首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 801 毫秒
1.
Reforestation of degraded land in tropical regions provides one means of restoring ecosystems and improving rural livelihoods. Most plantations in humid tropical regions are established in pure plots, including few species of high commercial value, generally exotics. The present study compares growth and economic viability of 15–16 year-old trees of native species in pure and mixed plantations on degraded pasturelands at La Selva Biological Station, Costa Rica. The species with the best growth were Vochysia guatemalensis, Virola koschnyi, Jacaranda copaia, Terminalia amazonia, and Hieronyma alchorneoides. The mixed plantations performed better than pure plantations for all growth variables considered, including height, diameter at breast height, volume, and aboveground biomass. Mixed plantations outperformed pure plantations economically, with Net Present Value (NPV) of 1,124 to1,124 to 8,155/ha and Internal Rate of Return (IRR) of 7.7–15.6% depending on the species mixture. The most profitable pure plantations were those of Vochysia guatemalensis, with NPV and IRR of $6,035/ha and 14.3%, respectively; Hieronyma alchorneoides ($6,035/ha and 14.3%, respectively; Hieronyma alchorneoides (2,654 and 10.8%); and Virola koschnyi ($1,906/ha and 9.22%). These are the estimated benefits that would be accrued at harvest. These projections are realistic since the decision to harvest is generally mandated not just by profit maximization but by economic necessity, thus many small- to medium-scale farmers in Costa Rica harvest plantations prior to the completion of the rotation length. Mixed plantation may be the preferred system for reforestation with native species designed for timber production or carbon sequestration because this system is more economically viable and productive than pure plantations.  相似文献   

2.
The Costa Rican government has provided incentives for reforestation programs since 1986 and initiated a Payment for Environmental Services program in 1996. These incentives yielded native species reforestation programs throughout the country. This research aims to provide information about growth, carbon sequestration, and management of seven native tree species (Vochysia guatemalensis, Vochysia ferruginea, Hyeronima alchorneoides, Calophyllum brasiliense, Terminalia amazonia, Virola koschnyi, and Dipteryx panamensis) growing in small and medium-sized plantations in the Caribbean and Northern lowlands of Costa Rica. A total of 179 plots were evaluated in 32 farms. Overall, I found that V. guatemalensis, V. ferruginea, H. alchorneoides, and T. amazonia were the species with the fastest diameter, total height, and volume growth; and T. amazonia and D. panamensis sequestered more carbon. Moreover, I found that the plantations that had been thinned before this assessment had the best growth. The results of the present research enhance the criteria elaborated in previous research findings to improve species choices for reforestation and silvicultural management in Costa Rica and in other regions with similar ecological features. Furthermore, they support the concept that tropical plantations can serve diverse economic, social, and ecological functions that may ultimately help reduce atmospheric CO2 accumulation.  相似文献   

3.
Fourth year results are presented from a species screening trial established at the La Selva Biological Station in northeastern Costa Rica. Of the 14 tropical hardwood species evaluated on survivorship, growth, form, and volume the most promising were (survival, diameter and height): Vochysia guatemalensis (84%, 12.2 cm, 10.5 m); Vochysia ferruginea (79%, 9.7 cm, 7.8 m); Hyeronima alchorneoides (83%, 8.1 cm, 7.9 m); Dipteryx panamensis (78%, 5.5 cm, 7.2 m); and Calophyllum brasiliense (80%, 6.3 cm, 6.2 m).
Resumen Se presentan resultados a los cuatro años de edad de un ensayo de adaptabilidad establecido en la Estación Biológica La Selva ubicado en el noreste de Costa Rica. Las variables evaluadas para todas las especies fueron: sobrevivencia, crecimiento (altura total, diámetro a la altura del pecho), forma, y volumen. Las siguientes especies presentaron los mejores resultados (sobrevivencia, diámetro y altura): Vochysia guatemalensis (84%, 12.2 cm, 10.5 m); Vochysia ferruginea (79%, 9.7 cm, 7.8 m); Hyeronima alchorneoides (83%, 8.1 cm, 7.9 m); Dipteryx panamensis (78%, 5.5 cm, 7.2 m); y Calophyllum brasiliense (80%, 6.3 cm, 6.2 m).
  相似文献   

4.
Tree plantations can be an important tool for restoration of abandoned pasturelands in the tropics. Plantations can help speed up secondary forest succession by improving soil conditions, attracting seed-dispersal agents, and providing shade necessary for understory growth. In this study, abundance and richness of understory regeneration was measured in three native tree plantations 15–16 years of age at La Selva Biological Station in the Costa Rican Caribbean lowlands. Each plantation contained tree species in pure plots, a mixture of the species, and natural regeneration plots (no trees planted). The greatest abundance of regeneration was found in the understory of pure plots of Jacaranda copaia (Aubl.) D.Don., Vochysia guatemalensis Donn.Sm., Dipteryx panamensis Benth, Vochysia ferruginea Mart., and in two mixed stands, while the lowest was found in the natural regeneration treatments with about half the values as in the plantation stands. There was a significant negative correlation between percent canopy openness and abundance of regeneration in the understory. Two distinctive clusters separated the regeneration treatments from the mixed and pure plantations at a very low Bray–Curtis similarity value. The natural regeneration treatments are separated from mixed and pure plantations in the two-dimensional ordination. The lack of difference between the understory make-up of pure and mixed plantations in abundance, species richness, and seed-dispersal syndromes of understory species suggests that planting mixed stands is not necessarily superior to planting pure stands for promoting understory diversity of woody species. While regeneration of woody species can be faster under pure- or mixed-species plantations than in open pastures, the abundance, richness and species composition depends on each plantation species, or species assemblages in case of the mixtures.  相似文献   

5.
Abstract

Rates of litter decomposition and nutrient release from litter provide valuable information on the capacity of different tree species to replenish soil nutrients in degraded tropical areas. Leaf litter decomposition, leaf litterfall, plantation floor leaf litter, and mulch performance were studied for four indigenous timber species, Virola koschnyiWarb, Dipteryxpanamensis(Pittier) Record and Mell, Terminalia amazonia(J.F. Gmel.) Exell., and Albizia gua-chapele(H.B.K.) Little, grown in mixed and monospecific plantations in the Atlantic humid lowlands of Costa Rica. Terminalia amazonialitter decomposed the fastest: no litter remained after 6 months. After 12 months, D. panamensis, A. guachapele, and the mixed litter decomposed completely, while 15% of the original weight of V. koschnyilitter remained. Differences in decomposition rates were closely related to leaf nutrient content. Total annual leaf litterfall was highest in T. amazonia(872.9 g/m2), followed by D. panamensis, V. koschnyi, and the mixed plots. A. guachapelehad the lowest leaf litterfall (236.0 g/m2). The highest plantation-floor leaf litter was found in V. koschnyiand D. panamensis.Both litterfall and plantation-floor litter accumulation fluctuated least in the mixed plots. A. guachapeleand D. panamensismulch most positively affected maize seedling growth, followed by the mixed mulch. Recommendations are drawn from the results to suggest species choice for sustainable land management in the region.  相似文献   

6.
Litterfall, forest-floor litter biomass and nutrients, short-term litter decomposition and the effects of leaf mulches on initial growth of maize were studied for four indigenous tree species with agroforestry potential:Stryphnodendron microstachyum Poepp. et Endl.(S. excelsum), Vochysia ferruginea Mart,Vochysia guatemalensis Donn. Sm. (V. hondurensis) andHyeronima alchorneoides (O), growing in a young experimental plantation in the Atlantic humid lowlands of Costa Rica. Total annual leaf litterfall was higher inV. ferruginea plots, followed byS. microstachyum, V. guatemalensis andH. alchorneoides; all with values comparable to those reported for other tree species grown in agroforestry combinations in humid tropical regions. Forest-floor litter accumulation was highest underV. ferruginea andV. guatemalensis. Both litterfall and forest-floor litter material had similar patterns in nutrient concentrations: N was higher inS. microstachyum, Ca was higher inV. guatemalensis, K was higher inH. alchorneoides; Mg was higher inV. guatemalensis andH. alchorneoides; H. alchorneoides andV. guatemalensis had the highest P.V. ferruginea litter decomposed more slowly, whileS. microstachyum apparently decomposed faster than the other species. The twoVochysia species showed increases in N and P concentration in decomposing litter after seven weeks in the field,H. alchorneoides showed an increase in litter N and a decrease in litter P, andS. microstachyum showed a net decrease in both N and P over the same time period. The patterns found in the litter bag study were confirmed by results obtained in a tethered-leaves experiment.S. microstachyum andV. ferruginea litters lost more weight when mixed in a 11 proportion than either of them alone. Maize seedlings growing in plots mulched withS. microstachyum andH. alchorneoides leaves showed greatest initial growth, confirming patterns found in decomposition and nutrient release studies. The results show that these species could be used in agroforestry combinations with different advantages according to the specific objectives desired, whether these are soil protection, nutrient recycling, or enhancement of the growth of associated crops.  相似文献   

7.
A silvopastoral model that combines the production of pasture herbage with valuable native timber species has potential to simultaneously address the multiple goals of reforestation, conservation of native species and enterprise intensification. The objective of this study was to design, establish and monitor early growth of a silvopastoral experiment on a dairy farm in the north Atlantic zone of Costa Rica. Two indigenous timber species, Vochysia guatemalensis and Hyeronima alchorneoides were planted with and without the tropical pasture legume, Arachis pintoi in a split plot design, (2 × 2) factorial arrangement of treatments with four replications. After the first two years, V. guatemalensis was significantly taller (3.1 m) than H. alchorneoides (2.5 m). The mean root collar diameter for V. guatemalensis was significantly larger (6.5 cm) than H. alchorneoides (4.5 cm). Two-year establishment was acceptable for the tree component (83 to 85% survival) but poor for A. pintoi (2 to 8% of the sward). The most important pest affecting the establishment of the timber species was the leaf cutter ant, Atta cephalotes. An insect larvae, Cosmopterix sp., severely damaged 39% of the V. guatemalensis trees by repeatedly attacking their apical meristems. The two-year establishment data was insufficient to accurately predict future wood volume. A hypothetical economic analysis concluded that the silvopastoral system must average at least 1.2 m3 wood volume/paddock/year (20 m3/ha/year) throughout the first ten years of growth to assure a positive economic return from timber. The experiment is planned for a ten year period, which corresponds to the estimated rotation length for harvesting the timber species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Generic or default values to account for biomass and carbon accumulation in tropical forest ecosystems are generally recognized as a major source of errors, making site and species specific data the best way to achieve precise and reliable estimates. The objective of our study was to determine carbon in various components (leaves, branches, stems, structural roots and soil) of single-species plantations of Vochysia guatemalensis and Hieronyma alchorneoides from 0 to 16 years of age. Carbon fraction in the biomass, mean (±standard deviation), for the different pools varied between 38.5 and 49.7% (±3 and 3.8). Accumulated carbon in the biomass increased with the plantation age, with mean annual increments of 7.1 and 5.3 Mg ha−1 year−1 for forest plantations of V. guatemalensis and H. alchorneoides, respectively. At all ages, 66.3% (±10.6) of total biomass was found within the aboveground tree components, while 18.6% (±20.9) was found in structural roots. The soil (0–30 cm) contained 62.2 (±13) and 71.5% (±17.1) of the total carbon (biomass plus soil) under V. guatemalensis and H. alchorneoides, respectively. Mean annual increment for carbon in the soil was 1.7 and 1.3 Mg ha−1 year−1 in V. guatemalensis and H. alchorneoides. Allometric equations were constructed to estimate total biomass and carbon in the biomass which had an R 2aj (adjusted R square) greater than 94.5%. Finally, we compare our results to those that could have resulted from the use of default values, showing how site and species specific data contribute to the overall goal of improving carbon estimates and providing a more reliable account of the mitigation potential of forestry activities on climate change.  相似文献   

9.
Aboveground biomass and nutrients and soil chemical characteristics were examined in young plantations of four indigenous tree species: Hieronyma alchorneoides, Vochysia ferruginea, Pithecellobium elegans, and Genipa americana, growing in mixed and pure stands at La Selva Biological Station, Costa Rica. Total tree biomass production rates ranged from about 5.2 Mg ha−1 year−1 for G. americana to 10.3 Mg ha−1 year−1 for H. alchorneoides pure stands, and for the species mixture it was about 8.9 Mg ha−1 year−1. Branches and foliage formed 25–35% of total tree biomass but they represented about 50% of total tree nutrients. H. alchorneoides, the four species mixture, and P. elegans had the greatest accumulations of total aboveground nutrients per hectare. The importance of the plantation floor as a nutrient compartment varied temporally. When forest floor litter biomass was at its peak, plantation floor litter N, Ca, and Mg were roughly equal to, or greater than stem nutrients for all species except for P. elegans. For P. elegans, the plantation floor consistently represented a very low proportion of total aboveground nutrients. G. americana and V. ferruginea trees showed 55–60% less biomass accumulation in mixed than in pure stands while H. alchorneoides and P. elegans trees grew 40–50% more rapidly in mixture. P. elegans foliage had 60% lower Ca but higher P concentrations in mixed than in pure stands, and G. americana had higher foliar Mg in mixed than in pure stands. V. ferruginea stands had the highest concentrations of soil Ca, Mg, and organic matter, particularly in the top layers. Relative to pure plantations, soil nutrient concentrations in mixed plantations were intermediate for N, P, and K, but lower for Ca and Mg. The results of this study can be used in the selection of tree species and harvest designs to favor productivity and nutrient conservation.  相似文献   

10.
Panama has the highest rate of change in the area of primary forests within Central America. However, to meet growing timber demands, it became popular over the last decades to establish plantations made up of foreign species such as Tectona grandis or Pinus spp. In the majority of the cases the species used are well known; their characteristics such as growth performance have been reviewed intensively and can be accessed in numerous publications. Characteristics of Panama’s native tree species of commercial relevance such as Hieronyma alchorneoides, Swietenia macrophylla and Terminalia amazonia are largely unknown and have been investigated within the study at hand. Using valuation methods of financial mathematics, the competitive position of these three indigenous species was assessed, the results compared to those of T. grandis stands in the same area. Land costs and taxes were not considered, as they would be the same for all species. Financial estimates for indigenous species will enlarge their acceptance for use in reforestation and plantation projects. Using the NPV method and applying the standard scenario, the profitability of T. grandis is lower than that of T. amazonia and S. macrophylla and lies only slightly above the profitability calculated for H. alchorneoides. This result clearly indicates that the investigated native tree species are comparable with T. grandis regarding their economic profitability. Besides its ecological impact, growing native tree species is now also economically legitimate. By calculating land expectation values for all tree species, ideal rotation lengths could be determined. For these species, considerable flexibility exists regarding the optimal rotation length.  相似文献   

11.
Abstract

Plantation wood from tropical climate has been introduced rapidly in the national market; however, there is lack of knowledge about the process. The main objective of this study was to investigate the kiln drying behavior of 10 plantation-grown wood species from natural forest in Costa Rica using the recommended drying schedule. Initial moisture content (MCi), final moisture content (MCf), drying rate, drying time, and drying defects were evaluated. The drying schedule applied produced the following results: (1) high MCi (over 110%) in four species and lower values in two species. (2) The largest drying time was found in species with high MCi, and the shortest drying time in species with lower MCi. (3) Significant variations of target MCf were found in some species, despite equalization and conditioning. (4) Exponential relationship MC=a*??t*b was used to establish a moisture content (MC) decrease model, which is not a good indicator of drying time for fives species. (5) High incidence of drying defects was found in Alnus acuminata and Vochysia guatemalensis. According to the above results, it is necessary to test other drying schedule oriented to improve lumber quality and to decrease variability of MC in wood from plantation trees.  相似文献   

12.
A series of experiments was conducted on the rehabilitation of mine spoil in a dry tropical region of India for determining the suitability of tree species for plantation, growth performance of selected indigenous species in monoculture and impact of the plantations on the restoration of biological fertility of soil. All of the 17 indigenous species examined could grow in the mine spoil and the growth of a majority of them could be improved by amending the mine spoil with NPK fertilizer. Direct seeding showed greatest height of Zizyphus jujuba and Pongamia pinnata on flat surface, and of Azadirachta indica on slope. In terms of diameter, Syzygium cumini performed best on flat surface and Terminalia arjuna on slope. Total biomass in plantations of selected native tree species on mine spoil at 5-yr age varied from 7.2 to 74.7 t ha−1, being minimum for Shorea robusta and maximum for Dendrocalamus strictus. Total net production ranged from 3.5 (for Shorea robusta) to 32.0 t ha−1 yr−1 (for Dendrocalamus strictus), respectively. Microbial biomass in the redeveloping soil was lower compared to that in natural forest soil but immobilization of soil C in microbial biomass was greater in the mine spoil than in the natural forest. The study indicated that net primary production of the plantations was a function of the amount of foliage, soil C was a function of the amount of litter fall and biomass C was a function of soil C. Plantation of trees significantly accelerated the soil redevelopment process on the mine spoil.  相似文献   

13.
Studies of growth rates of trees in managed neotropical forests have rarely employed complete botanical identification of all species, while published information for Central American lowland rain forests largely concerns forests free of recent disturbance. We studied diameter increments of trees in a managed Costa Rican rain forest. The Pentaclethra macroloba-dominated forest was located on low hills with Ultisols in Holdridge's Tropical Wet Forest life zone. The 540 m × 540 m (29.2 ha) experimental area was lightly logged during 1989–1990. The 180 m × 180 m (3.24 ha) experimental plots comprised a 100 m × 100 m (1.0 ha) central permanent sample plot (PSP) with a 40-m wide buffer strip. Post-harvest silvicultural treatments were liberation/refinement (in 1991) and shelterwood (in 1992), applied under a complete randomized block design with three replicates, using logged but untreated plots as controls. All live trees ≥10 cm DBH in the PSPs, were identified to species; data reported are for 1993–1996. Cluster analysis was used to group species on the basis of the median and quartiles of their diameter increment distributions, separating data by silvicultural treatments; five diameter increment groups were established and subdivided on the basis of the adult height of each species (four categories), giving 17 species groups in the final classification. Adult height and silvicultural treatment made a significant contribution to growth rate variation. Median annual increments of the slowest-growing species groups, which featured many under- and middle story species, were ca. 1 mm; those for the fastest growing species, which were mainly canopy and emergents, were ca. 16 mm. All species in the groups of very fast growth were pioneers, whether short or long-lived, though many other pioneer species did not show fast growth. The proportions of species found in groups of moderate, fast or very fast growth were greater in the silviculturally treated plots than in the controls, and one complete diameter increment group, of fast growth, was only represented in the treated plots. Crown form, crown illumination and presence of lianas in the crown, showed significant correlations with diameter increments, though the importance of these latter two variables varied with silvicultural treatment. The very fast growth groups differed from the others in having higher proportions of trees with well-formed, well-illuminated crowns and an irregular diameter distribution with relatively few individuals in the smallest DBH class. Comparison with data from other neotropical forest sites shows that long-lived pioneers such as Vochysia ferruginea and Jacaranda copaia grow fast or very fast at all sites, while non-commercial canopy and emergent species of Chrysobalanaceae and Sapotaceae appear to be uniformly slow-growing. Growth data for the majority of species are, however, published for the first time.  相似文献   

14.
In the Neotropics, there is a growing interest in establishing plantations of native tree species for commerce, local consumption, and to replant on abandoned agricultural lands. Although numerous trial plantations have been established, comparative information on the performance of native trees under different regional environments is generally lacking. In this study, we evaluated the accumulation and partitioning of above-ground biomass in 16 native and two exotic tree species growing in replicated species selection trials in Panama under humid and dry regional environments. Seven of the 18 species accumulated greater total biomass at the humid site than at the dry site over a two-year period. Species-specific biomass partitioning among leaves, branches and trunks was observed. However, a wide range of total biomass found among species (from 1.06 kg for Dipteryx panamensis to 29.84 kg for Acacia mangium at Soberania) justified the used of an Aitchison log ratio transformation to adjust for size. When biomass partitioning was adjusted for size, a majority of these differences proved to be a result of the ability of the tree to support biomass components rather than the result of differences in the regional environments at the two sites. These findings were confirmed by comparative ANCOVAs on Aitchison-transformed and non-Aitchison-transformed variables. In these comparisons, basal diameter, height and diameter at breast height were robust predictors of biomass for the pooled data from both sites, but Aitchison-transformed variables had little predictive power.  相似文献   

15.
广西大青山柚木人工林生长过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]研究柚木人工林生长过程及其与气象因子的相关性,为柚木抚育经营提供理论依据。[方法]以优良、中等和差3种生长类型的30余年生柚木人工林为对象,基于样地调查,选取优势木、平均木、被压木进行树干解析,对比分析其生长过程,应用灰色关联分析法揭示气象因子对柚木生长的影响。[结果]表明:3种生长类型林分柚木胸径、树高和材积生长过程基本一致,各分级木的生长过程亦相似,其胸径平均和连年生长量随年龄的增大呈先增加后逐渐降低的趋势,树高生长整体上呈下降趋势,材积生长则呈递增趋势。各优良林分的林木及各类型林分的优势木,其胸径、材积平均和连年生长量较大,速生期持续时间长,生长衰减慢,而其树高生长量的优势相对不明显;30余年生时柚木尚未达数量成熟龄。各类型林分间柚木生长与气象因子关系的差异仅体现在胸径,优良林分胸径连年生长量主要受极端低温影响,而中等和差林分则与年均降水量相关性最大;各分级木间柚木生长与气象因子的关系无明显差异;影响树高和材积连年生长量的最主要气象因子分别为年均降水量和年均气温。[结论]柚木各生长类型及分级木的生长过程整体趋势基本一致,其差异主要体现在生长量大小和快速生长期长短。约30年生柚木人工林仍未达到数量成熟,后期抚育经营对于其优质大径材高效培育仍不可忽视。  相似文献   

16.
–  • Plantation forestry in Zambia is based mainly on non-native Eucalyptus and Pinus species and constitutes an important component of the country’s economy. The productivity of these plantations is, however, threatened by several factors, including fungal pathogens that reduce timber quality and cause tree mortality.  相似文献   

17.
Comparing silvopastoral systems and prospects in eight regions of the world   总被引:1,自引:1,他引:0  
Silvopasture systems combine trees, forage, and livestock in a variety of different species and management regimes, depending on the biophysical, economic, cultural, and market factors in a region. We describe and compare actual farm practices and current research trials of silvopastoral systems in eight regions within seven countries of the world: Misiones and Corrientes provinces, Argentina; La Pampa province, Argentina; northwestern Minas Gerais, Brazil; the Aysén region of Patagonia, Chile; the North Island of New Zealand; the Southeast United States; Paraguay; and Uruguay. Some countries use native trees and existing forests; some use plantations, particularly of exotic species. Natural forest silvopasture systems generally add livestock in extensive systems, to capture the benefits of shade, forage, and income diversification without much added inputs. Plantation forest systems are more purposive and intensive, with more focus on joint production and profits, for small owners, large ranches, and timber companies. Trends suggest that more active management of both natural and planted silvopastoral systems will be required to enhance joint production of timber and livestock, achieve income diversification and reduce financial risk, make more profit, improve environmental benefits, and realize more resilience to adapt to climate change.  相似文献   

18.
Tree-based land-use systems could sequester carbon in soil and vegetation and improve nutrient cycling within the systems. The present investigation was aimed at analyzing the role of tree and grass species on biomass productivity, carbon sequestration and nitrogen cycling in silvopastoral systems in a highly sodic soil. The silvopastoral systems (located at Saraswati Reserved Forest, Kurukshetra, 29°4prime; to 30°15prime; N and 75°15prime; to 77°16prime; E) consisted of about six-year-old-tree species of Acacia nilotica, Dalbergia sissoo and Prosopis juliflora in the mainplots of a split-plot experiment with two species of grasses, Desmostachya bipinnata and Sporobolus marginatus, in the subplots. The total carbon storage in the trees + grass systems was 1.18 to 18.55 Mg C ha−1 and carbon input in net primary production varied between 0.98 to 6.50 Mg C ha−1 yr−1. Carbon flux in net primary productivity increased significantly due to integration of Prosopis and Dalbergia with grasses. Compared to 'grass-only' systems, soil organic matter, biological productivity and carbon storage were greater in the silvopastoral systems. Of the total nitrogen uptake by the plants, 4 to 21 per cent was retained in the perennial tree components. Nitrogen cycling in the soil-plant system was found to be efficient. Thus, It is suggested that the silvopastoral systems, integrating trees and grasses hold promise as a strategy for improving highly sodic soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Restoration of degraded pasture lands in the tropics through afforestation is widely supported. The greatest obstacle to afforestation, however, is the long delay before initial financial returns from wood harvesting are realized. Interplanting young trees with food or energy crops has been proposed as a strategy to help overcome this obstacle. We investigated the impact of this practice on the survival and growth performance of young tropical tree seedlings in Panama. Five native timber tree species and the exotic species Tectona grandis were interplanted with four different crop rotations and monitored over 2 years. Survival of young tree seedlings was up to eight times higher when planted in association with Manihot esculenta. Only during the first 3 months after maize sowing was a significant negative effect of intercropping on tree seedling survival found. Here, survival rate of tree seedlings was up to four times lower than in the pure plantation. Tree growth was not adversely affected by crops. In fact, Astronium graveolens, Cedrela odorata and Terminalia amazonia showed significantly superior growth performance in association with both Zea mays and Cajanus cajan. When combined with the latter, the height increment of these tree species was up to four times that achieved in pure plantations. We conclude that intercropping can be an important silvicultural practice to facilitate forest restoration. Multi-purpose shrubby crop species with cropping cycles of more than 6 months are particularly beneficial, as they quickly shade out grasses, thus reducing the need for herbicides.  相似文献   

20.
In sodic soils, excessive amounts of salts have an adverse effect on soil biological activity and stability of soil organic matter. The study analyzes the role of silvopastoral systems to improve soil organic matter and microbial activity with a view for effective management of soil fertility. The silvopastoral systems for the present study (located at Saraswati Reserved Forest, Kurukshetra; 29°4′ to 30°15′ N and 75°15′ to 77°16prime; E) are characterized by tree species of Acacia nilotica, Dalbergia sissoo and Prosopis juliflora along with grass species of Desmostachya bipinnata and Sporobolus marginatus. Soil microbial biomass carbon was measured using the fumigation extraction technique and nitrogen mineralization rates using aerobic incubation method. The microbial biomass carbon in the soils of D. bipinnata and S. marginatus treatments were low. In silvopastoral systems, microbial biomass carbon increased due to increase in the carbon content in the soil – plant system. A significant relationship was found between microbial biomass carbon and plant biomass carbon (r = 0.83) as well as the flux of carbon in net primary productivity (r = 0.92). Nitrogen mineralization rates were found greater in silvopastoral systems compared to 'grass-only' system. Soil organic matter was linearly related to microbial biomass carbon, soil N and nitrogen mineralization rates (r = 0.95 to 0.98, p < 0.01). On the basis of improvement in soil organic matter, enlarged soil microbial biomass pool and greater soil N availability in the tree + grass systems, agroforestry could be adopted for improving the fertility of highly sodic soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号