共查询到16条相似文献,搜索用时 26 毫秒
1.
粉煤灰对土壤性质和草坪生长的影响 总被引:9,自引:2,他引:9
为使粉煤灰的利用避开食物链,探讨了粉煤灰在草坪业中的应用。盆栽试验结果表明:粉煤灰施加到土壤后,具有明显的降低土壤粘粒含量,增加速效P、全P及部分金属元素(K、Ca、Mn、Zn、Cu、Cd和Pb)含量的作用,这一效果随粉煤灰施用量的增加而增加。同时,各个处理中的重金属元素Zn、Cu和Pb含量均低于“土壤环境质量标准值”一级标准,但为避免对环境的潜在危害,粉煤灰施加量应该控制在317.29g/kg以内。在施灰量300g/kg(重量比)的土壤中,草坪生长和产量最佳;300g/kg是粉煤灰用作草皮基质的最佳施加比例。 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(17):2190-2197
ABSTRACTPre-plant fertilizers are used to adjust soil fertility for nutrients such as phosphorus (P) during turfgrass establishment. However, nutrient applications of water-soluble sources in coarse-textured soils are prone to leaching compared to slow-release sources. Poultry litter ash (PLA), a by-product of poultry litter combustion, concentrates macronutrients into less water-soluble forms. The objective of this study was to evaluate PLA with triple superphosphate (TSP), in ratios of P in PLA to that in TSP of 0:100, 25:75, 50:50, 75:25; 100:0 as a pre-plant fertilizer incorporated into a 90:10 (v/v) sand and peat mixture seeded with bermudagrass (Cynodon dactylon L.) ‘Sahara’. Bermudagrass groundcover, shoot, and root biomass were measured at 6 weeks. Leachate was captured weekly and analyzed for P, K, Ca, and Mg. Bermudagrass groundcover and biomass accumulation were similar across all treatments at 6 weeks after planting (WAP). The benefit of PLA compared to TSP was the reduction in P, K, Ca, and Mg leached during the first two WAP. As the percentage of PLA increased relative to TSP, nutrient leaching decreased, with 100% PLA resulting in the lowest cumulative nutrient masses leached. Application of 100% PLA as a pre-plant fertilizer can limit nutrient leaching in coarse-textured media compared to more water-soluble nutrient sources, particularly TSP, without delaying bermudagrass establishment. 相似文献
3.
《Communications in Soil Science and Plant Analysis》2012,43(8):765-774
Abstract A soil sample taken for chemical analysis should be representative of the growing medium of the plant. Turfgrasses often have thatch layers between the zone of green vegetation and the soil surface, and this thatch layer is generally discarded in the process of soil analysis. These thatch layers contain both roots and nutrient elements. If turfgrass roots are actively involved in removing nutrignts from the thatch, there may be advantages to including it with the soil for testing purposes. In the present investigation, two radioactive isotopes of phosphorus (32P and 33P) were used to separately label the thatch layer and the underlying soil of creeping bentgrass (Agrostis palustris Huds. ‘Penncross'). The roots of creeping bentgrass were found to simultaneously remove phosphorus from the thatch and from the underlying soil. If the soil samples taken from turfgrass areas are to be truly representative of the soils capacity to supply nutrients, the thatch should be retained with the samples. Further investigations should be conducted to determine the feasibility of including the thatch in the chemical analysis process. 相似文献
4.
Khalid Elhindi Nasser Al-Suhaibani Salah El-Hendawy Fahad Al-Mana 《Soil Science and Plant Nutrition》2018,64(2):238-243
ABSTRACT The need for salinity resistance in turfgrass is increasing because of the enhanced use of effluent and other low-quality water for turfgrass irrigation. Although most turfgrasses form an arbuscular mycorrhizal fungus (AMF) symbiosis, there is little information on the mycorrhization of turfgrass species. Therefore, the aim of this study was to determine the effects of three AMF species, Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus deserticola Trappe & John, and a mixture thereof on the growth, productivity, and nutrient uptake of two species of cool-season turfgrasses, Challenger Kentucky bluegrass (Poa pratensis L.) and Arid tall fescue (Festuca arundinacea Schreb.), and to relate the effects to colonization of the roots by mycorrhiza to assess the dependency of the plants (mycorrhizal dependency [MD]). Following the experimental period (4 months) and measurements, the mycorrhizal inoculated plants had significantly greater biomass production compared to that of non-inoculated plants. MD and shoot mineral contents (particularly P) differed among turfgrass hosting AMF, and the highest value (13%) occurred for P. pratensis and F. arundinacea seedlings colonized with G. intraradices and G. deserticola, respectively. The P content was highest for the F. arundinacea/mixed AMF combination compared to other treatments. We confirmed that mycorrhizal inoculation (P. pratensis/G. intraradices and F. arundinacea/mixed AMF combinations) enhanced plant productivity and nutrient uptake (especially P) even under non-optimum conditions. 相似文献
5.
简述了我国过渡地带草坪草种选择及应用进展 ,分析了影响我国过渡地带草坪草种选择的因素以及草坪草种选择变化的内在规律 ,并指出未来草坪草种应用的发展趋势 相似文献
6.
泥炭对砂基运动场坪床基质理化性质及草坪草的影响 总被引:6,自引:0,他引:6
研究不同泥炭施用量对砂基运动场坪床根层基质孔隙度、渗透性、pH值等理化性状的影响,以及对草坪草再生速度、成坪时间、生物量等的影响,探讨泥炭的改良效果及合理的施用量。结果表明:(1)泥炭施入能够使坪床基质的渗透性降低,总孔隙度和毛管孔隙度增大,毛管孔隙和非毛管孔隙的比例趋于平衡,有利于提高坪床保水能力和通气性。(2)泥炭有机质含量高,能改善坪床的养分供应状况,增强草坪草再生能力,缩短成坪时间,提高草坪质量。(3)由于泥炭的pH值偏低,过多施用会使坪床基质偏酸,不利于草坪草生长,因此应控制其用量,适宜的用量为10%~15%。 相似文献
7.
A mechanistic understanding of soil microbial biomass and N dynamics following turfgrass clipping addition is central to understanding turfgrass ecology. New leaves represent a strong sink for soil and fertilizer N, and when mowed, a significant addition to soil organic N. Understanding the mineralization dynamics of clipping N should help in developing strategies to minimize N losses via leaching and denitrification. We characterized soil microbial biomass and N mineralization and immobilization turnover in response to clipping addition in a turfgrass chronosequence (i.e. 3, 8, 25, and 97 yr old) and the adjacent native pines. Our objectives were (1) to evaluate the impacts of indigenous soil and microbial attributes associated with turf age and land use on the early phase decomposition of turfgrass clippings and (2) to estimate mineralization dynamics of turfgrass clippings and subsequent effects on N mineralization of indigenous soils. We conducted a 28-d laboratory incubation to determine short-term dynamics of soil microbial biomass, C decomposition, N mineralization and nitrification after soil incorporation of turfgrass clippings. Gross rates of N mineralization and immobilization were estimated with 15N using a numerical model, FLAUZ. Turfgrass clippings decomposed rapidly; decomposition and mineralization equivalent to 20-30% of clipping C and N, respectively, occurred during the incubation. Turfgrass age had little effect on decomposition and net N mineralization. However, the response of potential nitrification to clipping addition was age dependent. In young turfgrass systems having low rates, potential nitrification increased significantly with clipping addition. In contrast, old turfgrass systems having high initial rates of potential nitrification were unaffected by clipping addition. Isotope 15N modeling showed that gross N mineralization following clipping addition was not affected by turf age but differed between turfgrass and the adjacent native pines. The flush of mineralized N following clipping addition was derived predominantly from the clippings rather than soil organic N. Our data indicate that the response of soil microbial biomass and N mineralization and immobilization to clipping addition was essentially independent of indigenous soil and microbial attributes. Further, increases in microbial biomass and activity following clipping addition did not stimulate the mineralization of indigenous soil organic N. 相似文献
8.
J. Jason L. Cantera Fiona L. Jordan Lisa Y. Stein 《Biology and Fertility of Soils》2006,43(2):247-255
Ammonia-oxidizing bacteria (AOB) perform the rate-limiting step of nitrification, a key process in the global nitrogen cycle. In this study, chemical factors controlling AOB activity, diversity, and composition in a turfgrass-covered aridisol irrigated with groundwater, Colorado River water, or reclaimed wastewater were examined. Activity of AOB contributed an average of 96% of potential nitrification activity in four soils examined, and this activity correlated positively with ammonium concentration and negatively with salinity of the irrigation water. AOB abundance, as determined by quantitative polymerase chain reaction, also correlated positively with ammonium concentration in the irrigation water but negatively with soil salinity. Characterization of AOB communities by denaturing gradient gel electrophoresis showed the presence in every soil of AOB taxa, most commonly found in high-ammonia environments. The soil with the fewest years of management had the least diverse AOB population, compared to the other three soils, and much lower specific nitrification activity. This soil was irrigated with highly saline Colorado River water, which likely exerted acute negative effects on the activity of AOB. In summary, this study revealed that, although AOB activity and growth responded positively to ammonium availability in irrigation water, the salinity of the water and soil had strong negative effects on these aspects of the AOB community. 相似文献
9.
Four natural organic fertilizers, alone or in combination with the synthetic organic fertilizer isobutylidene diurea (IBDU),
were compared with IBDU alone for their effect on soil/root microbial populations associated with bermudagrass grown on a
golf course putting green in southern Florida, USA. Populations of total fungi, total bacteria, fluorescent pseudomonads,
Stenotrophomonas maltophilia, actinomycetes and heat-tolerant bacteria were monitored every 3 months during the 2-year study. On only one sampling date
and for only one bacterial population (S. maltophilia) was a significant difference in microbial populations obtained among the fertilizer treatments. However, the S. maltophilia populations associated with the natural organic fertilizer treatments were not significantly different from the synthetic
organic IBDU fertilizer treatment.
Received: 4 April 1997 相似文献
10.
Seasonal variations of soil microbial biomass and activity in warm- and cool-season turfgrass systems 总被引:1,自引:0,他引:1
Plant growth can be an important factor regulating seasonal variations of soil microbial biomass and activity. We investigated soil microbial biomass, microbial respiration, net N mineralization, and soil enzyme activity in turfgrass systems of three cool-season species (tall fescue, Festuca arundinacea Schreb., Kentucky bluegrass, Poa pratensis L., and creeping bentgrass, Agrostis palustris L.) and three warm-season species (centipedegrass, Eremochloa ophiuroides (Munro.) Hack, zoysiagrass, Zoysia japonica Steud, and bermudagrass, Cynodon dactylon (L.) Pers.). Microbial biomass and respiration were higher in warm- than the cool-season turfgrass systems, but net N mineralization was generally lower in warm-season turfgrass systems. Soil microbial biomass C and N varied seasonally, being lower in September and higher in May and December, independent of turfgrass physiological types. Seasonal variations in microbial respiration, net N mineralization, and cellulase activity were also similar between warm- and cool-season turfgrass systems. The lower microbial biomass and activity in September were associated with lower soil available N, possibly caused by turfgrass competition for this resource. Microbial biomass and activity (i.e., microbial respiration and net N mineralization determined in a laboratory incubation experiment) increased in soil samples collected during late fall and winter when turfgrasses grew slowly and their competition for soil N was weak. These results suggest that N availability rather than climate is the primary determinant of seasonal dynamics of soil microbial biomass and activity in turfgrass systems, located in the humid and warm region. 相似文献
11.
Understanding the chronological changes in soil microbial properties of turfgrass ecosystems is important from both the ecological and management perspectives. We examined soil microbial biomass, activity and N transformations in a chronosequence of turfgrass systems (i.e. 1, 6, 23 and 95 yr golf courses) and assessed soil microbial properties in turfgrass systems against those in adjacent native pines. We observed age-associated changes in soil microbial biomass, CO2 respiration, net and gross N mineralization, and nitrification potential. Changes were more evident in soil samples collected from 0 to 5 cm than the 5 to 15 cm soil depth. While microbial biomass, activity and N transformations per unit soil weight were similar between the youngest turfgrass system and the adjacent native pines, microbial biomass C and N were approximately six times greater in the oldest turfgrass system compared to the adjacent native pines. Potential C and N mineralization also increased with turfgrass age and were three to four times greater in the oldest vs. the youngest turfgrass system. However, microbial biomass and potential mineralization per unit soil C or N decreased with turfgrass age. These reductions were accompanied by increases in microbial C and N use efficiency, as indicated by the significant reduction in microbial C quotient (qCO2) and N quotient (qN) in older turfgrass systems. Independent of turfgrass age, microbial biomass N turnover was rapid, averaging approximately 3 weeks. Similarly, net N mineralization was ∼12% of gross mineralization regardless of turfgrass age. Our results indicate that soil microbial properties are not negatively affected by long-term management practices in turfgrass systems. A tight coupling between N mineralization and immobilization could be sustained in mature turfgrass systems due to its increased microbial C and N use efficiency. 相似文献
12.
Biochemical modification of plant materials may contribute considerably to the formation and stabilization of soil organic matter, but its significance remains elusive in turfgrass systems. This study aimed to close this knowledge gap by examining the dynamics of soil organic matter in turfgrass systems as well as its stability using δ13C and δ15N records. Two geographic locations, each containing 3 or 4 turfgrass systems of different ages were used as the study sites because site-associated differences, in particular soil pH (alkaline versus acidic) might cause divergence in microbial processing during organic matter decomposition and resynthesis. We observed that soil C storage was ∼12% greater in the alkaline site than the acidic one. In addition, accumulation rates of soil organic C and N were about 3-fold higher in the alkaline site. Soil organic matter was physically fractionated into light and heavy fractions. Heavy fraction from the alkaline site mineralized more slowly than the acidic one, indicating that soil organic matter was more stable in the alkaline site. Furthermore, the stability of soil organic matter based upon δ15N records and C-to-N ratio of organic matter was again found to be more stable in the alkaline site than the acidic one. While both soil δ13C and δ15N increased as turfgrass systems aged, rates were greater in the alkaline site than the acidic one. Temporal shifts in soil δ13C and δ15N were attributed mainly to isotope fractionation associated with microbial processes rather than selective preservation of 13C- or 15N-enriched chemical compounds of plant materials. Our results suggested that microbial decomposition and resynthesis played an important role in organic matter stabilization in turfgrass systems and this microbial processing could be managed via microbial activity-regulating factors, such as soil pH. 相似文献
13.
Soil N2O emissions can affect global environments because N2O is a potent greenhouse gas and ozone depletion substance. In the context of global warming, there is increasing concern over the emissions of N2O from turfgrass systems. It is possible that management practices could be tailored to reduce emissions, but this would require a better understanding of factors controlling N2O production. In the present study we evaluated the spatial variability of soil N2O production and its correlation with soil physical, chemical and microbial properties. The impacts of grass clipping addition on soil N2O production were also examined. Soil samples were collected from a chronosequence of three golf courses (10, 30, and 100-year-old) and incubated for 60 days at either 60% or 90% water filled-pore space (WFPS) with or without the addition of grass clippings or wheat straw. Both soil N2O flux and soil inorganic N were measured periodically throughout the incubation. For unamended soils, cumulative soil N2O production during the incubation ranged from 75 to 972 ng N g−1 soil at 60% WFPS and from 76 to 8842 ng N g−1 soil at 90% WFPS. Among all the soil physical, chemical and microbial properties examined, soil N2O production showed the largest spatial variability with the coefficient of variation ~110% and 207% for 60% and 90% WFPS, respectively. At 60% WFPS, soil N2O production was positively correlated with soil clay fraction (Pearson's r = 0.91, P < 0.01) and soil NH4+–N (Pearson's r = 0.82, P < 0.01). At 90% WFPS, however, soil N2O production appeared to be positively related to total soil C and N, but negatively related to soil pH. Addition of grass clippings and wheat straw did not consistently affect soil N2O production across moisture treatments. Soil N2O production at 60% WFPS was enhanced by the addition of grass clippings and unaffected by wheat straw (P < 0.05). In contrast, soil N2O production at 90% WFPS was inhibited by the addition of wheat straw and little influenced by glass clippings (P < 0.05), except for soil samples with >2.5% organic C. Net N mineralization in soil samples with >2.5% organic C was similar between the two moisture regimes, suggesting that O2 availability was greater than expected from 90% WFPS. Nonetheless, small and moderate changes in the percentage of clay fraction, soil organic matter content, and soil pH were found to be associated with large variations in soil N2O production. Our study suggested that managing soil acidity via liming could substantially control soil N2O production in turfgrass systems. 相似文献
14.
V. Acosta-Martínez Z. Reicher M. Bischoff R. F. Turco 《Biology and Fertility of Soils》1999,29(1):55-61
The influence of tree leaf amendment and N fertilization on soil quality in turfgrass environments was evaluated. Our objective
was to assess changes in soil quality after additions of leaf materials and N fertilization by monitoring soil chemical and
physical parameters, microbial biomass and soil enzymes. Established perennial ryegrass (Lolium perenne) plots were amended annually with maple (Acer spp.) leaves at three different rates (0, 2240, and 4480 kg ha–1 year–1) and treated with three nitrogen rates (0, 63, and 126 kg N ha–1 year–1). Tree leaf mulching did not significantly affect water infiltration or bulk density. However, trends in the data suggest
increased infiltration with increasing leaf application rate. Tree leaf mulching increased total soil C and N at 0–1.3 cm
depth but not at 1.3–9.0 cm. Extracted microbial phospholipid, an indicator of microbial biomass size, ranged from 28 to 68
nmol phospholipid g–1 soil at the 1.3–9.0 cm depth. The activity of β-glucosidase estimated on samples from 0–1.3 cm and 1.3–9.0 cm depths, and
dehydrogenase activity estimated on samples from 1.3–9.0 cm were significantly increased by leaf mulching and N fertilizer
application. Changes in microbial community composition, as indicated by phospholipid fatty acid methyl ester analysis, appear
to be due to seasonal variations and did not reflect changes due to N or leaf amendment treatments. There were no negative
effects of tree leaf mulching into turfgrass and early data suggest this practice will improve soil chemical, physical, and
biological structure.
Received: 10 December 1997 相似文献
15.
Shanmugam Rajasekar Shui-zhang Fei Nick E. Christians 《Genetic Resources and Crop Evolution》2007,54(1):45-53
Colonial bentgrass (Agrostis capillaris L.) is a cool-season grass, native to temperate Asia and Europe. It has good tolerance to low temperatures and partial shade
and is well suited to golf course fairways and tees. Little information is available regarding levels and patterns of genetic
variation among populations of colonial bentgrass, which would be useful for breeding programs. To study the genetic relationships
among 27 colonial bentgrass accessions obtained from the US National Plant Germplasm System (NPGS), randomly amplified polymorphic
DNA (RAPD) markers were scored and analyzed. Out of 80 primers screened, 16 were selected for further analysis, which yielded
a total of 120 polymorphic bands used to differentiate the accessions. Dice's similarity coefficients for pair-wise comparisons
ranged from 0.23 to 0.84 based on the RAPD data. Since there was no similarity coefficient value close to 1 between any two
accessions, there was no apparent duplication among the sampled accessions. A dendrogram constructed on the basis of the Unweighted
Pair Group Method with Arithmetic average (UPGMA) clustering algorithm clearly separated 26 of the accessions into three clusters
with one accession distinct from the rest. The least similar pair of accessions was PI 204397 from Turkey and PI 628720 from
Bulgaria, and the most similar pair was PI 509437 from Romania and PI 491264 from Finland. Clustering patterns based on principal
components analysis (PCA) corresponded well with the dendrogram. A high cophenetic correlation (r = 0.82) was found between the RAPD data matrix and cophenetic matrix. The accession PI 628720, from Bulgaria, did not cluster
with any other accessions. 相似文献
16.
Turf has been acknowledged as an important ecosystem with potential for soil C sequestration. As a major process dictating soil C storage, organic matter decomposition has received little attention in turf systems. Given that soil enzyme-catalyzed biochemical reactions are the rate limiting steps of organic matter decomposition, we examined the activities of oxidative and hydrolytic soil enzymes and their relations with soluble organic compounds and soil C and N mineralization in two turf chronosequences with contrasting soil pH and in response to N fertilization and grass clipping addition. In comparison with turf ecosystems under acidic soil, phenol oxidase activity was about two-fold greater in turf ecosystems under alkaline soil and positively correlated to about two-fold differences in soluble phenolics and dissolved organic C between alkaline and acidic soils. However, the activities of hydrolytic enzymes including cellulase, chitinase, and glucosidase were lower in alkaline soil. It appears that the high concentration of soluble phenolics inhibited the activities of hydrolytic enzymes that in turn limited the decomposition of dissolved organic C and resulted in its accumulation in alkaline soil. Nitrogen mineralization was comparable between alkaline and acidic soils, but CO2 evolution was about two-fold greater in alkaline soil, possibly due to considerable abiotic carbonate dissolution. We observed that mineral N input at 60 mg N kg−1 soil had very minor negative effects on the activities of both phenol oxidase and hydrolytic enzymes. Grass clipping addition did not affect the activity of phenol oxidase, but increased the activities of soil chitinase, cellulase, glucosidase, and glucosaminidase by up to 20% and also soluble phenolics in soil by about 10%. Our results suggest that soil phenol oxidase might regulate the activities of hydrolytic soil enzymes via its control on soluble phenolics and function as an ‘enzymatic latch’ to hold soil organic C in highly managed turf ecosystems. While soil pH is important to affect phenol oxidase activity and therefore decomposition, management practices, i.e., N fertilization and grass clipping addition may indirectly affect the decomposition through enhancing turfgrass productivity and thus soil C input. 相似文献