首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
Phenolic compounds, vitamin C (L-ascorbic acid and L-dehydroascorbic acid), and antioxidant capacity were evaluated in orange juices manufactured by different techniques. Five processes at industrial scale (squeezing, mild pasteurization, standard pasteurization, concentration, and freezing) used in commercial orange juice manufacturing were studied. In addition, domestic squeezing (a hand processing technique) was compared with commercial squeezing (an industrial FMC single-strength extraction) to evaluate their influences on health components of orange juice. Whole orange juice was divided into soluble and cloud fractions after centrifugation. Total and individual phenolics were analyzed in both fractions by HPLC. Commercial squeezing extracted 22% more phenolics than hand squeezing. The freezing process caused a dramatic decrease in phenolics, whereas the concentration process caused a mild precipitation of these compounds to the juice cloud. In pulp, pasteurization led to degradation of several phenolic compounds, that is, caffeic acid derivatives, vicenin 2 (apigenin 6,8-di-C-glucoside), and narirutin (5,7,4'-trihydroxyflavanone-7-rutinoside) with losses of 34.5, 30.7, and 28%, respectively. Regarding vitamin C, orange juice produced by commercial squeezing contained 25% more of this compound than domestic squeezing. Mild and standard pasteurization slightly increased the total vitamin C content as the contribution from the orange solids parts, whereas concentration and freezing did not show significant changes. The content of L-ascorbic acid provided 77-96% of the total antioxidant capacity of orange juice. Mild pasteurization, standard pasteurization, concentration, and freezing did not affect the total antioxidant capacity of juice, but they did, however, in pulp, where it was reduced by 47%.  相似文献   

2.
Orange juice manufactured at industrial scale was subjected to digestion under in vitro gastrointestinal conditions (pH, temperature, and enzyme and chemical conditions) to evaluate the influence of individual industrial processing treatments on flavanone solubility, stability, and ability to permeate through a membrane under simulated physiological conditions. Four industrial processes including squeezing, standard pasteurization, concentration, and freezing were evaluated. Hand squeezing was compared with industrial squeezing. After in vitro gastrointestinal digestion of the orange juices, the flavanones able to permeate through a dialysis membrane, and those remaining in the retentate were evaluated by HPLC as were those present in the insoluble fraction. In all of the assayed orange juices, a high content of precipitated chalcones ( approximately 70% of the total flavanones) was formed under the physiological conditions of the gastrointestinal tract. Hand squeezing provided a higher concentration of flavanones in the permeated fraction and lower transformation to chalcones than industrial squeezing. Standard pasteurization did not influence the solubility and permeability of the orange juice flavanones and chalcones. Industrial concentration did not affect the amount of flavanones able to permeate but decreased the chalcones produced. Juices produced from frozen orange juice contained considerably smaller amounts of both soluble flavanones and insoluble chalcones.  相似文献   

3.
The chemical composition of 30 samples of juices obtained from bergamot (Citrus bergamia Risso and Poit.) fruits is reported and compared to the genuineness parameters adopted by Association of the Industry of Juice and Nectars (AIJN) for lemon juice. It was found that the compositional differences between the two juices are distinguishable, although with difficulty. However, these differences are not strong enough to detect the fraudulent addition of bergamot juice to lemon juice. Instead, we found the high-performance liquid chromatography (HPLC) analysis of the flavanones naringin, neohesperidin, and neoeriocitrin, which are present in bergamot juice and practically absent in the lemon juice, is a convenient way to detect and quantify the fraudulent addition of bergamot juice. The method has been validated by calculating the detection and quantification limits according to Eurachem procedures. Employing neoeriocitrin (detection limit = 0.7 mg/L) and naringin (detection limit = 1 mg/L) as markers, it is possible to detect the addition of bergamot juice to lemon juice at the 1% level. When using neohesperidin as a marker (detection limit = 1 mg/L), the minimal percentage of detectable addition of bergamot juice was about 2%. Finally, it is reported that the pattern of flavonoid content of the bergamot juice is similar to those of chinotto (Citrus myrtifolia Raf) and bitter orange (Citrus aurantium L.) juices and that it is possible to distinguish the three kinds of juices by HPLC analysis.  相似文献   

4.
The occurrence of methional in fresh orange juice, and possible occurrence of beta-damascenone in heated orange juice, has been previously suggested. Here we report on the occurrence of 2-methyl-3-furanthiol in the headspace, collected by solid-phase micro-extraction, of fresh, pasteurized, and stored orange juice. The contents of 2-methyl-3-furanthiol and methional were quantified, and the relative level of beta-damascenone was estimated, in the headspace of fresh, pasteurized, and stored orange juices using the nasal impact frequency (NIF) and surface of NIF (SNIF) GC-Olfactometry procedure. 2-Methyl-3-furanthiol concentrations were 2 ng/L in fresh and pasteurized Shamuti orange juice, and 270 ng/L in stored juice of the same variety. Methional concentrations were 550, 830, and 11,550 ng/L in fresh, pasteurized, and stored pasteurized juices, respectively. beta-Damascenone content appeared to have increased during pasteurization and storage. Aroma-similarity experiments strongly suggest that 2-methyl-3-furanthiol and methional, at the levels found in stored orange juice (21 days at 35 degrees C), contribute to stored orange juice off-flavor.  相似文献   

5.
This study evaluated the phytochemical stability and organoleptic attributes of an ascorbic acid-fortified muscadine grape juice as affected by dense phase CO2 processing (DP-CO2) and addition of thyme polyphenolic cofactors (Thymus vulgaris; 1:100 anthocyanin-to-cofactor molar ratio) in efforts to prevent phytochemical losses that occur during storage of anthocyanin-containing beverages, especially in the presence of carbonyl compounds commonly produced during thermal processing and storage. DP-CO2 processing insignificantly altered initial juice phytochemical and antioxidant content, whereas thermal pasteurization reduced anthocyanins (263 mg/L), ascorbic acid (42 mg/L), soluble phenolics (266 mg/L), and antioxidant capacity (6 microM Trolox equivalents/mL). Similar trends were observed during storage, and data showed that increasing the CO2 level from 8 to 16% during DP-CO2 was instrumental in reducing juice phytochemical and antioxidant degradation. Copigmentation was instrumental in retaining higher anthocyanin, soluble phenolics, and antioxidant capacity during storage without affecting initial juice aroma and flavor characteristics. Moreover, on the basis of overall likeability scores, panelists preferred copigmented juices, which had increased juice color intensity and masked the detrimental color fading that occurred during storage, especially when compared to thermally pasteurized juices. DP-CO2 and copigmentation were effective strategies to reduce phytochemical and color deterioration that occurred in muscadine juice during storage without affecting their organoleptic attributes.  相似文献   

6.
Dense phase CO2 processing (DP-CO2) is a promising alternative to thermal pasteurization potentially inactivating microorganisms without affecting food phytochemicals or organoleptic characteristics. To demonstrate these effects, studies were conducted by changing processing pressure and CO2 concentration in relation to microbial destruction. Subsequent storage stability (10 weeks at 4 degrees C) of muscadine grape juice processed by DP-CO2 (34.5 MPa at 8% or 16% CO2) was evaluated and compared to a heat-pasteurized juice (75 degrees C, 15 s). Thermal pasteurization decreased anthocyanins (16%), soluble phenolics (26%), and antioxidant capacity (10%) whereas no changes were observed for both DP-CO2 juices. DP-CO2 juices also retained higher anthocyanins (335 mg/L), polyphenolics (473 mg/L), and antioxidant capacity (10.9 micromol of Trolox equivalents/mL) than thermally pasteurized juices at the end of storage. Insignificant differences in sensory attributes (color, flavor, aroma, and overall likeability) were observed between unprocessed and DP-CO2 juices, while significant differences were observed between unprocessed and heat-pasteurized juices. Panelists preferred DP-CO2 over heat-pasteurized juices throughout the first 6 weeks of storage, whereby the growth of yeast and mold adversely affected the juice aroma. Comparable microbial counts were observed between DP-CO2 and thermally pasteurized juices during the first 5 weeks of storage. DP-CO2 protected phytochemicals in muscadine juice during processing and storage without compromising microbial stability or sensory attributes over 5 weeks of storage.  相似文献   

7.
Several fresh orange juices, obtained from five different Citrus sinensis (L.) Osbeck varieties (three pigmented varieties, Moro, Sanguinello, and Tarocco, and two blond varieties, Valencia late and Washington navel), were subjected to antioxidant profile determination (including total polyphenols, flavanones, anthocyanins, hydroxycinnamic acids, and ascorbic acid). The antioxidant activity of these juices was then assessed by means of different "in vitro" tests (bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical; peroxidation, induced by the water-soluble radical initiator 2,2'-azobis(2-amidinopropane) hydrochloride, on mixed dipalmitoylphosphatidylcholine/linoleic acid unilamellar vesicles; scavenging activity against nitric oxide; total antioxidant status). All orange juices tested showed an evident antioxidant effect. Our findings indicate the following: (1) the antioxidant efficiency of orange juices may be attributed, in a significant part at least, to their content of total phenols, (2) while ascorbic acid seems to play a minor role; (3) the antioxidant activity of orange juices is related not only to structural features of phytochemicals contained in them, but also to their capability to interact with biomembranes; (4) finally, as to pigmented juices, their antioxidant efficiency appears to be widely influenced by the anthocyanin level. One could speculate that the supply of natural antioxidant phenols through daily consumption of orange juice might provide additional protection against in vivo oxidation of cellular biomolecules.  相似文献   

8.
To specify the genotypic variation of Mediterranean Citrus juices, the contents of carotenoids, flavonoids, and vitamin C were determined by high-performance liquid chromatography. A selection of orange varieties and Mandarin species from the Mediterranean area (Citrus sinensis, Citrus deliciosa Ten, and Citrus clementina Hort. ex Tan) was evaluated using carotenoid profiles and flavanones contents. Among the eight varieties of orange (Salustiana, Hamlin, Shamouti, Pera, Valencia, Maltaise, Sanguinelli, and Cara-cara) and two Mandarin species, only three cultivars (Pera, Sanguinelli, and Shamouti) and the two Mandarin species displayed a high content of vitamin A (374, 381, and 272 ER L(-1) for the three orange cultivars and 1156 and 960 retinol equivalent (RE) L(-1) for the Mandarins) due to a high content of beta-cryptoxanthin. These same Citrus were also rich in hesperidin (502, 537, 552, 767, and 754 mg L(-1), respectively). Principal component analysis allowed the Mediterranean orange varieties and Mandarin species to be differentiated on the basis of nutritional criteria. Strong correlations were observed between beta-cryptoxanthin and hesperidin (r = 0.92) and between beta-cryptoxanthin and beta-carotene (r = 0.98). In contrast, vitamin C content was not correlated with carotenoids and flavanone glycosides. The Mandarin and orange group was quite distinct. The orange varieties could be divided in two groups. In addition, a diversity tree allowed a genetic approach to differentiating Citrus cultivars on the basis of Euclidian distances. This representation showed that the hybrid Clementine was nearer to its parent Mandarin than to its parent orange, suggesting that beta-cryptoxanthin was a dominant genetic factor. With regard to vitamin A, Mandarin and its hybrid Clementine appeared to be the best Citrus species.  相似文献   

9.
The present study examined the involvement of proteins in cloud flocculation of Valencia orange juice. Marked differences in cloud instability were found between juices of different harvest dates. Heating of enzymatic pectin degraded juice from April and June harvests resulted in development of clumps and their precipitation. Although the juice from both harvesting dates remained hazy, the juice of April harvest was more turbid than that from June. Usually clarification increases as the temperature increases from ambient to 125 degrees C. Clarification occurred at pH 2.5-4.5 and was maximal at pH 3.5. The clarification of the April harvest juice was markedly lower than that of the June harvest. The fresh juice contained about 5.2 and 1.7 mg mL(-1) insoluble cloud matter (ICM) and alcohol-insoluble serum solids (AISS), respectively. The ICM and the AISS, respectively, contained: proteins (244.5+/-8.7 and 132+/-1.8 microg mg(-1)), galacturonic acid (40+/-0 and 120+/-0 microg mg(-1)) and neutral sugars (270+/-39 and 329+/-23 microg mg(-1)). Enzymatic pectin degradation resulted in removal of a marked portion of the pectin, and was accompanied by partial removal of neutral sugars (mainly glucose and galactose) and some proteins from the pectic polymer in both AISS and ICM. Proteins of the AISS included major bands at 10-14, 20, and 28 kDa and those of the ICM bands at 22, 24, 26, and 45 kDa.  相似文献   

10.
11.
The effect of storage temperature on dimethoate degradation in fortified orange and peach juices was studied. The insecticide was aseptically injected into packed orange and peach juices and stored at 40, 15, and 0 degrees C. Samples were taken at regular time intervals and were examined for dimethoate residues. The residues were determined with a simple gas chromatographic method; the recoveries of dimethoate from orange and peach juices were found to be from 88 to 114% for both products. The limits of determination were 0.004 and 0.003 mg/kg, respectively. From the experimental data, rate constants, half-lives, and activation energies for the decomposition of dimethoate in orange and peach juices were evaluated. During the storage of fruit juices in refrigerated rooms (0 degrees C) half-lives of dimethoate were found to be largely extended, being 1733 days for orange juice and 2310 days for peach juice. Corresponding times for storage at 15 degrees C were 533 days for both juices and for storage at 40 degrees C 24 days for orange juice and 24.6 days for peach juice. The activation energy for dimethoate in orange juice was 22.3 kcal/mol and for peach juice, 21. 2 kcal/mol.  相似文献   

12.
The formation of furoylmethyl derivatives of amino acids as indicators of the early stages of Maillard reaction in dehydrated orange juices and model systems was studied. In stored dehydrated orange juices, the presence of furoylmethyl derivatives of arginine, asparagine, proline, alanine, glutamic acid, and GABA was detected. Their formation increased with temperature of storage. After 2 weeks at 30 degrees C and a(w) = 0.44, the reconstituted orange juice contained 94 mg/L furoylmethyl derivatives, whereas up to 1215 mg/L was detected in samples stored at 50 degrees C.  相似文献   

13.
The bioactivity of Israeli Jaffa blond (Shamouti) fresh orange and Israeli Jaffa red Star Ruby (Sunrise) grapefruit juices was investigated in vitro and in vivo. The contents of bioactive compounds of these juices were determined. The influence of bioactive compounds on plasma lipids and plasma antioxidant activity in rats fed cholesterol-containing and cholesterol-free diets was assessed. Significant differences in the contents of dietary fibers were not found. The contents of total polyphenols, flavonoids, and anthocyanins in fresh orange and grapefruit juices were 962.1 +/- 27.2 and 906.9 +/- 27.1; 50.1 +/- 3.3 and 44.8 +/- 3.2; and 69.9 +/- 5.6 and 68.7 +/- 5.5 microg/mL, respectively. The antioxidant potential measured by the scavenging activity against nitric oxide, the beta-carotene-linoleate model system (beta-carotene), and the 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) diamonium salt assays was higher in orange juice but not significantly. A high level of correlation between contents of total polyphenols and flavonoids and antioxidant potential values of both juices was found. Diets supplemented with orange and to a lesser degree with grapefruit juices improved plasma lipid metabolism only in rats fed added cholesterol. However, an increase in the plasma antioxidant activity was observed in both groups. In conclusion, fresh orange and grapefruit juices contain high quantities of bioactive compounds, which guarantee their high antioxidant potential, and the positive influence on plasma lipid metabolism and plasma antioxidant activity could make fresh orange and grapefruit juices a valuable supplement for disease-preventing diets.  相似文献   

14.
Adequate bioavailable Fe intake is essential for optimal growth and intellectual development of infants and children. Fruit juices are nutritious and popular drinks for infants and children and are known to contain Fe uptake inhibitors (e.g., polyphenolic compounds) and a dominant promoter, ascorbic acid. Ascorbic acid is naturally present in fruit juices and is added during processing to almost all juices found in supermarkets. With these facts taken into account, an in vitro digestion/Caco-2 cell culture model was developed to compare the effects of apple, pear, white grape, red grape, prune, grapefruir, and orange juices on iron bioavailability. In two series of experiments, juices from a local supermarket were combined with FeCl(3) or commercial infant cereal fortified with elemental iron and subject to simulated gastric and intestinal digestion. Caco-2 cell ferritin formation in response to exposure to the digests served as the measure of Fe uptake. The pear, apple, grapefruit, orange, and white grape juice significantly increased Fe bioavailability from FeCl(3). For the infant cereal studies, the apple, orange, pear, and white grape juices increased the Fe bioavailability of the infant cereal. In contrast, the red grape juice and prune juice had profound inhibitory effects on iron bioavailability. These inhibitory effects were likely due to high levels of polyphenolic compounds that bind and thereby prevent absorption of soluble Fe. These inhibitory compounds appeared to counteract the promotional effects of ascorbic acid as they were in considerable molar excess relative to ascorbic acid and Fe in the digest. From a nutritional standpoint, the results suggest that individuals in need of optimal Fe absorption should avoid red grape and prune juice or at least vary the types of juices consumed. Alternatively, individuals seeking to limit Fe uptake (e.g., hemochromatitics and astronauts) may be able to utilize red grape or prune juice as effective inhibitors of Fe uptake. Consumers should be aware that the compounds that inhibit Fe availability are also linked to anticancer benefits; thus, a dietary balance of the above juices may be optimal.  相似文献   

15.
Flavanone glycosides (FGs) and polymethoxylated flavones (PMFs) have been studied in pigmented orange (Citrus sinensis) juices and second-pressure extracts (SPEs) by high-performance liquid chromatography and diode array detector. Detection was performed simultaneously at two different wavelengths: 278 nm (for determination of FGs) and 325 nm (for determination of PMFs). Qualitative distribution patterns of FGs and PMFs in juices and SPEs were similar, although the quantitative results are quite different. An increased narirutin/hesperidin ratio after centrifugation and the presence of high amounts of PMFs in SPEs, which remain unchanged after centrifugation, were observed. Therefore, a simple and affordable procedure to distinguish an orange juice from SPEs was proposed.  相似文献   

16.
Pectinmethylesterase (PME) was isolated from Valencia orange pulp and added to reconstituted juice at 1.2 units/mL of juice in the presence or absence of cations at 4.2 or 16.7 mM. The percent transmittance (%T) of control juices with no added PME or cation did not clarify. The %T of juices with added PME and added cation was 45-55% by the second day. Increases in the average particle size was observed with PME- or cation-added juices and preceded increases in %T. Most likely, cations displaced PME from an inactive pectin substrate complex and increased clarification. PME, in the absence of cations, increased particle size but did not affect %T, suggesting a direct interaction of PME with cloud particles.  相似文献   

17.
Tacle and Clara [Monreal clementine (Citrus clementina Hort. ex Tan) x Tarocco orange (Citrus sinensis L. Osbeck)] are two new triploid citrus hybrids developed by the CRA-Istituto Sperimentale per l'Agrumicoltura (Acireale, Italy). The fruits are easy-peeling and juicy, have a pleasant taste like the Tarocco orange, and are sweet like the Monreal clementine. In addition, a distinctively attractive characteristic of these mandarin-like fruits is the red-pigmented flesh caused by the presence of anthocyanins. This study reports the juice quality attributes of fresh fruits harvested at different ripening stages and of cold-stored fruits kept for 104 days at 6+/-1 degrees C and 90-95% relative humidity. Physico-chemical analyses showed that the fresh-fruit juice yield ranged between 39 (Tacle) and 41% (Clara); these values were 11-14% lower after 104 days of storage. Vitamin C content in the Clara juice was decisively higher than that in the Tacle juice. Juice anthocyanins and other polyphenols increased during cold storage. These results show that low-temperature storage enhances the functional attributes of Tacle and Clara fruit juices.  相似文献   

18.
Synephrine, the main protoalkaloid in Citrus species, is commonly analyzed as the active component in citrus peel-containing herbal supplements, but the edible parts of mandarins have been largely ignored. The synephrine concentration has been determined in the juices of Citrus unshiu mandarins harvested from 10 different groves located in a major growing region in California. For comparison, the physicochemical properties of the juices, including pH, conductivity, soluble solids content, and titratable acidity, were also measured. The synephrine values among 10 groves ranged from 73.3 to 158.1 mg L (-1). Repeat sampling of fruit from the 10 locations showed that the intragrove variability in synephrine concentrations ranged from 1.0 to 27.7% CV and was grove dependent. Among the physicochemical properties, titratable acidity weakly correlated with synephrine, and for one sample a low maturity index was linked to high synephrine content. The overall mean synephrine concentration of 92.8 mg L (-1) is up to 6-fold higher than values previously determined for orange juices and suggests that mandarin juice could constitute a significant dietary source of synephrine. Furthermore, the results suggest that grove location and maturity affect synephrine content.  相似文献   

19.
This paper describes a procedure for recovering hesperidin from the waste water of orange juice processing, namely, yellow water, by concentration of diluted extracts on styrene-divinylbenzene resin. Turbid raw material flowing out from centrifuges of essential oil separation contains considerable amount of hesperidin ( approximately 1 g/L) mainly associated with solid particles. Yellow water was treated with calcium hydroxide until pH 12 to solubilize hesperidin, filtered, neutralized at pH 6, and loaded on resin up to saturation. Desorption with 10% ethanol aqueous solutions at different NaOH concentrations (0.23-0.92 M) assured high concentration of hesperidin in selected fractions (10-78 g/L), from which it precipitated in high yield and purity immediately after acidification at pH 5. Best results were obtained using 0.46 M NaOH as eluent: 71.5% of the adsorbed hesperidin was desorbed in 300 mL, with an overall 64% yield of isolated product at 95.4% purity (HPLC). These experiments can constitute a useful starting point for an industrial application.  相似文献   

20.
Fruit juice of a new pigmented citrus hybrid named Omo-31 and those of its parents clementine cv. Oroval (Citrus clementina Hort. ex Tan.) and Moro orange [Citrus sinensis (L.) Osbeck] were analyzed during fruit maturation to determine juice yield, total soluble solids (TSS), total acidity (TA), TSS/TA ratio (classical parameters of quality), and potential health beneficial components, such as vitamin C, flavanones, anthocyanins, and phenolic acids. Results showed that juice yield, TA, TSS, and TSS/TA ratio values of Omo-31 were similar to those of the Moro orange. Vitamin C content of the new hybrid was slightly higher than that of clementine and lower than that of the Moro orange, but at maturity stage no differences were observed among the three genotypes. The phenolic compounds content of the new hybrid and those of the parents and their evolution during maturation were studied. At maturity stage the amount of anthocyanins, flavanones, and hydroxycinnamic acids in Omo-31 was found to be notably higher than those of the parents. The high level of antioxidant substances makes this new fruit important for its nutritional benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号