首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

2.
In previous greenhouse experiments red mud, a residue of the alumina industry, was identified as effective amendment for in situ fixation of heavy metals. In the present study, we further evaluated the efficiency and potential drawbacks of red mud in an outdoor pot experiment. Application of 5 % (w/w) red mud (RM) should reveal possible drawbacks of red mud due to indigenous pollutants such as As, Cr, and V. Three soils from arable land in Lower Austria named Untertiefenbach (U) (Eutric Cambisol), Weyersdorf (W) (Dystric Cambisol), and Reisenberg (R) (Calcic Chernozem) were spiked with Cd, Zn, Cu, Ni, and V at two concentration levels in 1987, two soils originate from long‐term industrially polluted sites, located in Carinthia (Arnoldstein – Rendzic Leptosol; Zn, Cd, and Pb) and Tyrol (Brixlegg – Dystric Fluvisol; Cu, Zn). Zea mays was cultivated in pots for three months in outdoor conditions. Extraction with 1 M NH4NO3 was used to assess the influence of RM on the labile metals. Lability of Cd, Zn, Ni, and Pb was reduced upon RM treatment on a sandy soil up to 91 %, 94 %, 71 %, and 83 % of the control, respectively. Metal accumulation in shoots was reduced for Cd and Zn up to 54 % and for Ni up to 75 % (soil W), but not for Pb (soil A). Addition of RM (5 % w/w) increased the total As, Cr, and V concentrations in soils by 5, 20, and 50 mg kg–1, respectively. Whereas the lability of Cr was not affected, 1 M NH4NO3‐extractable As and V exceeded the trigger value for water quality according to Prüeß (1994). Lability of Cu increased upon RM application, especially on the Cu polluted industrial soil (B), while Cu toxicity appeared to be reduced as indicated by the higher corn biomass production. Red mud holds promise as soil amendment in terms of reduction Cd, Zn, and Ni bioavailability. However, at additions as high as 5 % (w/w) large As, Cr, and V concentrations of this material may limit its application.  相似文献   

3.
Slow immobilization of trace metals in soil, termed ‘fixation’, affects their natural attenuation but it is still unclear which reactions occur. Twenty‐eight soils were selected to assess the role of Fe oxides and carbonates on fixation of Cu, Cd, Zn and Ni. Soils included samples from 2 toposequences (Vietnam, Spain) and 13 European topsoils with different soil characteristics (pH 3.4–7.7). Samples were amended with 250 mg Zn kg−1, 100 mg Cu kg−1, 80 mg Ni kg−1 and 2.5 mg Cd kg−1 as metal salts and incubated for 850 days. Fixation was measured as the increase of the fraction of added metals that were not isotopically exchangeable. Fixation increased with time and was, averaged over all the soils, 43% (Cu), 41% (Zn), 41% (Ni) and 28% (Cd) after 850 days. Metal fixation within samples from each toposequence was generally positively related to total Fe oxide concentration (Fed) for Zn, Ni and Cd. However, the fixation of Cd, Zn and Ni was mainly explained by pH and not by Fed when considering all soils. Fixation of Zn and Cd in soils with pH >7.0 increased with increasing concentrations of carbonates at initial ageing times. Fixed fractions of Zn, Ni and Cd were significantly released when experimentally removing 50% of carbonates by acidification. Fixation of Cu was most poorly related to soil properties. Our data suggest that fixation of Cd, Zn and Ni is related to a pH‐dependent diffusion into oxides and that of Cd and Zn also to diffusion and/or coprecipitation in carbonates. Fixation of Ni at neutral pH may also be related to stabilization of precipitates that form readily in soil.  相似文献   

4.
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants.  相似文献   

5.
Abstract

This study was carried out to investigate whether an insoluble polyacrylate polymer could be used to remediate a sandy soil contaminated with cadmium (Cd) (30 and 60 mg Cd kg?1 of soil), nickel (Ni) (50 and 100 mg Ni kg?1 of soil), zinc (Zn) (250 and 400 mg Zn kg?1 of soil), or the three elements together (30 mg Cd, 50 mg Ni, and 250 mg Zn kg?1 of soil). Growth of perennial ryegrass was stimulated in the polymer‐amended soil contaminated with the greatest amounts of Ni or Zn, and when the three metals were present, compared with the unamended soil with the same levels of contamination. Shoots of plants cultivated in the amended soil had concentrations of the metals that were 24–67% of those in plants from the unamended contaminated soil. After ryegrass had been growing for 87 days, the amounts of water‐extractable metals present in the amended soil varied from 8 to 53% of those in the unamended soil. The results are consistent with soil remediation being achieved through removal of the metals from soil solution.  相似文献   

6.
Woody plant species that produce high biomass have been proposed for use in phytoremediation technology. We investigated the accumulation of cadmium (Cd) and zinc (Zn) in Salix babylonica, S. caprea, S. dasyclados, S. matsudana × alba, S. purpurea, S. smithiana, Populus tremula, and P. nigra clones grown in a pot experiment on a Calcaric and a Eutric Cambisol (pH 7.2 and 6.4) of different levels of contamination (total metal concentrations in mg kg–1 in soil A: 32.7 Cd, 1760 Zn; soil B: 4.34 Cd, 220 Zn). Generally, the tested clones tolerated large metal concentrations in soils and had larger Cd and Zn concentrations in leaves compared to the roots. The largest Cd concentrations in leaves were found in two clones of S. smithiana (440 mg kg–1 on soil A; 70 mg kg–1 on soil B). One of the S. smithiana clones had also the largest Zn concentrations (870 mg kg–1) on soil B but accumulated slightly less Zn than a S. matsudana × alba clone (2430 mg kg–1) on soil A. The Cd concentrations in leaves of both S. smithiana clones on soil A are the largest ever reported for soil‐grown willows. The bioconcentration factors of the best performing clone reached 15.9 for Cd and 3.93 for Zn on the less contaminated soil B. Also based on the metal contents in leaves, this clone was identified as the most promising for phytoextraction. The metal concentrations in leaves observed in the pot experiment do not reflect those found in a previous hydroponic study and the leaf‐to‐root ratios are clearly underestimated in hydroponic conditions. This demonstrates the need for testing candidates for phytoextraction crops on soils rather than in hydroponics. Our data also show that the phytoextraction potential should be tested on different soils to avoid misleading conclusions.  相似文献   

7.
A pot experiment was conducted to study the contribution of reactive phosphate rocks (RPRs) on the accumulation of Cd and Zn in 10 acid upland soils in Indonesia and shoots of Zea mays plants grown on these soils. Two types of RPR were used at a rate of 0.5 g (kg soil)–1: RPRL containing 4 mg Cd kg–1 and 224 mg Zn kg–1, and RPRH containing 69 mg Cd kg–1 and 745 mg Zn kg–1. Zea mays was harvested at 6 weeks after planting. The application of RPRH significantly increased the concentrations of Cd in the shoots. The application of this RPR also increased the amount of Cd which could be extracted by 0.5 M NH4‐acetate + 0.02 M EDTA pH 4.65 from the soils. More than 90% of the added Cd remained in the soil. As Zn is an essential element and the studied acid upland soils are Zn‐deficient, increased plant growth upon RPR application might be partly attributed to Zn present in the phosphate rock. However, more experiments are needed to confirm this hypothesis. The Cd and Zn concentrations and CEC of the soils were important soil factors influencing the concentrations of Cd and Zn in the shoots of maize plants grown on these soils.  相似文献   

8.
In a long‐term study of the effects on soil fertility and microbial activity of heavy metals contained in sewage sludges, metal‐amended liquid sludges each with elevated Zn, Cu or Cd concentrations were applied over a 3‐year period (1995–1997) to three sites in England. The experiments were sited adjacent to experimental plots receiving metal‐rich sludge cakes enabling comparisons to be made between the effects of heavy metal additions in metal‐amended liquid sludges and sludge cakes. The liquid sludge additions were regarded as ‘worst case’ treatments in terms of likely metal availability, akin to a long‐term situation following sewage sludge additions where organic matter levels had declined and stabilised. The aim was to establish individual Zn (50–425 mg kg?1), Cu (15–195 mg kg?1) and Cd (0.3–4.0 mg kg?1) metal dose–response treatments at each site, but with significantly smaller levels of organic matter addition than the corresponding sludge cake experiments. There were no differences (P > 0.05) in soil respiration rates, biomass carbon concentrations or most probable numbers of clover Rhizobium between the treatments at any of the sites at the end of the liquid sludge application programme. Soil heavy metal extractability differed between the metal‐amended liquid sludge and metal‐rich sludge cake treatments; Zn and Cd extractabilities were higher from the liquid sludge additions, whereas Cu extractability was higher from the sludge cake application. These differences in metal extractability in the treated soil samples reflected the contrasting NH4NO3 extractable metal contents of the metal‐amended liquid sludges and sludge cakes that were originally applied.  相似文献   

9.
Cadmium (Cd) accumulation and distribution was studied in sunflower (Helianthus annuus L., public line HA‐89) plant. From an uncontaminated sandy loam brown forest soil with 162 μg kg‐1 HNO3/H2O2 extractable Cd the HA‐89 sunflower public line accumulated 114 ug kg‐1 Cd in its kernels under open field conditions. This value is rather low as compared to data found by others. Sandy loam brown forest soil was treated with 0, 1 or 10 mg kg‐1 of Cd to study the interaction of this heavy metal with young sunflower plants in a greenhouse pot experiment. The fresh weight and dry matter accumulation of sunflower plant organs (roots, shoots, leaves or heads) was unaffected by cadmium treatment of soil. The nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), or zinc (Zn) uptake of sunflower plant organs was not influenced by lower or higher Cd‐doses, except sunflower heads where 10 mg kg‐1 of Cd treatment of soil significantly reduced the uptake of Ca, Fe, and Mn. Although Cd reduced the Zn uptake of roots, its rate was statistically not significant. Cadmium was accumulated prevalently in roots (1.21 mg kg‐1,4.97 mg kg‐1, or 13.69 mg kg‐1 depending on Cd‐dose), and its concentration increased also in shoots or leaves. In spite of the short interaction time, elevated concentrations of cadmium (0.78 mg kg‐1, 1.34 mg kg‐1, or 3.02 mg kg‐1 depending on Cd‐dose) were detected in just emerged generative organs (heads) of young sunflower plants.  相似文献   

10.
In a long‐term study of the effects on soil fertility and microbial activity of heavy metals contained in sewage sludges, metal‐rich sludge cakes each with high Zn, Cu or Cd concentrations were applied annually for 4 years (1994–1997) to nine sites throughout Britain. These sites were selected to represent agricultural soils with a range of physical and chemical properties, typical of those likely to be amended with sewage sludge. The aim was to establish individual total Zn (approx. 60–450 mg kg?1), total Cu (approx. 15–200 mg kg?1) and total Cd (approx. 0.2–4 mg kg?1) metal dose–response treatments at each site. Sludges with low metal concentrations were added to all treatments to achieve as constant an addition of organic matter as possible. Across the nine sites, soil pH was the single most important factor controlling Zn (P < 0.001; r2 = 92%) and Cd extracted with 1 m NH4NO3 (P < 0.001; r2 = 72%), and total iron content the most important factor controlling Cu extracted with 1 m NH4NO3 (P < 0.001; r2 = 64%). There were also positive relationships (P < 0.001) between soil organic carbon (C) concentrations and soil biomass C and respiration rates across the nine sites. Oxidation of sludge C following land application resulted in approximately 45% of the digested sludge cake C and approximately 64% of the ‘raw’ sludge cake C being lost by the end of the 4‐year application period. The sludge cake applications generally increased soil microbial biomass C and soil respiration rates, whilst most probable numbers of clover Rhizobium were generally unchanged. Overall, there was no evidence that the metal applications were damaging soil microbial activity in the short term after the cessation of sludge cake addition.  相似文献   

11.
Response of lettuce and rhizosphere biota to successive addition of zinc (Zn) and cadmium (Cd) was assessed in a pot experiment using limed and unlimed tropical Entisol. Cadmium (2.5 mg kg?1 soil) and Zn (50 mg kg?1 soil) were spiked to soil 1 month after germination, and successive applications were superimposed as 5 and 10 times the first dose. Plants were analyzed for metal uptake and mycorrhizal colonization 1 week after each metal application. Rhizosphere soils were assessed for extractable Zn and Cd as well as populations of bacteria, fungi, and metal-tolerant fungi. The greatest metal doses resulted in 84–88 mg Zn and 8–10 mg Cd kg?1 soil and 5–7.5 mg Cd and 70–72 mg Zn kg?1 dry matter. Metal-tolerant fungi population increased from 9–13% to 26–63%, but mycorrhizal colonization and bacterial population were inhibited by 88% and 96%, respectively. Liming had relieved metal stress on rhizosphere biota but did not affect metal uptake.  相似文献   

12.
To understand the ecotoxicity of antibiotics and heavy metals in soil, 5% (w/w) composts containing different concentrations of sulfamethazine (SMZ) and/or zinc (Zn) were applied to soil to investigate their effects on pakchoi (Brassica chinensis L.) growth, soil sulfonamide resistance genes (SRGs: sul1, sul2, and dfrA7), and soil microbial communities. Composts containing less than 1.0 mg SMZ kg–1 or less than 2.8 g Zn kg–1 promoted pakchoi growth and the metabolic activity of soil microbial communities. Compared with the control, the absolute abundances (AAs) of soil SRGs significantly increased by 0.85–4.54 times with 50.6 μg kg–1 SMZ treatment (P < 0.05), the AA of sul2 increased by 166% with 248.8 mg Zn kg–1 treatment. The combination treatments with 19.8 μg SMZ kg–1 and 179.9 mg Zn kg–1 in soil had synergistic stimulatory effects on pakchoi growth, soil SRGs and microbial metabolism, whereas 53.5 μg SMZ kg–1 and 262.1 mg Zn kg–1 had an opposite effect. Pearson’s correlation analysis showed that carbon metabolism by soil microorganisms had significant positive correlations with shoot height of pakchoi (r = 0.84, P < 0.05) and AAs of SRGs (r > 0.80, P < 0.05).  相似文献   

13.

Purpose

Heavy metal distribution in soils is affected by soil aggregate fractionation. This study aimed to demons trate the aggregate-associated heavy metal concentrations and fractionations in “sandy,” “normal,” and “mud” soils from the restored brackish tidal marsh, oil exploitation zone, and tidal mudflat of the Yellow River Delta (YRD), China.

Materials and methods

Soil samples were sieved into the aggregates of >2, 0.25–2, 0.053–0.25, and <0.053 mm to determine the concentrations of exchangeable (F1), carbonate-bound (F2), reducible (F3), organic-bound (F4), and residual fraction (F5) of Cd, Cr, Cu, Ni, Pb, and Zn.

Results and discussion

The 0.25–2 mm aggregates presented the highest concentrations but the lowest mass loadings (4.23–12.18 %) for most metal fractions due to low percentages of 0.25–2 mm aggregates (1.85–3.12 %) in soils. Aggregates <0.053 mm took majority mass loadings of metals in sandy and normal soils (62.04–86.95 %). Most soil aggregates had residual Cr, Cu, Ni, Zn, and reducible Cd, Pb dominated in the total Cd, Cr, Cu, Ni, Pb, and Zn concentrations. Sandy soil contained relatively high F4, especially of Cu (F4) in 0.25–2 mm aggregates (10.22 mg kg?1), which may relate to significantly high organic carbon contents (23.92 g kg?1, P?<?0.05). Normal soil had the highest total concentrations of metals, especially of Cu, Ni, and Pb, which was attributed to the high F3 and F5 in the <0.053 mm aggregates. Although mud soil showed low total concentrations of heavy metals, the relatively high concentrations of bioavailable Cd and Cu resulted from the relatively high Cd (F2) and Cu (F2) in the >2 mm aggregates indicated contribution of carbonates to soil aggregation and metal adsorption in tidal mud flat.

Conclusions

Soil type and aggregate distribution were important factors controlling heavy metal concentration and fractionation in YRD wetland soil. Compared with mud soil, normal soil contained increased concentrations of F5 and F3 of metals in the 0.053–0.25 mm aggregate, and sandy soil contained increased concentrations of bioavailable and total Cr, Ni, and Zn with great contribution of mass loadings in the <0.053 mm aggregate. The results of this study suggested that oil exploitation and wetland restoration activities may influence the retention characteristics of heavy metals in tidal soils through variation of soil type and aggregate fractions.
  相似文献   

14.
Abstract

Heavy‐metal inhibition of nitrification in soils treated with reformulated nitrapyrin was investigated. Clarion and Okoboji soils were treated with ammonium sulfate [(NH4)2SO4] and a nitrification inhibitor. Copper(II) (Cu), Zinc(II) (Zn), Cadmium(II) (Cd), or Lead(II) (Pb) were added to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and the termination period of nitrification (t s). In the Clarion soil, the K max decreased from 12 mg kg?1 d?1 without the nitrification inhibitor to 4, 0.25, 0.86, and 0.27 mg kg?1 d?1, respectively, when the inhibitor and Cu, Zn, Pb, or Cd were applied. In the Okoboji soil, K max decreased from 22 mg kg?1 d?1 with no inhibitor to 6, 3, 4, and 2 mg kg?1 d?1, respectively, when an inhibitor and Cu, Zn, Pb, or Cd were added. The t′ varied from 8 to 25 d in the Clarion soil and from 5 to 25 d in the Okoboji soil, due to addition of Cu, Zn, Pb, or Cd and the inhibitor.  相似文献   

15.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   

16.
Soil‐plant transfer of metals is a nonlinear process. We therefore aimed at evaluating the potential of Freundlich‐type functions (cPlant = b × cSoila) to predict Cd, Cu, Pb, and Zn concentrations in wheat (Triticum aestivum L.) grain and leaf (cPlant) from soil concentrations (cSoil). Wheat plants and soil A horizons, mainly developed from Holocene sediments, were sampled at 54 agricultural sites in Slovakia. Metals were extracted from soils with 0.025 M EDTA at pH 4.6 and concentrated HNO3/HClO4 (3:1); plant samples were digested with concentrated HNO3. Total metal concentrations of soil samples were 0.07—25 mg Cd kg—1, 9.3—220 mg Cu kg—1, 14—1827 mg Pb kg—1, and 34—1454 mg Zn kg—1. On average, between 20 % (Zn) and 80 % (Cd) of the total concentrations were EDTA‐extractable. The total metal concentrations of grain samples were < 0.01—1.3 mg Cd kg—1, 1.3—6.6 mg Cu kg—1, < 0.05—0.30 mg Pb kg—1, and 8—104 mg Zn kg—1. The leaves contained up to 3.2 mg Cd kg—1, 111 mg Cu kg—1, 4.3 mg Pb kg—1, and 177 mg Zn kg—1. Linear regression without data transformation was precluded because of the nonnormal data distribution. The Freundlich‐type function was suitable to predict Cd (grain: r = 0.71, leaf: 0.86 for the log‐transformed data) and Zn concentrations (grain: 0.69, leaf: 0.68) in wheat grain and leaf from the EDTA‐extractable metal concentrations. The prediction of Cu and Pb concentrations in grain (Cu: r = 0.44, Pb: 0.41) was poorer and in leaf only possible for Pb (0.50). We suggest to use the Freundlich‐type function for defining threshold values instead of linear regression because it is more appropriate to simulate the nonlinear uptake processes and because it offers interpretation potential. The results suggest that the coefficient b of the Freundlich‐type function depends on the intensity of metal uptake, while the coefficient a reflects the plants' capability to control the heavy metal uptake. The latter is also sensitive to metal translocation in plants and atmospheric deposition.<?show $6#>  相似文献   

17.
Adverse effects on crop yield or quality have been reported in sewage‐sludge treated soils at soil total metal concentrations below those of the current EU directives. A field trial was set up in Belgium (2002–2004) to assess crop response to the application of sewage sludge below these soil thresholds but with sludge metal concentrations either above (high‐metal) or below (low‐metal) sludge metal limits. Two lime‐stabilized and two raw, dewatered sludges were applied annually at rates of 10, 25 and 50 t dry matter (dm) ha?1 for 3 years with four rates of N‐fertilizer as a reference. Final soil metal concentrations increased to maximums of 1.6 mg Cd kg?1 and 225 mg Zn kg?1 through sludge applications. Maize yield was marginally affected by treatments in year 1, whereas wheat and barley grain yields in subsequent years increased up to threefold with increasing sludge or fertilizer rates and were mainly explained by grain‐N. However, the grain yield of winter wheat in year 2 was reduced by about 14% in lime‐stabilized high‐metal sludge treatments compared with wheat receiving N‐fertilizer at equivalent grain‐N. Wheat grain and straw analysis showed no nutrient deficiencies but Zn concentrations in grain and straw were greater than in N‐fertilizer and lime‐stabilized, low‐metal sludge treatments, suggesting Zn toxicity. Sludge properties other than Cd concentration (e.g. electrical conductivity) affected crop Cd in the first year (maize), whereas significant correlations between Cd application and wheat grain Cd were found in the second year. Wheat grain Cd concentrations reached the international trade guideline of 0.1 mg Cd kg?1 fresh weight in the plots amended with lime‐treated, high‐metal sludge even though soil Cd remained below EU limits. In the third year, barley grain Cd remained largely below EU limits. We discuss the possibility that sludge properties rather than soil total metal concentrations are related to effects on crops in the initial years after sludge applications. In none of the 3 years were any adverse effects on crops found for sludge meeting current EU regulations.  相似文献   

18.
We compared acetic, ascorbic, and oxalic acids with ethylenediaminetetraacetic acid (EDTA) to enhance phytoextraction of nickel (Ni), manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) by maize. Except ascorbic acid, acids significantly (P < 0.05) decreased shoot dry weight with maximum (5.60 g pot?1) recorded with ascorbic acid and minimum with oxalic acid (4.06 g pot?1). Maximum ammonium bicarbonate–diethylenetriaminepenta acetic acid (AB-DTPA)–extractable nickel (19.94 mg kg?1) was recorded with EDTA and it was minimum (10.57 mg kg?1) with oxalic acid. The EDTA significantly (P < 0.05) increased AB-DTPA-extractable lead while other acids decreased it. Except acetic acid, other acids significantly (P < 0.05) increased Ni and Zn concentration in shoots with maximum Ni (9.22 mg kg?1) and Zn (37.40 mg kg?1) with EDTA.  相似文献   

19.
Leaching of Cd and Zn in polluted acid, well‐drained soils is a critical pathway for groundwater pollution. Models predicting future groundwater contamination with these metals have rarely been validated at the field scale. Spodosol profiles (pH 3.2–4.5) were sampled in an unpolluted (reference) field and in a field contaminated with Cd and Zn through atmospheric deposition near a zinc smelter. Average metal concentrations in the upper horizons were 0.2 mg Cd kg?1 and 9 mg Zn kg?1 in the unpolluted field, and 0.8 mg Cd kg?1 and 71 mg Zn kg?1 in the contaminated field. Isotopic dilution was used to measure the labile concentration of Cd and Zn, and the metal transport was modelled using measured sorption parameters that describe the distribution between the labile metal pool (instead of the total metal pool) and the solution phase obtained by centrifugation. Solutions were also collected by wick samplers in two polluted and one unpolluted profile at a depth of 70 cm. Concentrations in these solutions were in the order of 15 µg Cd litre?1 and 0.8 mg Zn litre?1 for the polluted profiles, and 1 µg Cd litre?1 and 0.04 mg Zn litre?1 for the unpolluted profile. The concentrations in these solutions agreed well with those in soil solutions obtained by centrifugation, which supported the use of the local equilibrium assumption (LEA). Present‐day Cd profiles in the polluted field were calculated with the LEA, based on the emission history of the nearby smelter and taking spatial variability into account. Observed and predicted depth profiles agreed reasonably well, but total Cd concentrations in the topsoil were generally underestimated by the model. This may be attributed to the presence of non‐labile Cd in the atmospheric deposition, which was not accounted for in the retrospective modelling. The large concentrations of non‐labile Zn in the topsoil of the polluted field were also indicative that metals in the atmospheric deposition were (partly) in a sparingly soluble form, and that release of these non‐labile metals is a slow process. The presence of non‐labile metals should be taken into account when evaluating metal mobility or predicting their transport.  相似文献   

20.
Abstract

Water extraction of trace elements can simulate the concentration of elements in the soil solution from where the plant takes up the elements. The objective of this investigation was to determine the water extractable concentration of seven trace elements (Fe, Mn, Ni, Co, Mo, Pb and Cd) and to assess their relationship with soil properties of the Danube basin in Croatia. Soil samples from the surface layer (0–25 cm) of 74 sites, having different land uses (forest and agricultural land), were collected. Samples were analysed for total and water extractable trace elements as well as for pH, DOC, SOC and CEC. The concentrations of water extractable fraction of trace elements were on average: 20.14 mg kg?1 for Fe, 3.61 mg kg?1 for Mn, 0.07 mg kg?1 for Ni, 0.016 mg kg?1 for Co, 0.01 mg kg?1 for Mo, 0.01 mg kg?1 for Pb and 0.0009 mg kg?1 for Cd. Soil properties were in the following range: pH 4.3–8 (Avg: 6.35), DOC 6.1–73 mg l?1 (Avg: 26 mg l?1), CEC 1.3–24 cmol kg?1 (Avg: 9 cmol kg?1) and SOC 0.5–5% (Avg: 1.7%). The concentration of water extractable fraction of trace elements was significantly correlated with pH (p <0.001), DOC (p <0.001 – p <0.05) and CEC (p <0.001) but their relationship with total content of trace element and SOC was rather weak, suggesting that total metal alone cannot be an indicator of toxicity or deficiency. Results show that pH, DOC and CEC are important soil quality parameters taking part in the solubility control of trace metals in the soil rather than their total concentration. The difference between land uses has been observed as well, suggesting that a change in land use can cause a change in trace element solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号