首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The long-term fertilization results in accumulation of phosphorus especially in the top layer of the soils. Inundation of agricultural lands leads to a switch to anaerobic soil condition, causing reduction of iron and leaching of phosphate simultaneously. From the ecological and environmental perspective, high nutrients flux especially phosphorus will increase the possibility of eutrophication in aquatic system. The fern Azolla had a good potential to adsorb phosphorus, it also has distinctive nitrogen-fixing capacity. We conducted a 10-week aquarium experiment to investigate the phosphorus release capacity from two agricultural soils in the Netherlands with different Fe and P concentrations but comparable Fe/P ratios. Besides, the research questions rose to whether Azolla could use the mobilized phosphate released from the soils for growth. We also tried to find an effective indicator to estimate the actually phosphate mobilization from sediment to water layer. Results showed that the soils with high Fe and P concentrations had higher phosphate release rate compared with the soil with low Fe and P concentrations. Pore water Fe: PO43? ratios were valid to identify P release to surface water, when the Fe: PO43? ratios less than 8 mol mol?1 substantial phosphorus mobilization occurred. The conclusions showed that the actual mobilization of phosphate is more important than the phosphorus retained in the sediments for the internal PO43? fluxes. From 10-week experimental results, we found that Azolla can reuse the phosphate retained in soils thus removed the mobilized phosphate in a moderately low surface water nutrient loading.  相似文献   

2.
Abstract

Two properties that are detrimental to agronomic production with acid tropical soils are elevated aluminum concentrations and low phosphate availability. Direct application of carbonate apatites to acid tropical soils possessing low buffering capacity could possibly resolve this problem. The property that determines the effectiveness of directly‐applied carbonate apatites is the CO3/PO4ratio, which indicates the degree of anionic isomorphic substitution occurring within the mineral crystal lattice. Increasing ratios denote greater mineral solubility under acid‐soil conditions. Research was conducted to determine: a) fertilizer efficiency of three carbonate apatites (from North Carolina (NCPR), Central Florida (CFPR), and Kodjari, Upper Volta (KPR)), varying in CO3/PO4ratios, to that of triple superphosphate (TSP), and b) liming effects induced by the liberation of carbonates from each source, compared to CaCO3. Maize (Zea mays L.) was grown in pots containing 3 kg of a Dothan fine sandy loam (fine, loamy siliceous, thermic, Typic Paleudult). Yield was lower from carbonate apatite sources than from TSP during the first cropping period, but was equal to TSP treatments for the second cropping period with rocks possessing a CO3/PO4ratio greater than 0.14. The liming effect induced by liberation of carbonates and phosphates from NCPR (400 mg P kg‐1or 306 mg CO3kg‐1) equaled that from CaCO3(600 mg CO3kg‐1) during the first cropping period. Over experimental duration, the soil pH was increased by 0.60, 1.26, and 1.10 pH units with a resulting decrease of 0.13, 0.17, and 0.14 cmol(+) extractable Al kg‐1by CaCO3(600 mg CO3kg‐1), NCPR (306 mg CO3kg‐1), and CFPR (171 mg CO3kg‐1), respectively  相似文献   

3.
A hybrid anion resin was tested for in situ phosphorus (P) availability measurement in soils of two stands recovering from acidification and having different P-sorption characteristics. The phosphate (P-PO4) sorption capacity of the resin (before saturation) was 48 µmol g?1. Sorption and elution were tested under P-PO4 concentrations common in acidic soils (0–0.42 mmol l?1) either with or without the presence of sulfate (0.2 mmol l?1). The efficiency of P-PO4 sorption was independent of the sulfate and was 100 ± 0.2% (n = 56, ± SD). The P-PO4 recovery stabilized after six elution steps (each: 50 ml of 0.5 M sodium hydroxide, resin/solution 5:1). The efficiency of P-PO4 recovery was 80 ± 7% and was used to evaluate field measurements. We determined the amount of P-PO4 in the field using resin bags in three consecutive years. The results indicate that bioavailable P is negatively related to the soil ability to retain P.  相似文献   

4.
Abstract

Quantifying the relative contribution of different phosphorus (P) sources to P uptake can lead to greater understanding of the mechanisms that increase available P in integrated P management systems. The 32P–33P double isotope labeling technique was used to determine the relative contribution of green manures (GMs) and P fertilizers to P uptake by Setaria grass (Setaria sphacelata) grown in an amended tropical acid soil (Bungor series) in a glasshouse study. The amendments were factorial combinations of GMs (Calopogonium caeruleum, Gliricidia sepium and Imperata cylindrica) and P fertilizers [phosphate rocks (PRs) from North Carolina (NCPR), China (CPR) and Algeria (APR), and triple superphosphate (TSP)]. Dry matter yield, P uptake, and P utilization from the amendments were monitored at 4, 8, and 15 weeks after establishment (WAE). The GMs alone or in combination with P fertilizers contributed less than 5% to total P uptake in this soil, but total P uptake into Setaria plants in the GM treatments was three to four times that of the P fertilizers because the GMs mobilized more soil P. Also, the GMs markedly increased fertilizer P utilization in the combined treatments, from 3% to 39% with CPR, from 6–9% to 19–48% with reactive PRs, and from 6% to 37% with TSP in this soil. Both PGM and the other decomposition products were probably involved in reducing soil P‐retention capacity. Mobilization of soil P was most likely the result of the action of the other decomposition products. These results demonstrate the high potential of integrating GMs and PRs for managing P in tropical soils and the importance of the soil P mobilization capacity of the organic components. Even the low‐quality Imperata GM enhanced the effectiveness of the reactive APR more than fourfold.  相似文献   

5.
The effects of vermicompost (VC) (0% and 1% w/w) on treated calcareous clay soil with 0 and 50 mg phosphorus (P) kg?1 as calcium phosphate [Ca(H2PO4)2.H2O] was investigated. The soil samples were incubated for 7, 30, 60, 120, and 150 d at 25 ± 1°C and Olsen-P was measured after each incubation time. Results showed that Olsen-P increased 36% and 38% after VC addition in treated soil with 0 and 50 mg P kg?1, respectively. Recovery of Olsen-P in treated soils with VC, combined fertilizer VC + P, and fertilizer P was 42%, 42%, and 17%, respectively. The rate coefficient in treated soils with fertilizer, VC, and combined fertilizer VC + P was 0.033, 0.026, and 0.023 mg kg?1 d?1/2, respectively. It seems that the process that leads to the decrease in available P in amended soils, is controlled by P diffusion into sorption sites in micropores of aggregates.  相似文献   

6.
Understanding the role of organic acids on phosphorus (P) sorption capacity of soils is very important for its economic and friendly management. Combining P application with low-molecular weight organic acids could result in its higher plant availability for prolonged time. Therefore, citric and oxalic acid (at the rate of 1.0 mM kg?1 soil) were evaluated for their effect on P sorption capacity and its plant availability in two different textured calcareous soils. Organic acids decreased P sorption capacity and organic carbon partition coefficient (Koc) whereas increased Gibbs free energy (ΔG) of P. Organic-acid-treated soils required lesser quantity of P fertilizer to produce soil solution P concentration optimum for plant growth (external P requirement [EPR0.2]), that is, 0.2 mg L?1. Citric acid was efficient than oxalic acid in the above effects. P sorption parameters of Freundlich model were negatively correlated with lime potential and ΔG whereas had positive correlation (< 0.05) with EPR0.2 and Koc. Incubation with oxalic acid increased available P in loamy sand and loam soil by 20% and 30%, respectively. Thus, organic acids could help reduce application rate of P fertilizer through lowering its adsorption in highly P-fixing soils without compromise on yield.  相似文献   

7.
(pp. 41–46)

Silicon availability in 36 commercial nursery bed soils was evaluated by four methods the phosphate buffer (pH 6.2, 40 mmol L?1), incubation, supernatant and acetate buffer (pH 4.0, 1 mol L?1) Methods. The influence of silicon availability in the nursery bed soils on the silicon uptake of rice Oryza sativa L. cv. Hitomebore seedlings and the effect of silicon fertilizer application were examined in a glass house in 2002.

The results revealed that the best correlation between silicon content in rice seedlings and available silicon in soils was obtained with the phosphate buffer-solution method (r = 0.86). More precise evaluation of available silicon was achieved by grouping soils based on these phosphate absorption coefficients (PAC). The correlation coefficients between silicon content in rice seedlings and available silicon in soils were 0.92 and 0.72 for volcanic soils (PAC > 1500) and non volcanic soils (PAC < 1500), respectively.

We concluded that the phosphate buffer method is the most easily adjusted method for estimation of silicon availability in nursery bed soils, and silicon fertilizers should be applied when silicon availability in non-volcanic nursery bed soils goes below 200 mg kg?1, whereas the level is less than 350 mg kg?1 in volcanic soils.  相似文献   

8.
Composting systems were designed to utilize ammonia (NH3) released during composting of poultry manure to solubilize phosphate rock (PR). The NH3 released from decomposing manure was allowed to pass through columns containing soil or bark materials mixed with North Carolina phosphate rock (NCPR) at a rate of 1 mg P g?1. After eight weeks of incubation, the columns were dismantled and the forms of P and N in PR/soil or PR/bark mixtures were measured. The dissolution of PR was determined from the increases in the amount of soluble and adsorbed P (resin plus NaOH extractable P) or from the decreases in the residual apatite P (HC1 extractable P).

The amounts of NH4+-N in the soil and bark columns increased due to absorption of the NH3 released from poultry manure. No nitrification of absorbed NH3 occurred, however, unless the soil or bark were reinoculated with a fresh soil solution and incubated for further six weeks.

In the absence of NH3 absorption, soil and bark materials dissolved approximately 33 percent and 82 percent of NCPR, respectively. The higher dissolution of NCPR in bark was attributed to its higher exchangeable acidity and Ca sink size. There was no increase in NCPR dissolution during the initial NH3 absorption phase (36 percent and 85 percent dissolution in soil and bark respectively), which may be due to the absence of nitrification. However, during subsequent reincubation when nitrification occurred, the final dissolution of NCPR in the NH3 treated soil and bark was slightly higher (41 percent and 100 percent, respectively). Protons (H+) are released during the oxidation of NH4+ to NO3? (nitrification) which promote the dissolution of PR. However, most of the H+ released during nitrification was involved with soil and bark pH buffering reactions. Only five to 10 percent was involved in PR solubilization in PR/soil mixtures whereas about 50 percent was involved in PR/bark systems.

Bark covers for poultry manure and poultry manure compost heaps have the potential to reduce NH3 loss and conserve N and may be useful for other purposes such as PR solubilization.  相似文献   

9.

Purpose

The key factors influencing pH buffering capacity of acid soils from tropical and subtropical regions, and effects of soil evolution and incorporation of biochars on pH buffering capacity were investigated to develop suitable methods to increase pH buffering capacity of acid soils.

Materials and methods

A total of 24 acid soils collected from southern China were used. The pH buffering capacity was determined using acid–base titration. The values of pH buffering capacity were obtained from the slope of titration curves of acid or alkali additions plotted against pH in the pH range 4.0–7.0. Two biochars were prepared from straws of peanut and canola using a low temperature pyrolysis method. After incubation of three acid soils, pH buffering capacity was then determined.

Results and discussion

pH buffering capacity had a range of 9.1–32.1 mmol kg–1 pH–1 for 18 acid soils from tropical and subtropical regions of China. The pH buffering capacity was highly correlated (R 2?=?0.707) with soil cation exchange capacity (CEC) measured with ammonium acetate method at pH 7.0 and decreased with soil evolution due to the decreased CEC. Incorporation of biochars at rates equivalent to 72 and 120 t ha?1 increased soil pH buffering capacity due to the CEC contained in the biochars. Incorporation of peanut straw char which itself contained more CEC and alkalinity induced more increase in soil CEC, and thus greater increase in pH buffering capacity compared with canola straw char. At 5% of peanut straw char added, soil CEC increased by 80.2%, 51.3%, and 82.8% for Ultisol from Liuzhou, Oxisol from Chengmai and Ultisol from Kunlun, respectively, and by 19.8%, 19.6%, and 32.8% with 5% of canola straw char added, respectively; and correspondingly for these soils, the pH buffering capacity increased by 73.6%, 92.0%, and 123.2% with peanut straw char added; and by 31.3%, 25.6%, and 52.3% with canola straw char added, respectively. Protonation/deprotonation of oxygen-containing functional groups of biochars was the main mechanism for the increase of pH buffering capacity of acid soils with the incorporation of biochars.

Conclusions

CEC was a key factor determining pH buffering capacity of acid soils from tropical and subtropical regions of China. Decreased CEC and content of 2:1-type clay minerals during evolution of tropical soils led to decreased pH buffering capacity. Incorporation of biochars generated from crop straws did not only ameliorate soil acidity, but also increased soil pH buffering capacity.
  相似文献   

10.
Soil microbes are frequently limited by carbon (C), but also have a high phosphorus (P) requirement. Little is known about the effect of P availability relative to the availability of C on soil microbial activity. In two separate experiments, we assessed the effect of P addition (20 mg P kg?1 soil) with and without glucose addition (500 mg C kg?1 soil) on gross nitrogen (N) mineralization (15N pool dilution method), microbial respiration, and nitrous oxide (N2O) emission in a grassland soil. In the first experiment, soils were incubated for 13 days at 90% water holding capacity (WHC) with addition of NO3? (99 mg N kg?1 soil) to support denitrification. Addition of C and P had no effect on gross N mineralization. Initially, N2O emission significantly increased with glucose, but it decreased at later stages of the incubation, suggesting a shift from C to NO3? limitation of denitrifiers. P addition increased the N2O/CO2 ratio without glucose but decreased it with glucose addition. Furthermore, the 15N recovery was lowest with glucose and without P addition, suggesting a glucose by P interaction on the denitrifying community. In the second experiment, soils were incubated for 2 days at 75% WHC without N addition. Glucose addition increased soil 15N recovery, but had no effect on gross N mineralization. Possibly, glucose addition increased short-term microbial N immobilization, thereby reducing N-substrates for nitrification and denitrification under more aerobic conditions. Our results indicate that both C and P affect N transformations in this grassland soil.  相似文献   

11.
The potential of Nostoc 9v for improving the nitrogen (N)2–fixing capacity and nutrient status of semi‐arid soils from Tanzania, Zimbabwe, and South Africa was studied in a laboratory experiment. Nostoc 9v was inoculated on nonsterilized and sterilized soils. Inoculum rates were 2.5 mg dry biomass g?1 soil and 5 mg dry biomass g?1 soil. The soils were incubated for 3 months at 27 °C under 22 W m2 illumination with a photoperiod of 16 h light and 8 h dark. The moisture was maintained at 60% of field capacity. In all soils, Nostoc 9v proliferated and colonized the soil surfaces very quickly and was tolerant to acidity and low nutrient availability. Cyanobacteria promoted soil N2 fixation and had a pronounced effect on total soil organic carbon (SOC), which increased by 30–100%. Total N also increased, but the enrichment was, in most soils, comparatively lower than for carbon (C). Nitrate and ammonium concentrations, in contrast, decreased in all the soils studied. Increases in the concentration of available macronutrients were produced in most soils and treatments, ranging from 3 to 20 mg phosphorus (P) kg?1 soil, from 5 to 58 mg potassium (K) kg?1 soil, from 4 to 285 mg calcium (Ca) kg?1, and from 12 to 90 mg magnesium (Mg) kg?1 soil. Positive effects on the levels of available manganese (Mn) and zinc (Zn) were also observed.  相似文献   

12.
ABSTRACT

Quantity-Intensity (Q/I) parameters were used for elucidating the role of buffering properties of soils through K depletion. Winter wheat was sown in a greenhouse pot experiment until K-depletion and soils were analyzed with NH4OAc and NaBPh4 (1 min incubation period). Q/I isotherms (partitioned in exchangeable and non-exchangeable form) were constructed for the soils before and at the end of the K-exhaustion experiment. Results showed that NaBPh4-K correlated better than NH4OAc-K with intensity parameter (AReK) or labile K (-ΔΚ0) in K-depleted soils (r = 0.41 and 0.70), indicating the importance of non-exchangeable K in K dynamics. The latter was confirmed from the comparison of buffering characteristics between initial and K-depleted soils which showed that among the soils studied there was a group whose increase in buffering capacity (PBCKt) was due to non-exchangeable K fixation. Furthermore, NaBPh4-K was well predicted by the sum of exchangeable K and the quantity of K that has to be applied to achieve K balance as derived from Q/I isotherms (EK0 + CK0). Finally, relationships were found between Q/I parameters of the initial soils (-ΔΚ0i, ΕΚ0i, ΕΚri, CK0i) and the K-depleted ones (ΕΚrd, ΕΚ0d, CK0d, CKrd) which allowed corresponding prediction of the initial parameters (r2 = 0.78–0.87).  相似文献   

13.
Geochemical sorption and biological demand control phosphorus (P) retention and availability in soils. Sorption and the biota predominantly utilize the same inorganic form of P, from the same soil pool, on the same time scale, and thus are likely to compete for P as it flows through the available pool. In tropical soils, P availability is typically quite low and soil geochemical reactivity can be quite high. We tested whether greater P sorption strength in tropical soils resulted in lower biological uptake of available P. Since the strength of soil sorption and biological demand for P change as ecosystems develop and soils age, we used soils from the two upper horizons from three sites along a 4.1 million-year-old tropical forest chronosequence in the Hawaiian archipelago. We evaluated the strength of geochemical sorption, microbial demand, and the partitioning of added available P into biological versus geochemical soil pools over 48 h using a 32PO4 tracer. Soil sorption strength was high and correlated with soil mineral content. The amount of added phosphate geochemically sorbed versus immobilized by microbes varied more between the organic and mineral soil horizons than among soil ages. Microbial activity was a good predictor of how much available P was partitioned into biological versus geochemical pools across all soils, while sorption capacity was not. This suggests that microbial demand was the predominant control over partitioning of available P despite changes in soil sorption strength.  相似文献   

14.
Abstract

In an attempt to search for a cheaper source of phosphorus (P), both for direct application and industrial use, three P fertilizers were evaluated in incubation and greenhouse studies. Indigenous Sokoto rock phosphate (SRP) imported, Togo rock phosphate (TRP), and conventional single superphosphate (SSP) were applied on three soil types namely Oxisol, Ultisol, and Alfisol at rates ranging from 0–800 mg P kg‐1 soil. Evaluation of the P sources was conducted for 12 weeks in incubation study, and five weeks in the greenhouse using maize as test crop. Evaluation of direct application of SSP and SRP on an oxic paleudult was carried out in the field for three years. The results of incubation studies revealed in general, that P availability increased as fertilizer rates increased. The P availability was, however, greater when SSP was applied on the Alfisol than on the Oxisol and Ultisol. The rock phosphates on the other hand were more efficient on acid soils than on soils neutral in pH. Optimum P availability from the fertilizers was observed to occur predominantly between four and eight weeks of incubation. In the greenhouse study, SSP gave the highest cumulative P uptake and optimum rate of application was 200 mg P kg‐1 soil, while optimum rate for rock phosphate was 400 mg P kg‐1 soil. The agronomic effectiveness (EA) of the rock phosphates was about 40% relative to SSP on the Alfisol. The EA, however, for TRP and SRP was 120% and 160%, respectively, on the Oxisol, while on the Ultisol, SRP was equally effective as SSP and TRP had 65% effectiveness. The results of the field trial indicated that the SRP had 54%, 83%, and 107% agronomic effectiveness of SSP, respectively, in the first, second, and third year of cropping. Optimum rate for SSP and SRP application was considered to be 50 and 75 kg P2O5 ha‐1, respectively.  相似文献   

15.
Red soils in subtropical regions are often low in available phosphorus (P), a vital plant nutrient. Phosphate-solubilizing microorganisms (PSMs) can release P from phosphate reservoir, making it accessible to plants. However, the complex interactions between PSMs and minerals in red soils are not yet fully understood. In this study, we investigated the effects of Aspergillus niger, a typical phosphate-solubilizing fungus (PSF), on phosphate dissolution in two representative red soils – an acidic soil and an alkaline soil. In the acidic red soil, the fungal abundance reached 3.01 × 10 7 cfu g−1 after a 28-day incubation period, with respiration of ~2000 mg C kg−1. The secretion of oxalic acid promoted P release from inorganic phosphate (from ~1 to 187 mg kg−1). Additionally, the contents of amorphous Fe/Al oxides decreased, which otherwise could have contributed to P sorption in the soil. In contrast, P availability declined in the alkaline red soil after the addition of A. niger, regardless of the P source (inorganic or organic phosphate). Meanwhile, the fungal respiration decreased to ~780 mg C kg−1. Therefore, alkaline red soils with abundant carbonates are susceptible to P deficiency due to both the diminished function of PSMs and strong soil buffering. These findings have important implications for sustainable agriculture on alkaline red soils, as they suggest that the use of PSMs to improve P availability may be limited.  相似文献   

16.
A study was conducted to isolate P-solubilizing bacteria from the rhizosphere of three wild rice species and to test their ability to mobilize P from rock phosphate (RP). Inoculated seeds or seedlings of eight different strains were grown in soils supplemented with a P fertilizer mixture (PFM) consisting triple super phosphate (TSP) and RP, each providing equal amounts of P2O5. Crop growth, NaHCO3-extractable P, crop P uptake and yield were compared with two uninoculated controls, with either TSP or PFM added. In the pot experiment, P availability varied from 20 to 48 mg P kg?1 soil. Yields ranged between 4.8 and 6.6 g per pot and were not significantly different between treatments. In the field experiment, shoot P accumulation in inoculated and TSP-control treatments at the heading stage ranged between 79–129 mg and 219 mg per pot, respectively. Dual inoculants comprising Staphylococcus scirui, Bacillus pumilus, Bacillus subtilus and Bacillus cereus increased yield by about 29% over PFM-controls (324 g m?2) but those yields were 21% lower than TSP-controls (510 g m?2). Therefore, application of inoculants combined with PFM is not a viable alternative for TSP under the tested conditions because yield was limited by the P availability.  相似文献   

17.
Abstract

The general concept that low‐water‐soluble phosphorus (P) fertilizers should be more agronomically effective when applied to acidic soils was developed based on sources containing mainly calcium (Ca)‐P compounds, but it may not hold true for sources with different chemical composition. To obtain information related to this issue, two important iron (Fe)–potassium (K)–P compounds present in superphosphates [Fe3KH8(PO4)6 · 6H2O, H8, and Fe3KH14(PO4)8 · 4H2O, H14] were prepared and characterized. These P sources were used to provide 30 and 60 mg P kg?1 as neutral ammonium citrate (NAC)+H2O‐soluble P. Reagent‐grade monocalcium phosphate (MCP) was used as a standard P source with high water solubility with an additional rate of 120 mg P kg?1 included. Also, mixtures of both Fe‐K‐P compounds and MCP were prepared to provide 0, 25, 50, 75, and 100% of the total P as MCP. All sources were applied to a clayey loamy acid soil (pH 5.3) classified as Rhodic Kanhapludult. The soil was incubated at two rates (0 and 10 g kg?1) of lime, which resulted in pH 5.4 and 6.8. Upland rice was cultivated to maturity. The H14 compound confirmed to be a highly effective source of P for the rice plants at both soil pH, as opposed to the H8, which was poorly effective when applied alone. When mixed with water‐soluble P (WSP), the H8 was able to provide P to the plants with the maximum yield of upland rice reached with 54.8 and 80.5% of WSP for pH 5.4 and 6.8, respectively. The high agronomic performance of the H14 compound clearly indicates that this low‐water‐soluble P source cannot be deemed as ineffective at high soil pH.  相似文献   

18.
Abstract

To understand the influence of basal application of N fertilizer on nitrification potential and N2O and NO emissions, four soil samples were collected from an upland Andisol field just before (sample 1) and 4 (sample 2), 36 (sample 3) and 72 (sample 4) days after the basal application of N fertilizer during the Chinese cabbage growing season from 12 September to 30 November 2005. The potentials of N2O production and nitrification of the soils were determined using a 15N tracer technique and the soils were incubated for 25 days at 25°C and 60% water-filled pore space (WFPS). The results revealed that as much as 84–97% N2O and almost all NO were produced by nitrification. The 15N2O emission peak occurred approximately 350 h after the beginning of incubation for samples 1 and 2, but just 48 h later in samples 3 and 4. Total 15N2O emission during the 25-day incubation of samples 3 and 4 ranged from 190 to 198 µg N kg?1 soil, which was significantly higher than the 99–108 µg N kg?1 soil recorded in samples 1 and 2. Basal application of N fertilizer did not immediately increase the nitrification potential and the ratio of N2O to N added, but did dramatically increase the nitrification potential and the ratio of N2O to N added as (15NH4)2SO4 36–72 days after the basal N fertilizer was added. In contrast, NO emission was negatively correlated with nitrification potential and total N2O emission. As a result, a trade-off relationship between total NO and N2O emissions was identified. The results indicated that there was a time-lagged induction of the change of N turnover in the soil, which was possibly caused by slow population growth of the nitrifiers and/or a slow shift in the microbial community in the soil.  相似文献   

19.
Manganese (Mn) release in 18 soil–water suspensions after their equilibration for 24 and 240 h periods at 25°C was studied in a laboratory experiment. Total dissolved Mn released into the soil solution was observed to increase from a range of 0.03–0.41 mg L?1 (mean = 0.13 mg L?1) to a range of 0.45–44.44 mg L?1 (mean = 22.40 mg L?1) with the increase in incubation periods from 24 to 240 h, respectively. The increase in Mn released was observed to be related with the redox potential (pe) induced by incubation conditions. After 24 h of equilibration period, pe of soil–water suspension ranged from ?1.75 to 0.77 (mean = ?0.24). Increasing the incubation period to 240 h, pe of soil–water suspensions declined in the range of ?4.49 to ?2.74 (mean = ?3.29). Laboratory results of redox pe and corresponding dissolved manganese concentrations of some soil–water equilibrated systems were compared with the leaf Mn content in wheat and rice plants grown in the fields, from where soil samples were collected for laboratory experiment. These results demonstrated that decline in pe due to longer equilibration period (240 h) of soil–water systems in the laboratory experiment or keeping standing water for a couple of weeks in the fields for cultivation of rice crop results in higher release of Mn and eventually its higher uptake in rice than in wheat plants. Leaf manganese content in rice ranged from 94 to 185 mg kg?1, which was markedly higher than its range from 25 to 62 mg kg?1 found in the wheat grown at 10 different sites. Pourbaix diagrams were drawn for different soil–water systems containing carbonate, phosphate, or sulfate along with manganese. The presence of carbonate and phosphate anions along with manganese oxides minerals in the soil–water systems of all soils results in its precipitation as MnCO3 and MnHPO4, respectively, in both oxidized and reduced soil field environment. In Punjab, wheat and rice crops are generally cultivated on soils heavily fertilized with P fertilizers. The presence of phosphate anion with manganese oxides minerals in the soil–water systems of all soils results in the precipitation MnHPO4 in both oxidized and reduced soil field environment. Thus, in P-fertilized soil, MnHPO4 compound is even more predominant than aqueous Mn2+ and its solubility actually controlled the availability of Mn2+ to plants.  相似文献   

20.
Abstract

A laboratory incubation experiment was conducted to evaluate the soil factors that influence the dissolution of two phosphate rocks (PRs) of different reactivity (Gafsa, GPR, reactive PR; and Togo‐Hahotoe, HPR, low reactivity PR) in seven agricultural soils from Cameroon having variable phosphorus (P)‐sorption capacities, organic carbon (C) contents, and exchangeable acidities. Ground PR was mixed with the soils at a rate of 500 mg P kg?1 soil and incubated at 30°C for 85 days. Dissolution of the PRs was determined at various intervals using the ΔNaOH‐P method (the difference of the amount of P extracted by 0.5 M NaOH between the PR‐treated soils and the control). Between 4 and 27% of HPR and 33 and 50% of GPR were dissolved in the soils. Calcium (Ca) saturation of cation exchange sites and proton supply strongly affected PR dissolution in these soils. Acid soils with pH‐(H2O)<5 (NKL, ODJ, NSM, MTF) dissolved more phosphate rock than those with pH‐(H2O)>5 (DSC, FGT, BAF). However, the lack of a sufficient Ca sink in the former constrained the dissolution of both PRs. The dissolution of GPR in the slightly acidic soils was limited by increase in Ca saturation and that of HPR was constrained by limited supply in protons. Generally, the dissolution of GPR was higher than that of HPR for each soil. The kinetics of dissolution of PR in the soils was best described by the power function equation P=AtB. More efficient use of PR in these soils can be achieved by raising the soil cation exchange capacity, thereby increasing the Ca sink size. This could be done by amending such soils with organic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号