首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
An experiment was conducted with tilapia-catfish polyculture at the Lagdo Fisheries Station in northern Cameroon. The objectives were: 1. To estimate the effect of supplementary cottonseed cake on net pond production in ponds already receiving dried cattle manure as basic treatment: and 2. To study the performance of African catfish, Clarias gariepinus (Burchell). in recruitment control of Nile tilapia, Oreochromis niloticus (L.). Recruitment control is essential in obtaining large tilapia sizes demanded in the market. Cottonseed cake, the most important agricultural by-product in the region, is expensive. Dried cattle manure may be collected free from corrals deserted by pastoral ethnic groups. Three treatments were tested in duplo in six earthen ponds of 525 m2 each; treatment A. daily application of dried cattle manure only (266 kg ha?1 day?1); treatment B, daily manure + cottonseed at a nominal daily rate of 3% of tilapia biomass: treatment C, daily manure + cottonseed cake at 6% of tilapia biomass. Stocking densities per pond were 250 male Nile tilapia (mean Wo 222 g), 150 female tilapia (W0= 202 g), 30 ‘large’ African catfish (Wo= 198 g); and 30 ‘small’ catfish (W0= 52 g). Mean fish densities were 0.76 tilapia m?2 and 0.11 catfish m?2. Application of dried manure and cottonseed cake was 6 days per week, and the culture period was 100 days. Fish were sampled every month and feeding rates were adjusted accordingly. Dissolved oxygen content and algal turbidity (Secchi disc) were measured once a week. Extrapolated net pond productions, including recruits, were: -0.41 ha?1 year?1 (treatment A); 4.8 t ha?1 year?1 (treatment B) and 6.5 t ha?1 year?1 (treatment C). Differences between treatments B and C were not significant(P < 0.05). Fertilization with dried cattle manure only (zero cottonseed cake) led to a negative net pond production in treatment A (negative net tilapia production but slightly positive net catfish production). Dried manure at the given application rate did not contribute sufficient nutrients to maintain the stocked fish biomass via enhanced natural production, while pond biomass was high for such an extensive system (manure only). Best fish growth was observed in treatment C (male tilapia, 0.9 gday?1: large catfish, 6.9 g day?1) although differences between treatments B and C were not significant. Growth of male and female was not significantly different, but growth rates of tilapia and catfish were significantly different (P & lt; 0.05). Average yields of tilapia recruits in treatment B (1539 kg ha?1 year?1) and C (1829 kg ha?1year?1) were about four times the average yield of recruits in treatment A (468 kg ha?1 year?1) but differences between treatments A, B and C were not significant. It was sugcess, or the reproductive efficiency of tilapia in treatment A could have been lower as a result of that treatment. However, clouds of up-swimming fry appeared to be at least as numerous in the replicate ponds of treatment A as in the ponds of treatments B and C.  相似文献   

2.
Catfish (mean W0 189 g) were added to ponds (525 mJ each) stocked with 230 hand-sexed, male tilapia (Wu163 g), at 0.04, 0.10 and 0.15 catfish m?2. In each pond, two female tilapias were introduced, thereby creating a sexing error of less than 1%. Feeding was fixed throughout the experiment at 2.5 kg of cottonseed cake per day per pond 6 days per week (mean feeding rate R = 41 kg ha?1 day-1). Rearing time was 125 days. Average net pond production per treatment (ranging between 7.5 and 7.9 t ha?1 year?1) and marketable production were not different between treatments but net tilapia production was significantly lower at the highest catfish density. Both catfish and tilapia growth were negatively correlated with catfish density due to feed competition near the end of the experiment. It was concluded that catfish efficiency in controlling tilapia recruitment was strongly reduced by the availability of supplementary high-protein feed. Large catfish competed with the parent tilapia for the cottonseed cake but apparently did not exploit the tilapia recruits. Yield of tilapia recruits was lowest at the highest catfish fingerling density, although this was not significant. The number of catfish fingerlings was significantly higher at the lowest catfish density, which indicated that large catfish preyed on catfish fingerlings.  相似文献   

3.
Four earthen ponds (250 m2 each) were stocked each with 250 small catfish (W0=39g). In treatment A, African catfish. Clarias gariepinus (Burchell), were raised in monoculture, while in treatment B catfish were raised in polyculture with an additional 125 male Nile tilapia, Oreochromis niloticus (L.) (W0=44g). Feeding of cottonseed cake was at about 4% of catfish body weight day?1. Daily feed quantities, however, were averaged over all four ponds so that each pond received the same amount of cottonseed cake. Rearing time was 118 days. In treatment A, catfish grew to an average weight of 200g. In treatment B, catfish reached 158g and tilapia 185g, Extrapolated marketable fish production was strikingly similar in all four ponds (around 4.8 t ha?1 year?1). No synergistic effect was obtained by stocking microphagous tilapia, although the feeding of cottonseed cake enhanced dense algal blooms in all ponds. Catfish did not appear to exploit the tilapia recruits, as an indirect pathway of algae cropping.  相似文献   

4.
Two cottonseed cake feeding strategies were tested in pond culture of hand-sexed male Nile tilapia, Oreochromis niloticus (L.). (W0 > 80 g), with the objective of making better use of the algal blooms which develop when cottonseed cake is applied to a pond. In the conventional ‘progressive feeding strategy’, the daily amount of cottonseed cake was adjusted monthly for the total tilapia bioweight estimated from sampling, assuming that cottonseed cake primarily acted as a tilapia feed. In the ‘linear feeding strategy’, ponds received a fixed daily amount of cottonseed cake throughout the trial, based on the hypothesis that tilapia would cover their nutritional requirements mostly by grazing the algae. Each feeding strategy was tested at two feeding levels. Mean daily feeding rate R in the progressive feeding strategy averaged 48.6 (low feeding level) and 102.5 kg ha?1 day?1 (high feeding level), and 49.8 and 82.9 kg ha?1 day?1 in the linear feeding strategy. Significantly better growth rates and feed conversion rates were obtained in the progressive feeding strategy. Average extrapolated net pond production was highest at Rpr=6% body weight day?1 (10.61 ha?1, year?1). It was concluded that cottonseed cake contributed to tilapia growth mainly directly as a tilapia feed rather than indirectly as a pond fertilizer via algal production. Finally, the appropriateness of the metabolic feeding rate Rmb(BW0.8 day?1) was discussed, compared with the progressive feeding rate Rpr (%BW day?1). (BW denotes body weight). A practical, two-step linear feeding method was proposed for cottonseed cake as a ‘rule of thumb’ that is workable in the field.  相似文献   

5.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   

6.
The effects of different stocking rates and ratios of Tilapia aurea (Steindachner) in combination with Cichlasoma managuense (Günther) on tilapia recruitment and production were evaluated in 440 m2 ponds. The research was conducted at the National Fisheries Station in El Salvador, Central America.The tilapia AT value, the total weight of marketable tilapia (14 cm or larger) expressed as a percentage of the total weight of the whole tilapia population, averaged 96 or greater at a stocking ratio of 4:1 (fingerling tilapia: fingerling C. managuense) and at a stocking ratio of 8:1 (fingerling tilapia: adult C. managuense). Tilapia AT values at a stocking ratio of 8:1 (fingerling tilapia: fingerling C. managuense) ranged from 71–89.Highest estimated annual production of marketable tilapia (3611 kg ha?1) occurred at the highest stocking rate of 12000 tilapia ha?1 in populations with an average tilapia AT value of 98. Greatest weight gain of marketable tilapia (167 g of 1.17 g day?1) occurred at the lowest stocking rate of 6000 tilapia ha?1 in populations with an average tilapia AT value of 99.Estimated annual production of marketable C. managuense ranged from 212–414 kg ha?1. The average weight gain of marketable fish varied from 48–60 g (0.32–0.40 g day?1). The average C. managuense, AT value was 54, ranging from 29–84.The estimated production of marketable fish of both species at stocking rates of 6000, 9000 and 12000 tilapia ha?1 in populations with tilapia AT values of 96 or greater averaged 3295, 3290 and 4025 kg ha?1 per year, respectively.  相似文献   

7.
Direct use of pig wastes as inputs into fish culture systems may be unacceptable or an inferior use of valuable inputs. High value, but non-filter feeding fish, such as African catfish, Clarias gariepinus (Burchell), may be unable to recover nutrients efficiently through the pond food web and require complete diets in intensive culture. Live feeds such as the larval stage of the green blow fly. Lucilia sericata, can be used as intermediate organisms to utilize pig waste and subsequently be fed live as part of a complete ration for catfish raised in cages. The nutrient efficiency of the system is further enhanced by the stocking of phytophagous fish, the Nile tilapia, Oreochromis niloticus (L.), in the pond in which the catfish culture cages are suspended. A model derived from on-farm experimentation is presented that demonstrates system design and nutrient efficiencies. An extrapolated catfish production of 61 year1 using only fly larvae produced from a standing herd of approximately 1000 fattening pigs was demonstrated. The static water pond in which the catfish were cultured ensured that the environmental impact of both pig and catfish systems was minimal compared to conventional production systems.  相似文献   

8.
Five pond management strategies for Nile tilapia Oreochromis niloticus L. production were evaluated in 0.1‐ha earthen ponds in Egypt during a 145‐day production cycle. Pond management strategies developed by the Pond Dynamics/Aquaculture Collaborative Research Support Programme (PD/A CRSP) were compared with a traditional and a modified Egyptian pond management strategy. Young‐of‐year Nile (mixed‐sex or sex‐reversed) tilapia were stocked into ponds at 20 000 fish ha?1. Sex‐reversed tilapia were stocked into chemical fertilization, organic fertilization plus formulated feed and feed only treatment ponds, whereas mixed‐sex tilapia were stocked into organic fertilization plus formulated feed and chemical plus organic fertilization plus formulated feed treatment ponds. Nile tilapia yields ranged from 1274 to 2929 kg ha?1. Nile tilapia yields in organic fertilization plus formulated feed treatments were significantly greater than the yield from chemical fertilization ponds. PD/A CRSP pond management strategies did not produce significantly greater Nile tilapia yields than the traditional Egyptian system, but a larger percentage of harvested tilapia in the organic fertilization plus feed treatments were classified in the first and second class size categories compared with the traditional Egyptian system. Organic fertilization plus formulated feed pond management strategies had the highest net returns, average rate of return on capital and the highest margin between average price and break‐even prices to cover total variable costs or total costs.  相似文献   

9.
The present research investigated the effect of stocking density on pond (75 m2, depth 1.2 m) production of Nile tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) stocked at a fixed 3:1 tilapia:prawn ratio. Three stocking densities were tried in triplicate: 20 000 ha−1 (treatment TP‐20), 30 000 ha−1 (TP‐30) and 40 000 ha−1 (TP‐40). The ponds were provided with bamboo as substrate for periphyton development. Bamboo poles (mean diameter 5.5 cm and 5.0 poles m−2) were posted vertically into pond bottoms, resulting in 60% additional substrate area in each pond. On average, 43 genera of algae and 17 genera of zooplankton were identified from pond water, whereas 42 genera of algae and six genera of microfauna were attached to bamboo substrates. No differences were observed between treatments in the ash‐free dry matter (AFDM), chlorophyll a and phaeophytin a content of periphyton (P>0.05). Survival of tilapia and prawn and individual weight gain of tilapia were lower (P<0.05) in treatment TP‐40. The net yields were higher (P<0.05) in treatments TP‐30 (2209 and 163 kg ha−1 105 day−1 of tilapia and prawn respectively) and TP‐40 (2162 and 141 kg ha−1 of tilapia and prawn respectively) than in treatment TP‐20 (1505 and 136 kg ha−1 of tilapia and prawn respectively). The net tilapia yields were quadratic correlated (R2=0.92) with fish stocking density. The cost–benefit analysis shows that the net profit margin was highest in treatment TP‐30 (69%), followed by TP‐20 (50%) and TP‐40 (44%).  相似文献   

10.
The fish production parameters of five polyculture combinations, consisting of small and large silver barb, Puntius gonionotus (Bleeker), small and large Nile tilapia, Oreochromis niloticus (L.), and small common carp, Cyprinus carpio L., fingerlings in three replicates, were investigated in a rice-fish culture experiment (duration 149 days) conducted in the Mekong Delta, Vietnam. The survival rate was not significantly (P > 0.05) affected by the polyculture combination, but when grouped according to species, the mean survival of silver barb and tilapia was 64.3% and 63.7%, respectively, significantly higher than the mean common carp survival rate (33.4%). The growth of silver barb and tilapia was proportionally related to the stocking density, probably because of intraspecific competition and a synergistic interaction between silver barb and tilapia. The growth of common carp was not significantly different among the polyculture combinations. The highest net production (474.1 kg ha?1) was obtained in the polyculture combination consisting of 80% small-sized silver barb fingerlings, but the fish was not marketable at that time. In concurrent rice-fish culture, it is recommended to raise large silver barb fingerlings. Small tilapia can be polycul-tured with silver barb, provided a stocking density lower than 1400 ha?1. Common carp is considered less suitable because of a limited tolerance for the water quality conditions in the ricefield and the large size required by the market.  相似文献   

11.
The experiment was carried out to evaluate the production performance of sutchi catfish, Pangasianodon hypophthalmus in restricted feeding regimes and their effects on gut and liver indices and body composition. Four feeding regimes were evaluated: fed to satiation twice per day (treatment daily feeding); 1‐day food deprivation and 1‐day feeding (treatment 1D‐1F), 2‐day deprivation and 2‐day feeding (treatment 2D‐2F) and 5‐day deprivation and 5‐day feeding (treatment 5D‐5F). Fingerlings (mean weight 37 ± 3 g, mean total length 18 ± 2 cm) were stocked in replicated earthen ponds at a density of 25 000 ha?1 and cultured for 18 weeks during which commercial diet (33% crude protein) were delivered to apparent satiation on the feeding day according to the treatment. Results showed that the daily feeding and 1D‐1F treatments resulted in similar individual weight gain (515–536 g) and net fish production (10 954–11 387 kg ha?1) as compared with treatment 2D‐2F (weight gain 309 g; net production 6700 kg ha?1) or treatment 5D‐5F (weight gain 251 g; net production 5651 kg ha?1). While fish body protein levels were not affected by food deprivation, lipid contents were lowest in treatments 2D‐2F and 5D‐5F. The study concluded that sutchi catfish could be cultured in alternate‐day feeding regime without any negative effects on production and meat quality of fish resulting in a net profit of USD 2750 ha?1 pond.  相似文献   

12.
A cohort‐based bio‐economic biomass growth and economic model, validated with data from experiments conducted in Malawi, was used to identify an optimal harvesting strategy for mixed‐sex tilapia ponds. Three harvesting scenarios (baseline, economic optimum time +10 days and economic optimum time) were used. In each harvesting scenario four options were explored: (i) no further harvest, harvest every (ii) 60 days, (iii) 90 days and (iv) 120 days after initial harvest. The lowest simulated yield (487 kg ha−1 year−1) was obtained when no partial harvesting was carried out and fish were harvested after 365 days. Maximum yield (4416 kg ha−1 year−1) was obtained when partial harvests were carried out every 90 days starting with a first harvest of fish weighing 60 g or more at day 90. Maximum financial returns (US$2561 ha−1 year−1) were obtained when partial harvests were carried out every 120 days starting with the first harvest at day 90 and removing all fish ≥60 g. The model simulations indicate that mixed‐sex tilapia culture may be profitable for tilapia farmers in Africa where markets accept small (60–150 g)‐sized fish. The study further shows that a cohort‐based population growth model can be reliably incorporated in tilapia production models to simulate fish yields in mixed‐sex tilapia production systems. However, incorporation of intergenerational competition effects could improve the model's utility as a decision support tool for managing mixed‐sex tilapia production.  相似文献   

13.
The fingerling‐rearing experiment of the threatened catfish, Mystus cavasius was carried out at different stocking densities in earthen nursery ponds. Twelve‐day‐old fry were stocked at 200 000 ha?1 in treatment‐1 (T1), 250 000 ha?1 in treatment‐2 (T2) and 300 000 ha?1 in treatment‐3 (T3) respectively. The mean length and weight of fry at stocking was 1.24 ± 0.25 cm and 0.11 ± 0.04 g respectively. Fry in all the experimental ponds were supplemented with SABINCO nursery feed for the first 14 days and starter‐I feed for days 15–56. The physico‐chemical parameters and plankton population of pond water were within the suitable level for fish culture. Growth in terms of final weight, final length, weight gain, length gain and specific growth rate and survival of fingerlings were significantly higher in T1 than those in T2 and T3. Feed conversion rate was significantly lower in T1 followed by T2 and T3 in that order. Significantly higher number of fingerlings was produced in T3 than that in T2 and T1. Even then, consistently higher net benefits were obtained from T1 than those from T3 and T2. Among the treatments evaluated, 200 000 fry ha?1 was the best stocking density considering the highest growth, production and net benefits of fingerlings of M. cavasius in nursery ponds.  相似文献   

14.
Effect of salinity on carrying capacity of a recirculation system for Nile tilapia, Oreochromis niloticus L.; production was assessed. Survival, growth and feed conversion ratio of adult Nile tilapia fed 30% crude protein diet for 88 days were measured at three different salinity levels (8, 15 and 25 g L?1) and two stocking densities (20 and 40 m?3) in three independent recirculating systems. Highest survival (98%) and a linear growth in net biomass (P<0.01) was observed in both densities at 8 g L?1 and in 20 m?3 treatment at 15 g L?1. Highest net biomass growth was observed in the 40 m?3 stocking density treatment at 8 g L?1 salinity level (P<0.05). Overall biomass growth was significantly affected by salinity indicating a decrease in Nile tilapia carrying capacity with increased salinity. About 11 000 kg ha?1 crop?1 of Nile tilapia can be obtained in recirculating systems at 8 g L?1 salinity, significantly higher than the net production at 15 g L?1 (5200 kg ha?1 crop?1) and 22 g L?1 (4425 kg ha?1 crop?1).  相似文献   

15.
Cultivation of Gracilaria (Rhodophyta) in shrimp pond effluents in Brazil   总被引:3,自引:0,他引:3  
Shrimp aquaculture produces a large amount of waste, including nitrogen and phosphorus. To investigate the utilization of those elements as sources of nutrients for the growth of the red seaweed, Gracilaria sp. J. Agardh, an experiment in shrimp pond effluents was carried out over a period of 5 months. The biomass varied significantly (P < 0.01), reaching a maximum of 2540 g m?2 and a minimum of 380 g m?2. The mean was 1418 ± 708 g m?2. The higher biomass values occurred during the first 15 days and sometimes exceeded the initial inoculum by 190%. According to the results, production of 23.93 t ha?1 year?1 (dry weight) can be expected. anova showed significant differences in RGR (relative growth rate) values (P < 0.05). RGR varied from 8.8% per day to 1.8% per day. The fluctuation of nutrients was mainly influenced by pond fertilization frequency, with NH4 being the most abundant nutrient. Correlations between RGR and environmental parameters during the study period were not significant (P > 0.05). We conclude that Gracilaria sp. can be cultivated in shrimp ponds effluents. However, despite this relative success, it is necessary to perform some adjustments regarding the utilized cultivation technique.  相似文献   

16.
We used a 50‐year (1961–2010) daily record of precipitation and evaporation in a hydrological model to simulate ground water withdrawal for the foodfish grow‐out phase of ictalurid catfish culture in northwest Mississippi, USA. The model quantified the effects of seepage, reusing water for multiple years, and managing water levels to capture rainfall (drop‐fill water management). Selecting sites with relatively impervious soils and reusing water for multiple years had large impacts on annual water use, and combining those practices with drop‐fill water management reduced simulated groundwater withdrawal to less than 60 cm year?1 compared with more than 450 cm year?1 for the least conservative scenario. Water conservation measures reduced estimated costs of pumping ground water from ~$1150 ha?1 year?1 for the least conservative set of water‐use variables to less than $110 ha?1 year?1 for the best set of water conservation practices. Efficiency of pumped water use was dramatically improved by intensifying production in the foodfish grow‐out phase. Combining water‐conservation practices with production intensification improved the water use index from 9.18 m3 kg?1 for foodfish grow‐out ponds with the least conservative set of practices to 0.28 m3 kg?1 for ponds built on soils with negligible seepage, managed with a 22.9‐cm drop/7.6‐cm fill, drained every 10 years, and producing 15 000 kg of catfish ha?1 year?1. When simulated ground water use for the best set of water conservation practices in foodfish grow‐out ponds was combined with estimates of ground water used for fingerling production and water used in producing grain‐based feedstuffs, total consumptive water use index for catfish culture was estimated at ~2.7 m3 kg?1. This index is competitive with most other types of animal agriculture. Efficient water use in catfish farming is easily achieved under commercial conditions using existing simple technologies.  相似文献   

17.
Growth, production and economic analysis was performed for the polyculture of juveniles spotted babylon, Babylonia areolata, and milkfish, Chanos chanos, to marketable sizes using a large‐scale production of earthen ponds in Thailand. The analysis was based on actual cost and production data from a pilot commercial‐scale farm. A total farm area of 0.8 ha was comprised of 0.3 ha grow‐out earthen ponds, a 0.4 ha seawater reservoir, and a 0.08 ha accommodation and office. Each pond was stocked with spotted babylon juveniles of 0.3 g initial body weight at a density of 200 snails m?2, and they were harvested at a 7‐month period, at an average body weight of 4.6 g for a total yield per production cycle of spotted babylon and milkfish of 9875 and 6875 kg ha?1 respectively. Based on farm data and harvest data used in this study, initial investment requirement was estimated to be $4837. The ownership cost and operating cost per production cycle were $2241 and $18 501 respectively. Total cost per production cycle was $20 742. The cost of producing spotted babylon marketable sizes in this grow‐out farm design was $6.56 kg?1. The enterprise budgets based on the price of spotted babylon at a farm gate in 2003 of $9.00 kg?1 results in gross return, net return, return to capital and management, and return on investment of $31 190, $10 448, $12 689 and 2.62 respectively. Milkfish was not calculated for any returns because they were less than marketable sizes.  相似文献   

18.
This study investigated the effects of nursing duration on the subsequent performance of rohu (R) Labeo rohita and mrigal (M) Cirrhina mrigala in polyculture with monosex male Nile tilapia (T) Oreochromis niloticus at four levels of pond fertilization. Nile tilapia, rohu and mrigal were stocked at a ratio of 4:1:1 in a 90‐day trial based on 40 20‐m2 pens fixed in four 400‐m2 earthen ponds. Growth of carp fingerlings during prolonged nursing (5 or 12 months) was stunted compared with fish nursed over a conventional duration of 3 months (3) but showed superior growth subsequently. Mean daily weight gain of stunted rohu (12) ranged from 2.2 to 2.8 g per fish day?1 compared with 1.1–1.6 g per fish day?1 for younger fish (3). The comparable ranges for mrigal were 1.9–2.8 and 1.4–2.1 g per fish day?1. Growth of Nile tilapia was inversely related to duration of carp nursing at the four levels of fertilization. Nile tilapia showed more response to increasing levels of fertilizer input (Y=?1.421+1.716X, where Y is the daily weight gain of Nile tilapia and X is the fertilizer level, r2=0.98, P<0.01, n=12). At a high level of fertilization (3.0 kg N:1.5 kg P ha?1 day?1), performance of stunted fingerlings (5 and 12) of both rohu and mrigal was similar (range 2.3–2.8 g per fish day?1, P>0.05), but younger mrigal (M3) grew faster than rohu (2.1 g per fish day?1 and 1.6 g per fish day?1 respectively). Older rohu (12) appeared to perform particularly well, and Nile tilapia poorly at the lowest level of fertilization (1.5 N:0.75 kg P ha?1 day?1), suggesting the impact of age of seed on competition within polycultures. The net fish yield (NFY) of tilapia was not affected significantly (P>0.05) by differential stocking age of carps; therefore, combined NFY of the three experimental fish species was not affected by the age of carp, as tilapia was the dominant species in polyculture. The highest combined NFY of all species in the most intensively fertilized pond (3.0 N:1.5 P kg ha?1 day?1) was calculated at 4.06±0.08 g·m?2 day?1, which was significantly higher (P<0.001) than the yield (1.82±0.12 g·m?2 day?1) from the pond with the lowest fertilization. At the highest fertilizer level, tilapia, rohu and mrigal contributed 72%, 14% and 14%, respectively, to the NFY, whereas the ratio was 60%, 20% and 20% at the lowest fertilization level. The study indicated that yields from tilapia in polyculture with the two carp species in more eutrophic water can be optimized if advanced nursing of carps is practised. Moreover, higher inputs of inorganic fertilizer and advanced nursing of carp are economically attractive under Bangladeshi conditions. Advanced nursing of rohu also improves its performance in more extensive systems when tilapia densities are high.  相似文献   

19.
The production performance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) in periphyton‐based systems were studied in farmers' ponds at Mymensingh, Bangladesh. Fifteen ponds (200–300 m2 area and 1.0–1.5 m in depth) were used to compare five stocking ratios in triplicate: 100% GIFT, 75% GIFT plus 25% prawn, 50% GIFT plus 50% prawn, 25% GIFT plus 75% prawn and 100% prawn. Ponds were stocked at a total density of 20 000 GIFT and/or prawn ha?1. Bamboo poles (mean diameter 6.2 cm and 5.5 pole m?2) were posted in pond bottoms vertically as periphyton substrate. Periphyton biomass in terms of dry matter (DM), ash‐free DM and chlorophyll a were significantly higher in ponds stocked with prawn alone than in ponds with different combinations of GIFT and prawn. Survival of GIFT was significantly lower in ponds stocked with 100% GIFT (monoculture) whereas, that of prawn was significantly higher in its monoculture ponds indicating detrimental effects of GIFT on prawn's survival. Individual weight gains for both species were significantly higher in polyculture than in monoculture. The highest total fish and prawn yield (1623 kg GIFT and 30 kg prawn ha?1) over 125–140 days culture period was recorded in ponds with 75% GIFT and 25% prawn followed by 100% GIFT alone (1549 kg ha?1), 50% GIFT plus 50% prawn (1114 kg GIFT and 68 kg prawn ha?1), 25% GIFT plus 75% prawn (574 kg GIFT and 129 kg prawn ha?1) and 100% prawn alone (157 kg ha?1). This combination also gave the highest economic return. Therefore, a stocking ratio of 75% GIFT plus 25% prawn at a total density of 20 000 ha?1 appeared to be the best stocking ratio in terms of fish production as well as economics for a periphyton‐based polyculture system.  相似文献   

20.
Growth, survival and production of endangered Indian butter catfish (Ompok bimaculatus) fingerlings were examined at different stocking densities. The experiment was conducted for 8 months in nine earthen ponds having an area of 0.03 ha each. 30‐day‐old fingerling, stocked at 40 000 ha?1 was designated as treatment‐1 (T1), 50 000 ha?1 as treatment‐2 (T2) and 60 000 ha?1 as treatment‐3 (T3). At stocking, all fingerlings were of same age group with a mean length and weight of 3.36 ± 0.08 cm and weight of 0.83 ± 0.02 g respectively. Fish in all the treatments were fed with a mixture of rice bran (50%), mustard oil cake (30%), fish meal (19%) and vitamin‐mineral premix (1%). Physicochemical parameters, plankton populations and soil parameters were at the optimum level for fish culture. Highest weight gain was observed in T1 and lowest in T3. Final length, weight and survival of fish also followed the same trend as weight gain. Highest specific growth rate was observed in T1 followed by T2 and T3. Feed conversion ratio was significantly lower in T1 followed by T2 and T3 in that order. Significantly higher amount of fish was produced in T1 than T2 and T3 respectively. Higher net benefit was obtained from T1 than from T2 and T3. Overall, the highest growth, survival and benefit of fish were obtained at a density of 40 000 fingerlings ha?1. Hence, of the three stocking densities, 40 000 fingerlings ha?1 appears to be the most suitable stocking density for culturing of Indian butter catfish in grow‐out system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号