首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 68 毫秒
1.
植物病害的检测与识别是一个日益发展的研究领域,随着机器学习和深度学习概念的不断介入,为农业的发展提供了重要的技术支持.然而,目标检测技术存在着带标注数据获取成本高,且需要大量的人工来对数据进行标注等问题,给技术的实际应用造成了一定的阻碍.为解决在使用少量已标注数据及大量未标注数据进行训练模型从而提高准确率的问题,提出一种YOLO目标检测结合self-training半监督学习的方法,并且针对现有的YOLO v3-Tiny目标检测网络在半监督学习基础上准确率相比于监督学习较低的问题,对原有的YOLO v3-Tiny模型进行了改进.首先,使用空间金字塔池化结构对主干网络的多尺度特征进行融合;其次,将YOLO v3-Tiny检测头部分的标准卷积层替换成GSConv;最后,运用BiFPN结构对中间部分的特征与检测头部分的多尺度特征进行双向融合.本研究提出的基于半监督学习的改进型YOLO v3-Tiny网络可以快速准确地检测出梨叶上的病斑,在试验中,准确度、召回率、平均精度分别达到97.07%、93.78%、97.51%,对于快速准确地诊断出梨叶病斑的危害程度并且及时进行防治具有十分重要的意义.  相似文献   

2.

大部分偏标记学习方法假设所有训练样本都具有候选标记集, 然而在许多现实场景下存在大量无标记样本. 如何同时利用偏标记和无标记样本所隐含的信息构建学习模型, 是偏标记半监督学习研究的关键问题. 针对只含有少量标记样本、偏标记样本和大量无标记样本的图像分类问题, 运用一致性正则化方法和伪标记方法建立深度学习模型. 对于偏标记和无标记样本, 基于其弱增强的输出结果生成伪标记, 且偏标记样本的伪标记限制于其候选标记集中. 研究设计了新的损失函数, 包含3个损失项, 可以同时利用数据中的监督信息、弱监督信息和无监督信息. 为了提高参与训练过程样本的可靠性, 只选择高置信度伪标记的样本来计算两种增强后的输出交叉熵损失. 实验结果说明, 该方法(CR-SSPL)比现有半监督学习SOTA方法FlexMatch和偏标记学习代表方法具有更高的精度和稳定性, 收敛速度也有明显提升.

  相似文献   

3.
判别式目标跟踪时在线分类在每一次的学习与更新过程中都可能会引入错误,最终错误的累积将导致跟踪失败.提出一种基于梯度提升决策树在线分类框架上的目标跟踪算法,采用DCNN深度特征有效地表征待跟踪目标的初始状态,通过在线分类过程中样本相似性比对与半监督学习,有效解决在线学习过程中存在的自学习问题.所提目标跟踪DS-BGBDT...  相似文献   

4.
基于图像的目标检测模型研究往往需要大量标注好的图像数据集用于训练和测试,但现有手工标注方法存在标注质量低、耗时费力等问题严重影响了建模效果,为了解决问题,以水稻图像中茎叶病斑自动标注为目标,基于YOLOv5模型提出一种改进的图像自动标注模型YOLOv5-TR-BiFPN。首先在YOLOv5结构中引入BiFPN (Bidirectional Feature Pyramid Network),使模型在计算量相似的情况下融合更多特征,其次采用ViT(Vision Transformer)模块增强模型的目标定位能力,并进一步优化了损失函数和非极大值抑制的计算方法,获得位置更准确的目标框。研究结果表明,YOLOv5-TR-BiFPN模型对植物病斑图像平均精度均值达到73%,相比YOLOv5s模型平均标注精度提升了3%,使用少量水稻茎叶病斑图像验证,模型训练平均精度均值m AP(mean Average Precision)达到89.3%,表明YOLOv5-TR-BiFPN模型能够较准确的标注水稻茎叶病斑,实现农作物病斑图像自动标注,标注效果良好。  相似文献   

5.
【目的】 虫害是影响荔枝产量与品质的重要制约因素,基于深度学习的荔枝虫害识别可以为荔枝种植过程中的虫害防治工作提供技术支持,对提高荔枝产量及品质,提高果园生态安全具有重要作用。【方法】 文章针对目前荔枝虫害识别领域存在的问题,为提高虫害目标识别精度和效率,以荔枝蝽象为目标虫害,提出一种基于YOLO v4的目标检测方法,首先使用专业摄像头、大型数据库、智能虫情测报灯3种方式采集荔枝虫害图像,配合数据增强方法,用LableImg平台进行数据标注,制作一个特征丰富的数据集,在CSP Dark net框架下进行网络模型训练,得到荔枝虫害识别模型。【结果】 基于深度学习的荔枝虫害识别技术在广州从化荔枝现代农业产业园进行应用,取得了较好的应用效果,证明该技术可以实现真实复杂环境中荔枝虫害的有效识别。【结论】 基于深度学习的荔枝虫害识别模型,能够实现虫害的科学监测,降低农户对于虫害的投入成本,减少化学农药的使用,改善荔枝生长的环境,进一步实现荔枝生产绿色化要求,增加作物的经济价值。  相似文献   

6.
虽然深度学习在图像检测领域取得了长足进步,但是由于变电站设备巡检图像背景复杂,导致了缺陷诊断面临一定的困难。本文提出了一种基于深度学习和超分辨技术的缺陷检测算法,一方面是锁定目标区域,聚焦检测设备,去除不相关的图像信息,大幅降低了图像有效信息的损失;另一方面是对检测设备进行超分辨率重建,提升分辨率,保证用于渗漏油缺陷检测的图像质量、像素信息的完整性。通过实验数据证明,该算法识别结果较其他算法有很大的提升,从而验证了该算法的优越性。  相似文献   

7.
【目的】针对板式家具零件表面缺陷人工检测过程存在的检测效率低、准确率低、检测结果无法数字化存储等问题,提出了一种基于图像分割和深度学习算法的饰面人造板表面缺陷的检测方法。【方法】利用工业相机采集人造板图像,构建缺陷数据集,采用全局阈值和局部动态阈值算法分割表面缺陷与图像截取,通过将ReLU6非线性激活函数替代ReLU函数,并引入倒残差结构的方法,优化MobileNetv 2深度学习网络,进行缺陷识别与分类。【结果】该方法对饰面人造板表面崩边和划痕缺陷的检测精确率分别达到了93.1%和97.5%,召回率分别为95.3%和97.6%,单张板件平均检测用时为163 ms。【结论】本研究提出的方法具有较高精度与稳定性,可解决传统人工检测方法的准确率低、效率低等问题,为家具板材表面缺陷的自动化检测提供新思路。图6表3参21  相似文献   

8.
为克服机器视觉方法进行油菜籽粒图像分割难以有效区分油菜籽粒和阴影、碎石等杂项的不足,提高油菜籽粒计算的准确性和可靠性,基于深度学习方法,通过分析油菜籽粒图像实例,构建先验知识分割体系标准,采用labelme软件对籽粒图像进行特征标记并生成图像数据集.结果表明,基于深度学习的油菜籽粒图像分割方法可将籽粒和其他杂质明显区分...  相似文献   

9.
将基于深度学习的图像目标检测技术引入到养殖个体图像目标检测,可以提高养殖视频图像智能分析技术,提高科学养殖能力。试验将深度学习的YOLO V3算法应用到生猪图像目标检测,结合畜牧养殖实际情况,进行了类别选择、遮挡物处理和图像增强等设计,实现了基于深度学习技术的生猪图像目标检测算法。利用该算法对采集的生猪个体图像数据进行训练、验证和测试,对测试图像目标检测漏检率约6%,错检率约1%,精度较高;同时也与其他深度学习目标检测算法进行了对比和分析,测试结果反馈检测精度良好,检测速度较快,对比Fast R-CNN深度学习目标检测算法,mAP-50提高了7%~8%,检测速度提高了约5倍。与SSD算法比较,mAP-50指标和检测速度相当,但是由于YOLO V3算法网络模型比SSD算法简洁,算法移植兼容性更高。研究与试验结果表明,YOLO V3算法检测速度快,适合畜牧养殖图像智能识别工程化目标检测的要求。  相似文献   

10.
植物病害影响农业生产的产量和质量。针对现有小样本植物病害识别方法大多数都是基于监督式学习模型以及少数半监督学习方法未判别伪标注样本的可信度的问题,提出一种基于实例置信度推断的半监督学习小样本植物病害图像识别方法。首先构建ResNet-12网络提取有标注样本和无标注样本的特征;其次利用极少数有标签的植物病害样本训练SVM分类器,用分类器推断无标注样本的类别并赋予伪标签;然后采用实例置信度推断(ICI)算法获取伪标注样本的置信度,迭代选择可信的伪标签样本加入训练拓展支持集;最后应用训练后的网络模型对植物病害图像进行识别。该方法能够反映无标注病害样本的真实分布,迭代选择最可信的伪标注样本进行模型训练,从而提高模型的识别性能。试验采用Plant Village公开数据集进行10-way-5-shot试验。结果显示:在unlabel=50的情况下识别准确率为89.34%,病害的各项评价指标均随着无标注样本数量的增加而增加。结果表明本研究提出的方法从无标注样本中获取到的信息是鲁棒的,且识别准确率优于传统迁移学习,能有效提升小样本条件下植物病害图像的识别效果。  相似文献   

11.
针对目前生猪目标检测算法模型较大,实时性差导致其难以在移动终端中应用等问题,将一种改进的轻量化YOLOv4算法用于生猪目标检测。在群养猪环境下以不同视角和不同遮挡程度拍摄生猪图像,建立生猪目标检测数据集。基于轻量化思想,在YOLOv4基础上缩减模型大小。结果表明,本研究算法的准确率和召回率分别为96.85%和91.75%,检测速度为62帧/s,相比于原模型,本研究算法在不损失精度的情况下,将模型大小压缩了80%,检测速度提高了11帧/s。本研究算法具有轻量化,稳健性强,实时性好的优点,能够更好地实现实际猪舍环境下生猪目标的检测,并有利于嵌入移动端设备中。  相似文献   

12.
【目的】利用深度学习技术开展基于无人机采集的水稻稻穗 RGB 图像进行稻穗快速计数技术研究,利于建立省工、省时、高效的产量评估预测,为后续收获、烘干、仓储工作以及品种试验评估等提供依据。【方法】在水稻齐穗 - 灌浆期,使用无人机采集水稻稻穗图片,通过对图片中稻穗的标注、分类以及训练,获得基于 YOLOv7 的网络结构模型,与田间实际调查结果进行对比和验证,针对该方法对不同亚种水稻稻穗的数穗计数精度作出评价。【结果】将得到的模型的预测结果与真实结果进行比较,对于相同的训练集,YOLOv7模型的重叠率(Intersecion of union,IoU)值的中位数普遍高于 YOLOv5 模型。仅使用粳稻数据训练得到的模型对粳稻有较好的识别精度,YOLOv7 模型的 mAP@0.5 为 80.75%、mAP@0.25 为 93.01%,优于 YOLOv5l 模型的 mAP@0.5 值 73.36%、mAP@0.25 值 91.16%;两种模型对籼稻识别精度不高。对籼稻识别最佳的模型为使用籼稻数据训练得到的模型,YOLOv7 模型的 mAP@0.5 为 73.19%、mAP@0.25 为 83.71%,优于 YOLOv5l 模型的mAP@0.5 值 72.77%、mAP@0.25 值 81.66%;但两种模型均对粳稻识别精度不高。对预测结果与实际调查结果进一步比较验证表明,仅使用粳稻数据训练得到的模型对粳稻有较好的识别精度,模型预测值与观察值显著相关。其中 YOLOv7 模型对粳稻预测精度最高,R2 为 0.9585、RMSE 为 9.17;其次为 YOLOv5 模型,R2 为 0.9522、RMSE为 11.91。对籼稻识别最佳的模型为使用籼稻数据训练得到的模型。其中 YOLOv7 模型对籼稻预测精度最高,R2 为 0.8595、RMSE 为 24.22。其次为 YOLOv5 模型,R2 为 0.7737、RMSE 为 32.56。【结论】本研究初步建立的基于无人机的田间水稻单位面积穗数快速调查方法,具有较高精度,可应用于实际田间测产工作,有利于克服人工田间估产工作量大、效率低、人为误差等问题,未来可进一步应用于可移动水稻估产装置的开发。  相似文献   

13.
小麦是重要的粮食作物之一,针对人工田间麦穗计数及产量预测效率低的问题,基于深度学习提出了一种高分辨率的小密集麦穗实时检测方法。对麦穗图像数据集进行图像分割、标注、增强预处理,基于Tensorflow搭建YOLOv4网络模型,调整改进后对其进行迁移学习;与YOLOv3、YOLOv4-tiny、Faster R-CNN训练模型进行对比,对改进模型的实用性与局限性进行分析;重点分析影响麦穗检测模型性能的关键因素。通过图像分割的方式,证明了通过改变图像分辨率确定麦穗所占图像最优像素比,可以提高前景与背景差异,对小密集麦穗有显著效果。通过对改进模型的测试,表明该模型检测精度高,鲁棒性强。不同分辨率、不同品种、不同时期的麦穗图像均类平均精度(mAP)为93.7%,单张图片的检测速度为52帧·s-1,满足了麦穗的高精度实时检测。该研究结果为田间麦穗计数以及产量预测提供技术支持。  相似文献   

14.
         下载免费PDF全文
Online automated identification of farmland pests is an important auxiliary means of pest control.  In practical applications, the online insect identification system is often unable to locate and identify the target pest accurately due to factors such as small target size, high similarity between species and complex backgrounds.  To facilitate the identification of insect larvae, a two-stage segmentation method, MRUNet was proposed in this study.  Structurally, MRUNet borrows  the practice of object detection before semantic segmentation from Mask R-CNN and then uses an improved lightweight UNet to perform the semantic segmentation.  To reliably evaluate the segmentation results of the models, statistical methods were introduced to measure the stability of the performance of the models among samples in addition to the evaluation indicators commonly used for semantic segmentation.  The experimental results showed that this two-stage image segmentation strategy is effective in dealing with small targets in complex backgrounds.  Compared with existing state-of-the-art semantic segmentation methods, MRUNet shows better stability and detail processing ability under the same conditions.  This study provides a reliable reference for the automated identification of insect larvae.  相似文献   

15.
         下载免费PDF全文
Grain number is crucial for analysis of yield components and assessment of effects of cultivation measures. The grain number per spike and thousand-grain weight can be measured by counting grains manually, but it is time-consuming, tedious and error-prone. Previous image processing algorithms cannot work well with different backgrounds and different sizes. This study used deep learning methods to resolve the limitations of traditional image processing algorithms. Wheat grain image datasets were collected in the scenarios of three varieties, six background and two image acquisition devices with different heights, angles and grain numbers, 1 748 images in total. All images were processed through color space conversion, image flipping and rotation. The grain was manually annotated, and the datasets were divided into training set, validation set and test set. We used the TensorFlow framework to construct the Faster Region-based Convolutional Neural Network Model. Using the transfer learning method, we optimized the wheat grain detection and enumeration model. The total loss of the model was less than 0.5 and the mean average precision was 0.91. Compared with previous grain counting algorithms, the grain counting error rate of this model was less than 3% and the running time was less than 2 s. The model can be effectively applied under a variety of backgrounds, image sizes, grain sizes, shooting angles, and shooting heights, as well as different levels of grain crowding. It constitutes an effective detection and enumeration tool for wheat grain. This study provides a reference for further grain testing and enumeration applications.  相似文献   

16.
研究了浙江省八种常见食用菌的蛋白质、氨基酸、可溶性糖和10种营养元素的含量,同时还对食用菌中的硝态氨、亚硝态氨以及有害金属元素包括砷、镉、铬、镍、钛等进行了系统测定。  相似文献   

17.
【目的】因为在复杂环境下树干目标尺寸差距大且易受遮挡,所以树干检测容易出现漏检、错检等问题。为有效解决这个问题,提出一种基于单阶段目标检测框架的树干检测算法SSFYOLO。【方法】首先,设计了空间感知网络模块SAM。SAM模块能够高效处理多尺度和多分辨率的特征信息,在保证计算效能的同时,实现对各类特征的充分整合与精确提取,提高目标检测的准确性和效率。其次,设计多尺度特征增强自适应网FastScaleNet,用于替代YOLO模型中的C2f结构。FastScaleNet通过更为精细的多尺度特征融合与优化,并且利用跳跃连接和特征融合策略,有效保留不同层次的特征信息,增强模型对不同尺度目标的表达能力,提升模型的稳健性和广泛适用性。最后,引入加权IoU(WIoU)机制,实现对小目标损失权重的动态优化。WIoU机制根据目标尺寸的不同,动态调整损失权重,使模型在面对小尺寸目标时,能够灵活调整参数,从而灵活适应不同尺寸目标的检测需求,进一步提高小目标检测的准确性和鲁棒性。【结果】对复杂场景下树干数据集进行检测实验,与主流检测算法YOLOv8相比,SSFYOLO算法在缩小参数量的同时,具有更好的检测精度,其参数量减少了20%,平均精度均值(mAP)和召回率分别提升了1.6和0.7个百分点。【结论】本研究设计了面向复杂森林场景的树干检测算法SSFYOLO。SSFYOLO算法在复杂环境树干检测中表现出色,具有广阔的应用前景。  相似文献   

18.
原生质体技术在食用菌育种上的应用   总被引:6,自引:0,他引:6  
随着科学技术的飞跃发展和多学科的相互渗透,生物技术应运而生,并在各个领域不断深入发展。本从原生质体再生、诱变、融合和单核化等几个方面综述了原生质体技术在食用菌领域的研究概况。  相似文献   

19.
以内蒙古甸子镇食用菌生产为例,根据相关统计数据,结合对农户的访谈调查资料,对食用菌生产经济效益进行实证分析。分析表明:食用菌生产给农民带来了可观的经济效益,成为农民增收新的渠道,但同时存在农户生产规模小而散,技术水平低,组织化程度低等问题,阻碍了农民持续增收,据此提出相关政策建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号