首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary Two hundred safflower accessions, originated in 37 countries, and multiplied in two environments, were evaluated for fatty acid composition of the seed oil and other seed characters. Overall mean values of stearic and palmitic acids were similar in both environments but differed for seed weight and oil content. Oleic and linoleic acids showed also similar overall mean content in both environments but some entries with intermediate contents of these acids displayed significant variation among environments. Oleic and linoleic acids showed a tremendous range of variation, from 3.1 to 90.60% and from 3.9 to 88.8%, respectively. The ranges of variation observed for stearic, oleic and linoleic acids indicate that all the reccessive genes, already discovered, controlling high content of these acids, st, ol and li, are present in the collection. Moreover, the upper values of oleic, ten points higher than the published values for the high oleic genotype olol, suggest than other genes controlling such levels may be present.  相似文献   

2.
G. Ishikawa    H. Hasegawa    Y. Takagi  T. Tanisaka 《Plant Breeding》2001,120(5):417-423
Sixty soybean cultivars from Japan and the USA formed five maturity groups (IIb‐Vc) based on number of days from sowing to flowering and number of days from flowering to maturity. Highly significant intervarietal differences in fatty acid composition were found in all the maturity groups, especially in IIc. Stearic and oleic acids showed a larger variation than palmitic, linoleic and linolenic acids. Principal component analysis suggested that the total variation of fatty acid composition depended mainly on the desaturation levels from oleic to linoleic acid. Three cultivars exhibiting unique fatty acid composition, together with a standard cultivar, were examined for the contents of the five fatty acids, as well as crude oil at eight seed‐filling stages. For all four cultivars, it was found that crude oil content increased sigmoidally with advancing filling stage, and that the accumulation patterns of palmitic, linoleic and linolenic acids were similar to that of crude oil. However, the accumulation pattern of stearic acid was different from that of crude oil and divided the cultivars into two distinct groups. For oleic acid, only the cultivar ‘Aburamame’ showed a rapid increase in proportion with advancing filling stage, although not differing markedly in accumulated content from the other cultivars. These results indicate that analysing the accumulation patterns of fatty acids could explain the latent genetic variation in fatty acid composition of soybean seeds.  相似文献   

3.
以毛酸浆种子为原料,研究索氏微波提取法对毛酸浆籽油提取效率的影响,并以甲酯化脂肪酸为标准品,采用气相色谱法对毛酸浆籽油脂肪酸成分进行分析,通过与标准品比对出峰时间确定试样脂肪酸成分,使用面积归一法确定试样中各脂肪酸含量。结果表明,与普通热风干燥相比,微波干燥法能够提高毛酸浆籽油的提取效率;利用气相色谱法对毛酸浆籽油进行脂肪酸分析,共检测出8种脂肪酸,分别为:肉豆蔻酸1.3%,棕榈酸10.3%,硬脂酸5.3%,油酸14.3%,亚油酸62.7%,亚麻酸4.0%,花生酸1.1%,二十二烷酸1.0%。其中不饱和脂肪酸相对含量占81.0%,说明毛酸浆籽油具有较高的营养价值,开发前景广阔。  相似文献   

4.
大豆脂肪酸组分的胚、细胞质和母体遗传效应分析   总被引:1,自引:0,他引:1  
宁海龙  李文霞  李文滨 《作物学报》2006,32(12):1873-1877
利用5个大豆品种配制20个杂交组合,采用广义种子遗传模型分析了大豆脂肪酸组分的胚、细胞质和母体植株等3套遗传体系的基因主效应和基因型×环境效应。棕榈酸含量、硬脂酸含量和亚油酸含量是以基因型×环境互作效应为主。亚麻酸和油酸的遗传主效应和基因型×环境互作效应相近。在脂肪酸组分的遗传主效应中,棕榈酸、硬脂酸和亚油酸含量是以胚主效应为主。油酸含量和亚麻酸含量以细胞质主效应为主。在基因型×环境互作方差中,脂肪酸组分以极显著的胚互作方差为主。亚麻酸含量是以基因的加性效应和加性×环境互作效应为主,棕榈酸含量、硬脂酸含量、油酸含量和亚油酸含量以基因的显性和显性×环境互作效应为主。棕榈酸含量和油酸含量是以普通狭义遗传率为主。硬脂酸、亚油酸含量和亚麻酸含量以互作狭义遗传率为主。在普通狭义遗传率中,棕榈酸含量、油酸含量和亚麻酸含量以细胞质普通遗传率和母体普通遗传率为主。在互作狭义遗传率中,油酸含量和亚麻酸含量以胚互作狭义遗传率为主,亚油酸含量以母体植株互作遗传率为主。棕榈酸含量、硬脂酸含量、油酸含量和亚油酸含量以细胞质及母体选择响应和互作选择响应为主,亚麻酸含量的胚普通选择响应和互作选择响应为主。  相似文献   

5.
Soybean [Glycine max (L.) Merr.] is the principal oilseed crop in the world. Soybean oil has various industrial and food applications. The quality of soybean oil is determined by its fatty acid composition. Palmitic, stearic, oleic, linoleic and linolenic are the predominant fatty acids in soybean oil. The objective of this study was to determine the associations of simple sequence repeat (SSR) molecular markers with minor differences in fatty acids in soybean oil thereby detecting modifier quantitative trait loci (QTL) which could further improve soybean oil quality. To achieve this objective, 101 F6-derived recombinant inbred lines (RIL) from a population whose parents did not contain major mutant fatty acid alleles were developed from a cross of N87-984-16 × TN93-99. Fatty acids were determined by gas chromatography. Heritability estimates on an entry mean basis for fatty acids ranged from 65.8 to 77.3% for palmitic and linoleic acids, respectively. Molecular marker Satt537 located on molecular linkage group (MLG) D1b was associated with palmitic acid and Satt168 and Satt249 located on MLG B2 and J, respectively were associated with stearic acid. Molecular markers Satt185 or Satt268 (which are within 0.6 cM of each other) located on MLG E were consistently associated with oleic and linoleic acid, and Satt263 and Satt235 located on MLG E and G, respectively were associated with linolenic acid. The lack of markers associated with multiple fatty acids suggests the possibility of independently changing fatty acid levels to achieve a desirable composition, except for regions common to all saturated fatty acids. Phenotypic variation explained by the fatty acids modifier QTL ranged from 10 to 22.5%. These modifier QTL may be useful in making minor improvements to further enhance the quality of soybean oil.  相似文献   

6.
A greenhouse study was conducted to determine the effect of nitrogen supply (30, 100 or 170 ppm N) and raceme position on the fatty acid composition of oil extracted from erucic acid-free summer rape seed ( Brassica napus cv. Callypso ). The seven fatty acids analyzed for include palmitic, palmitolcic, stearic, oleic, linoleic, linolemc, and eicosenoic acids; of which oleic (59.54–64.84 %) and palmitoleic (0.36–0.4 %) acids were the highest and lowest levels respectively. Generally, N nutrition influenced fatty acid pattern only to a little extent. Palmitic, palmitoleic and stearic acid levels were increased by 170 ppm N, depending on raceme position, but oleic and linolenic acids were unaffected. Similarly, 170 ppm N produced the highest fatty acid levels in seeds on the lower portions of racemes, with the exception of oleic acid. This was also true in the case of the upper portions of racemes, except that 30 ppm N produced the highest levels of oleic and linoleic acids in rape seeds. Under the optimum N supply level (i.e. 100 ppm N), position of raceme on the rape plant did not greatly influence the levels of different fatty acids in lipids.  相似文献   

7.
侯静静  晋芳  赵利  王斌 《作物杂志》2022,38(5):42-85
为筛选油用亚麻新品种,提高育种效率,以张亚2号和陇亚13号为对照,连续2年对16个油用亚麻新品系的农艺和品质性状进行测定分析、相关性分析和DTOPSIS法综合评价。结果表明,农艺性状中,株高的变异系数最小,分茎数的变异系数最大。品质性状中,亚油酸变异系数最小,硬脂酸变异系数最大。相关性分析显示,单株果数和单株粒重呈极显著正相关;产量与单株果数、单株粒重和株高呈显著正相关;亚麻酸与硬脂酸、棕榈酸与油酸呈极显著负相关;粗脂肪与分茎数和单株粒重呈显著正相关,与工艺长度呈极显著负相关。DTOPSIS综合评价分析得出,6个新品系的相对接近度(Ci)均大于2个对照品种;品系R104的Ci大于张亚2号,低于陇亚13号;其余9个品系的综合性状均低于2个对照品种。品系R161、R99、R46、R96、R104-1和R41综合性状优良,高产优质,适宜在西北地区推广种植。  相似文献   

8.
生熟西瓜子中挥发性成分分析研究   总被引:1,自引:0,他引:1  
采用同时蒸馏萃取装置萃取西瓜子中的挥发性成分,用气相色谱—质谱联用方法,分析其挥发性成分并进行对比。结果表明,西瓜子挥发性成分中含有多种酸类和酯类化合物,以色谱峰面积归一化法测定各成分的相对百分含量。生西瓜子中挥发性主要成分有亚油酸、软脂酸、油酸和硬脂酸,这4种组分占全部被检测组分的91.24%。熟西瓜子中挥发性主要成分有诱烯醇、2,4-癸二烯醛、软脂酸、油酸和硬脂酸,这5种组分占全部被检测组分的87.78%。熟西瓜子与生西瓜子相比,油酸、诱烯醇含量提高。同种挥发性成分在生熟西瓜子中的含量相对稳定。  相似文献   

9.
以花生属19个近缘野生物种87份种质和113份栽野远缘杂交后代为材料, 系统分析野生花生脂肪酸组成的遗传变异及其在栽培种花生脂肪酸改良中的潜力。结果表明, 野生花生的棕榈酸含量与栽培种花生相似, 硬脂酸和油酸含量略低于栽培种花生, 亚油酸含量略高于栽培种。不同物种间以及同一物种内不同资源间的脂肪酸组成存在较大差异。A. rigonii棕榈酸含量较低, A. pusilla和A. duranensis油酸含量较高, A. batizocoi亚油酸含量较高, A. rigonii和A. duranensis油酸和亚油酸含量变幅较大。发掘出油酸含量达60%以上的野生资源2份(19-6, A. duranensis和23-1, A. sp.), 亚油酸含量达40%以上的资源7份, 其中A. rigonii(编号为11-4)亚油酸含量高达48%, 是目前所发现的花生资源中亚油酸含量最高的种质。远缘杂交后代脂肪酸的变异远远超过亲本间的差异, 而且不同组合间的棕榈酸、硬脂酸、油酸和亚油酸含量差异达显著或极显著水平。通过远缘杂交获得了6份油酸含量达64.0%以上且棕榈酸含量在8.5%以下的新种质, 其中yz8913-8油酸含量达67.85%, 比其栽培种亲本提高近30个百分点, 且棕榈酸含量仅7.60%。SRAP检测表明, 这6份远缘杂交后代除整合了亲本的DNA片段外, 还产生了新的DNA片段, 有的还丢掉了亲本的某些片段。农艺性状分析表明, 其中4份种质的综合农艺性状较好, 具有重要育种利用价值。  相似文献   

10.
大豆籽粒发育过程中脂肪酸组分的累积动态   总被引:3,自引:0,他引:3  
在大豆籽粒形成过程中,随着棕榈酸、亚麻酸的含量下降,硬脂酸、油酸和亚油酸含量上升。在棕榈酸累积的中、后期,高蛋白品种与其他品质类型品种有一定差异。油酸的累积主要在大豆籽粒形成的早期,但高油品种红丰9号与其他5个品种有较大差异。亚油酸的累积则主要在中后期。开花后51 d是这5种脂肪酸累积的共同转折点。  相似文献   

11.
Tesfaye Baye  Heiko C. Becker 《Euphytica》2005,142(1-2):119-129
Vernonia galamensis is a wild plant from the family Asteraceae which is endemic to East Africa and has the potential to become a new oil crop for industrial uses. Its seed oil is rich in vernolic acid, a fatty acid of high interest for oleochemical applications. However, a breeding program for Vernonia galamensis cultivars with high seed and oil yields requires knowledge about the genetic variability of traits that influence seed and oil production. This study was undertaken to examine phenotypic and genotypic variability, broad-sense heritability, genetic advance under selection and interrelationships of agronomic and seed quality traits. A total of 122 Vernonia accessions, 115 collected from different regions of Ethiopia and seven introduced, were grown at two locations in Ethiopia (Alemaya and Babile), in 2001/2002 and were analyzed for 20 traits including phenology, yield, yield components, and seed quality with special emphasis on fatty acid composition. The collections exhibited significant variation for all traits except for days to emergence. Genotypes and locations interacted significantly (P 0.01) for all traits. Broad-sense heritability estimates ranged from 11% (for days to emergence) up to 79% (for days to maturity). Expected genetic advance was between 1.3% (for days to emergence) and 44.8% (for seed oil yield). Genetic correlation analysis revealed that seed yield per plant is highly and positively correlated with seed weight and head number; highly significant and negative correlations (r = –0.59, –0.82, –0.85, and –0.89) were found between vernolic acid and palmitic, stearic, oleic, and linoleic acid, respectively. Highly significant positive correlations (r = 0.55, 0.44, and 0.36) were observed between vernolic acid and oil content, meal protein content and seed oil yield, respectively. Path-coefficient analysis indicated seed weight and secondary head number to be the most important components of seed yield per plant. Vernolic acid, oleic acid and linoleic acid had positive direct effects and stearic acid had a negative direct effect on oil content. The direct positive effect of oleic acid on oil content was, however, compensated by the negative indirect effects of stearic and vernolic acid resulting in a negative correlation (r = –0.60) between oleic acid and oil content. These observations will support the selection of accessions with high seed and oil yield, high meal protein contents, and high vernolic acid content.  相似文献   

12.
Typical soybean oil is composed of palmitic, stearic, oleic, linoleic and linolenic acids. High oleic acid content in soybean seed is a key compositional trait that improves oxidative stability and increases oil functionality and shelf life. Using a marker‐assisted selection method, near‐isogenic lines (NILs) of G00‐3213 for the high oleic trait were developed and yield tested. These NILs have various combinations of FAD2‐1A and FAD2‐1B alleles that were derived from the same backcrossing populations. The results indicated that G00‐3213 NILs with both homozygous mutant FAD2‐1A and FAD2‐1B alleles produced an average of 788 g/kg oleic acid content. The results also demonstrated that possessing these mutant alleles did not cause a yield reduction. Furthermore, seed germination tests across 12 temperatures (12.8–32.0°C) showed that modified seed composition for oleic acid in general did not have a major impact on seed germination. However, there was a possible reduction in seed germination vigour when high oleic seeds are planted in cold soil. The mutant FAD2‐1A and FAD2‐1B alleles did not hinder either seed or plant development.  相似文献   

13.
油茶生长发育过程中脂肪酸成分的测定分析   总被引:6,自引:2,他引:4  
为了研究油茶生长发育过程中脂肪含量及脂肪酸成分的变化,分析测定2个油茶品种在不同生长时期油茶籽中的脂肪酸成分。采用索氏提取法提取油茶籽中的脂溶性成分,经甲酯化处理后用气象色谱分离和鉴定,运用面积归一法确定各成分的相对百分含量。结果表明,在整个发育过程中油脂形成有两个高峰,分别在9月上旬和10月上旬;种子种脂肪酸的主要组成是不饱和脂肪酸,油酸含量最高,其次是亚油酸和油酸,饱和脂肪酸以棕榈酸和硬脂酸为主,其中油酸呈明显上升趋势,棕榈酸和亚油酸呈明显下降趋势,硬脂酸呈小幅上升趋势,亚麻酸呈小幅下降趋势。  相似文献   

14.
This study was conducted to evaluate the growth characteristics and fatty acid composition among 15 kenaf mutants derived from the kenaf germplasm C14 and 15 kenaf accessions originating from Russia, India, China, Iran, and Italy. The overall growth performance (plant height, stem diameter, flowering date, leaf, and flower size) of the stem color mutant lines derived from C14 are similar to those of the original variety. However, the flower color mutant lines derived from C14 showed flowering to occur 10 days later when compared with the original variety and showed smaller leaf sizes than the original variety. Late-ripened kenaf accessions (Jinju, Auxu, and Jnagdae) can yield more bio-mass compared with early or medium-maturing germplasm. The late maturity kenaf (Auxu, Jinju, and Jangdae) has a higher oil percentage than the early maturity germplasm. Linoleic, oleic, and palmitic acids were the predominant fatty acids in all kenaf seeds. The stem color mutant lines significantly surpassed the parental means of all saturated fatty acids. In addition, the flower color mutant lines showed broad ranges of variation in oleic acid. The 15 accessions showed a wide range of fatty acid compositions, spanning from 29.75 to 38.30% saturated fatty acids and 61.70 to 70.24% total unsaturated fatty acids, and the late maturity kenaf has a higher linoleic acid percentage than the early maturity germplasm. The flowering period was highly positively (P ≤ 0.01) correlated with the plant height, stem diameter, oil percent, and linolenic acid (C18:3), and it was significantly negatively (P ≤ 0.01) correlated with stearic acid (C18:0). These results will provide valuable information to assist the parental selection of kenaf breeding.  相似文献   

15.
为实现向日葵品质的快速无损检测,选取50份具有代表性的油用向日葵材料,采用偏最小二乘法(PLS)构建籽仁脂肪、亚油酸、油酸、硬脂酸和棕榈酸含量的近红外光谱(NIRS)模型。结果表明,脂肪、亚油酸、油酸含量模型校正和验证相关系数均大于0.96,且预测值与化学值相对误差均在10%以下,能够达到样品成分含量的快速测定。硬脂酸和棕榈酸含量模型校正相关系数分别为0.92和0.82,验证相关系数分别为0.83和0.74,预测值与化学值相对误差在4.66%~17.99%之间,可用于样品成分含量的初步预测。本研究构建的NIRS模型,有助于油用向日葵种质资源品质鉴定和快速筛选。  相似文献   

16.
Two field experiments were conducted in 1985 and 1986 on the cotton cultivar, Giza 75 (Gossypiitm barbadense L.) to determine the effect of foliar application of Pix at 0, 10, 20, 40, 60, 80 or 100 ppm on cottonseed yield, seed index, protein and oil contents and fatty acid compositions of cottonseed oil. Pix was sprayed once at 90 days or twice at 90 and 110 days from sowing date.
Seed yield/plant or /ha, protein and oil yield/ha, and seed index increased due to the application of Pix compared to the control. The highest response occurred with 40 or 60 ppm Pix and with one application rather than two. The seed protein percentage increased due to Pix application, especially at 10 ppm. A slight increase in seed oil percentage was detected throughout Pix applications. The number of applications had no noticeable effect on seed protein and oil %. Application of Pix caused a general decrease in the saturated fatty acids (myristic, stearic, and palmitic), associated with an increase in the unsaturated fatty acids (oleic and linoleic). These results were confirmed bv the ratio of total unsaturated fatty acids to total saturated (TU/TS). Ten ppm Pix gave the highest TU/TS. Generally, the saturated fatty acids decreased while the unsaturated fatty acids increased with one application rather than two. Palmitic acid was the most abundant saturated fatty acid, whereas linoleic acid was the most abundant unsaturated ones.  相似文献   

17.
The relative importance of various types of quantitative trait locus (QTL) conferring oil content and its fatty acid components in soybean seeds was assessed through testing a recombinant inbred line (RIL) population (derived from KF1 × NN1138-2) in randomized blocks experiments in 2004–2006. The contents of oil and oleic, linoleic, linolenic, palmitic and stearic acids were determined with automatic Soxhlet extraction system and gas chromatography, respectively. Based on the established genetic linkage map with 834 markers, QTLNetwork2.0 was used to detect QTL under the genetic model composed of additive, additive × additive (epistasis), additive × year and epistasis × year effects. The contributions to the phenotypic variances of additive QTL and epistatic QTL pairs were 15.7% (3 QTL) and 10.8% (2 pairs) for oil content, 10.4% (3 QTL) and 10.3% (3 pairs) for oleic acid, 11.6% (3 QTL) and 8.5% (2 pairs) for linoleic acid, 28.5% (7 QTL) and 7.6% (3 pairs) for linolenic acid, 27.0% (6 QTL) and 16.6% (7 pairs) for palmitic acid and 29.7% (5 QTL) and 4.3% (1 pair) for stearic acid, respectively. Those of additive QTL by year interaction were small and no epistatic QTL pair by year interaction was found. Among the 27 additive QTL and 36 epistatic QTL (18 pairs), three are duplicated between the two QTL types. A large difference was found between the genotypic variance among RILs and the total variance of mapped QTL, which accounted for 52.9–74.8% of the genotypic variation, much larger than those of additive QTL and epistatic QTL pairs. This part of variance was recognized as that due to a collection of unmapped minor QTL, like polygenes in biometrical genetics, and was designated as collective unmapped minor QTL. The results challenge the breeders for how to pyramid different types of QTL. In addition, the present study supports the mapping strategy of a full model scanning followed by verification with other procedures corresponding to the first results.  相似文献   

18.
The high stearic acid sunflower mutant CAS-3 is characterized by a low seed oil content, which might represent a constraint for the commercial production of high stearic acid sunflower oil. The objective of the present research was to investigate the relationships between fatty acid profile and seed oil content in CAS-3. Plants of CAS-3 were reciprocally crossed with plants of breeding line ADV-37, with high oil content and standard fatty acid profile. Oil content and fatty acid composition were measured in individual F2 seeds and F2 plants (F3 seeds averaged). Both F2 seeds and F2 plants from the cross ADV-37 × CAS-3 had a significantly higher oil content than those from the reciprocal cross, which indicated the existence of cytoplasmic effects in the genetic control of the trait. A consistent negative correlation between oil content and palmitic acid and a positive correlation between oil content and oleic acid were detected both in F2 seeds and F2 plants. Conversely, no consistent correlation between oil content and stearic acid was observed, which suggested the feasibility of simultaneous selection for both traits.  相似文献   

19.
Summary The fatty acid composition of seed-oil of breeding lines and F1 hybrids of Matthiola incana was analyzed, using direct esterification and gas chromatography. The breeding lines tested differed significantly with respect to the levels of palmitic, oleic, linoleic and linolenic acids. Embryonic-stage heterosis in linolenic acid concentration was demonstrated by F1 hybrid seeds, derived from mating horticulturally different lines of M. incana. Linolenic acid content was negatively correlated with both oleic acid content (r=–0.85) and linoleic acid content (r=–0.66). None of the breeding lines or the F1 hybrids significantly passed the limit of 67% linolenic acid. Possible genetic and biochemical explanations for the above phenotypic data are discussed.  相似文献   

20.
棉仁高油分材料筛选及其脂肪酸发育分析   总被引:8,自引:3,他引:5  
对2个主要栽培棉种共61个棉花材料的棉仁油分含量测定表明,棉花种间的棉仁油分含量差异较大。陆地棉和海岛棉材料的平均棉仁油分含量分别为30.42%和37.25%。陆地棉材料中棉仁油分含量变幅较大,从25.27%到35.42%;海岛棉材料的棉仁油分含量相对一致。分别以海岛棉‘Pima90-53’和陆地棉‘徐州142’、‘T586’为材料,考察了棉子发育过程中,油分含量及成分的发育变化进程。研究发现,棉仁油分含量在开花后20d时已达到棉仁干重的25%左右,棉子完全成熟时油分相对含量达到最高。气相色谱分析表明,棉仁脂肪酸主要包括棕榈酸、硬脂酸、油酸、亚油酸等,其中亚油酸的含量可达50%以上。随着棉子的发育,棉仁亚油酸含量逐渐减少,而棕榈酸、硬脂酸和油酸含量逐渐增加。棉花种间和种内材料的棉仁油分含量差异较大,说明对棉花材料的棉仁油分含量进行遗传改良具有较大的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号