首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Morphologies and size-frequency distributions of impact craters on Mercury imaged during MESSENGER's first flyby elucidate the planet's geological history. Plains interior to the Caloris basin displaying color and albedo contrasts have comparable crater densities and therefore similar ages. Smooth plains exterior to Caloris exhibit a crater density approximately 40% less than on interior plains and are thus volcanic and not Caloris impact ejecta. The size distribution of smooth-plains craters matches that of lunar craters postdating the Late Heavy Bombardment, implying that the plains formed no earlier than 3.8 billion years ago (Ga). At diameters less than or equal to 8 to 10 kilometers, secondary impact craters on Mercury are more abundant than primaries; this transition diameter is much larger than that on the Moon or Mars. A low density of craters on the peak-ring basin Raditladi implies that it may be younger than 1 Ga.  相似文献   

2.
The origin of plains on Mercury, whether by volcanic flooding or impact ejecta ponding, has been controversial since the Mariner 10 flybys (1974-75). High-resolution images (down to 150 meters per pixel) obtained during the first MESSENGER flyby show evidence for volcanic vents around the Caloris basin inner margin and demonstrate that plains were emplaced sequentially inside and adjacent to numerous large impact craters, to thicknesses in excess of several kilometers. Radial graben and a floor-fractured crater may indicate intrusive activity. These observations, coupled with additional evidence from color images and impact crater size-frequency distributions, support a volcanic origin for several regions of plains and substantiate the important role of volcanism in the geological history of Mercury.  相似文献   

3.
Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury's topography occurred after the earliest phases of the planet's geological history.  相似文献   

4.
The Moon possesses strong magnetic anomalies that are enigmatic given the weak magnetism of lunar rocks. We show that the most prominent grouping of anomalies can be explained by highly magnetic extralunar materials from the projectile that formed the largest and oldest impact crater on the Moon: the South Pole-Aitken basin. The distribution of projectile materials from a model oblique impact coincides with the distribution of magnetic anomalies surrounding this basin, and the magnetic properties of these materials can account for the intensity of the observed anomalies if they were magnetized in a core dynamo field. Distal ejecta from this event can explain the origin of isolated magnetic anomalies far from this basin.  相似文献   

5.
MESSENGER observations from Mercury orbit reveal that a large contiguous expanse of smooth plains covers much of Mercury's high northern latitudes and occupies more than 6% of the planet's surface area. These plains are smooth, embay other landforms, are distinct in color, show several flow features, and partially or completely bury impact craters, the sizes of which indicate plains thicknesses of more than 1 kilometer and multiple phases of emplacement. These characteristics, as well as associated features, interpreted to have formed by thermal erosion, indicate emplacement in a flood-basalt style, consistent with x-ray spectrometric data indicating surface compositions intermediate between those of basalts and komatiites. The plains formed after the Caloris impact basin, confirming that volcanism was a globally extensive process in Mercury's post-heavy bombardment era.  相似文献   

6.
Arecibo high-resolution (1.5 to 2 km) radar data of Venus for the area extending from Beta Regio to western Eisila Regio provide strong evidence that the mountains in Beta and Eisila Regiones and plains in and adjacent to Guinevere Planitia are of volcanic origin. Recognized styles of volcanism include large volcanic edifices on the Beta and Eisila rises related to regional structural trends, plains with multiple source vents and a mottled appearance due to the ponding of volcanic flows, and plains with bright features surrounded by extensive quasi-circular radar-dark halos. The high density of volcanic vents in the plains suggests that heat loss by abundant and widely distributed plains volcanism may be more significant than previously recognized. The low density of impact craters greater than 15 km in diameter in this region compared to the average density for the higher northern latitudes suggests that the plains have a younger age.  相似文献   

7.
Ancient multiring basins on the moon revealed by clementine laser altimetry   总被引:2,自引:0,他引:2  
Analysis of laser altimetry data from Clementine has confirmed and extended our knowledge of nearly obliterated multiring basins on the moon. These basins were formed during the early bombardment phase of lunar history, have been filled to varying degrees by mare lavas and regional ejecta blankets, and have been degraded by the superposition of large impact craters. The Mendel-Rydberg Basin, a degraded three-ring feature over 600 kilometers in diameter on the lunar western limb, is about 6 kilometers deep from rim to floor, only slightly less deep than the nearby younger and much better preserved Orientale Basin (8 kilometers deep). The South Pole-Aitken Basin, the oldest discernible impact feature on the moon, is revealed as a basin 2500 kilometers in diameter with an average depth of more than 13 kilometers, rim crest to floor. This feature is the largest, deepest impact crater yet discovered in the solar system. Several additional depressions seen in the data may represent previously unmapped ancient impact basins.  相似文献   

8.
Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orientale terrain that consisted of both highland materials and relatively large expanses of ancient mare basalts. The inside of the far side South Pole-Aitken basin (>2000 kilometers in diameter) has low albedo, red color, and a relatively high abundance of iron- and magnesium-rich materials. These features suggest that the impact may have penetrated into the deep crust or lunar mantle or that the basin contains ancient mare basalts that were later covered by highlands ejecta.  相似文献   

9.
Abundance and distribution of iron on the moon   总被引:3,自引:0,他引:3  
The abundance and distribution of iron on the moon is derived from a near-global data set from Clementine. The determined iron content of the lunar highlands crust ( approximately 3 percent iron by weight) supports the hypothesis that much of the lunar crust was derived from a magma ocean. The iron content of lower crustal material exposed by the South Pole-Aitken impact basin on the lunar farside is higher ( approximately 7 to 8 percent by weight) and consistent with a basaltic composition. This composition supports earlier evidence that the lunar crust becomes more mafic with depth. The data also suggest that the bulk composition of the moon differs from that of the Earth's mantle. This difference excludes models for lunar origin that require the Earth and moon to have the same compositions, such as fission and coaccretion, and favors giant impact and capture.  相似文献   

10.
The shape and internal structure of the moon from the clementine mission   总被引:7,自引:0,他引:7  
Global topographic and gravitational field models derived from data collected by the Clementine spacecraft reveal a new picture of the shape and internal structure of the moon. The moon exhibits a 16-kilometer range of elevation, with the greatest topographic excursions occurring on the far side. Lunar highlands are in a state of near-isostatic compensation, whereas impact basins display a wide range of compensation states that do not correlate simply with basin size or age. A global crustal thickness map reveals crustal thinning under all resolvable lunar basins. The results indicate that the structure and thermal history of the moon are more complex than was previously believed.  相似文献   

11.
Enhanced abundances of neutral potassium (K) in the atmosphere of Mercury have been found above the longitude range containing Caloris Basin. Results of a large data set including six elongations of the planet between June 1986 and January 1988 show typical K column abundances of approximately 5.4 x 10(8) K atoms/cm(2). During the observing period in October 1987, when Caloris Basin was in view, the typical K column was approximately 2.7 x 10(9) K atoms/cm(2). Another large value (2.1 x 10(9) K atoms/cm(2)) was seen over the Caloris antipode in January 1988. This enhancement is consistent with an increased source of K from the well-fractured crust and regolith associated with this large impact basin. The phenomenon is localized because at most solar angles, thermal alkali atoms cannot move more than a few hundred kilometers from their source before being lost to ionization by solar ultraviolet radiation.  相似文献   

12.
Radar images at a 12.5-centimeter wavelength made with the Goldstone radar interferometer in 1980 and 1986, together with lunar radar images and recent Venera 15 and 16 data, indicate that material on the surface and subsurface of Venus has a Fresnel reflectivity in excess of 50 percent. Such high reflectivities have been reported on the surface in mountainous regions. Material of high reflectivity may also underlie lower reflectivity surficial materials of the plains regions, where it has been excavated by impact cratering in some areas.  相似文献   

13.
The preliminary characterization of the rocks and soils returned from the Apollo 16 site has substantiated the inference that the lunar terra are commonly underlain by plagioclase-rich or anorthositic rocks. No evidence has been found for volcanic rocks underlying the regolith in the Apollo 16 region. In their place, we have found anorthositic rocks that are thoroughly modified by crushing and partial melting. The textural and chemical variations in these rocks provide some evidence for the existence of anorthositic complexes that have differentiated on a scale of tens to hundreds of meters. The occurrence of deep-seated or plutonic rocks in place of volcanic or pyroclastic materials at this site suggests that the inference from physiographic evidence that the latter materials are widespread in terra regions may be incorrect. Several additional, more specific conclusions derived from this preliminary examination are: 1) The combination of data from the Descartes region with data from the orbital x-ray fluorescence experiment indicates that some backside, highland regions are underlain by materials that consist of more than 80 percent plagioclase. 2) The soil or upper regolith between North Ray and South Ray has not been completely homogenized since the time of formation of these craters. 3) The chemistry of the soil indicates that rocks rich in potassium, uranium, and thorium, similar to those that prevail at the Fra Mauro site, are relatively abundant (10 to 20 percent) in the Descartes region. 4) The K/U ratio of the lunar crust is similar to that of the KREEP basalts. 5) The carbon content of the premare lunar crust is even lower than that of the mare volcanic rocks.  相似文献   

14.
Recalibration of Mariner 10 color image data allows the identification of distinct color units on the mercurian surface. We analyze these data in terms of opaque mineral abundance, iron content, and soil maturity and find color units consistent with the presence of volcanic deposits on Mercury's surface. Additionally, materials associated with some impact craters have been excavated from a layer interpreted to be deficient in opaque minerals within the crust, possibly analogous to the lunar anorthosite crust. These observations suggest that Mercury has undergone complex differentiation like the other terrestrial planets and the Earth's moon.  相似文献   

15.
Material of basaltic composition at the Surveyor V landing site implies that differentiation has occurred in the moon, probably due to internal sources of heat. The results are consistent with the hypothesis that extensive volcanic flows have been responsible for flooding and filling the mare basins. The processes and products of lunar magmatic activity are apparently similar to those of the earth.  相似文献   

16.
The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.  相似文献   

17.
The Apollo 14 lunar module landed in a region of the lunar highlands that is part of a widespread blanket of ejecta surrounding the mare Imbrium basin. Samples were collected from the regolith developed on a nearly level plain, a ridge 100 meters high, and a blocky ejecta deposit around a young crater. Large boulders in the vicinity of the landing site are coherent fragmental rocks as are some of the returned samples.  相似文献   

18.
The Magellan spacecraft is producing comprehensive image and altimetry data for the planet Venus. Initial geologic mapping of the planet reveals a surface dominated by volcanic plains and characterized by extensive volcanism and tectonic deformation. Geologic and geomorphologic units include plains terrains, tectonic terrains, and surficial material units. Understanding the origin of these units and the relation between them is an ongoing task of the Magellan team.  相似文献   

19.
The rare gas analysis of the lunar surface has lead to important conclusions concerning the moon. The large amounts of rare gases found in the lunar soil and breccia indicate that the solar atmosphere is trapped in the lunar soil as no other source of such large amounts of gas is known. The cosmogenic products indicate that the exposure ages of the 17 lunar rocks measured vary from 20 to 400 million years with some grouping of the ages. The most striking feature is the old potassium-argon age which for the 14 rocks analyzed varies from 2.5 to 3.8 billion years. It is concluded that Mare Tranquillitatis crystallized about 4 billion years ago from a molten state produced by a large meteorite impact or volcanic flow.  相似文献   

20.
The clementine mission to the moon: scientific overview   总被引:4,自引:0,他引:4  
In the course of 71 days in lunar orbit, from 19 February to 3 May 1994, the Clementine spacecraft acquired just under two million digital images of the moon at visible and infrared wavelengths. These data are enabling the global mapping of the rock types of the lunar crust and the first detailed investigation of the geology of the lunar polar regions and the lunar far side. In addition, laser-ranging measurements provided the first view of the global topographic figure of the moon. The topography of many ancient impact basins has been measured, and a global map of the thickness of the lunar crust has been derived from the topography and gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号