied with leaf age as well as with plant age. In 30-day plants (i.e., at squaring), B-deficiency diagnosis critical level was 45.0 mg kg?1 in recently matured leaves and 38.0 mg kg?1 in youngest open leaves; at 60 days old (i.e., at flowering), critical concentration was 55.0 mg kg?1 in mature leaves and 43.0 mg kg?1 in youngest leaves. With advancement in plant age critical B concentration decreased in both leaf tissues; that is, in 90-day-old plants (i.e., at boll formation) it was 43.0 mg kg?1 in mature leaves and 35.0 mg kg?1 in the youngest leaves. As critical concentration range was narrower in youngest leaves (i.e., 35–43 mg kg?1) compared with mature leaves (i.e., 43–55 mg kg?1), B concentration in youngest leaves is considered a better indicator for deficiency diagnosis. 相似文献
3.
Boron (B) deficiency frequently occurs on soils that are low in organic carbon (C) (<1.0% organic C), pH (soil pHCa <5.0), and clay content (<5% clay). Acid sands with these soil properties are common in south-western Australia (SWA). Moreover, hot calcium chloride (CaCl2) extractable B levels are commonly marginal in the acid sands of SWA. This study examined the effects of soluble and slow release soil-applied B fertilizer and foliar B sprays on crops most likely to respond to B fertilizer on these soils, canola (oil-seed rape, Brassica napus L.) and lupin (Lupinus angustifolius L.).At 25 sites over three years, canola was grown with (0.34 kg ha-1) or without B applied as borax [sodium tetraborate decahydrate (Na2B4O7·10H2O) 11% B], and this was followed by nine experiments with B rates [0, 0.55, 1.1 kg ha?1, applied as borax or calcium borate (ulexite, NaCaB5O6(OH)6·5(H2O), 13% B] and foliar sprays (0.1% solution of solubor, 23% B) in 2000–2001. A further five sites of B rates and sources experiments were carried out with lupin in 2000–2001. Finally, foliar B sprays (5% B w/v as a phenolic complex) at flowering were tested on seven sites in farmers’ canola crops for seed yield increases. No seed yield increases to soil-applied B were found while foliar B application at flowering increased canola seed yield in only one season across seven locations. By contrast, borax fertilizer drilled with the seed at sowing decreased canola seed yield in nine of 34-farm sites, and decreased lupin yield in two of five trials. Toxicity from drilled boron fertilizer decreased yield could be explained by decreases in plant density (by 22–40%) to values lower than required for optimum seed yield. Seedling emergence was decreased by borax applied at sowing but less so by calcium borate. Foliar B spray application never reduced seed yield due to toxicity effects.Boron fertilizer drilled with the seed increased the B concentration in plant dry matter at early to mid-flowering. Boron application decreased the oil concentration of grain of canola at four sites. The oil yield of canola was significantly decreased at seven sites.Notwithstanding the marginal B levels on acid sands of the SWA region, care needs to be taken on use of borax fertilizer as toxicity was induced in canola and lupin; with 0.34 to 1 kg B ha?1(3-10 kg borax ha?1) at sowing depressing seed yield, mostly by decreasing plant density. Rather than making general recommendation for B fertilizer application based on 0.01M CaCl2 soil extractable B, soil and plant analysis should be used to diagnose B deficiency and B fertilizer use limited to calcium borate or foliar borax rather than soil-applied borax on low B sands. 相似文献