首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term dynamics of plant communities remain poorly understood in isolated tropical forest fragments. Here we test the hypothesis that tropical tree assemblages in both small forest fragments and along forest edges of very large fragments are functionally much more similar to stands of secondary growth (5-65-yr old) than to core primary forest patches. The study was carried out in a severely fragmented landscape of the Brazilian Atlantic forest. Nine functional attributes of tree assemblages were quantified by sampling all trees (DBH ? 10 cm) within 75 plots of 0.1 ha distributed in four forest habitats: small forest fragments (3.4-79.6 ha), forest edges, second-growth patches, and primary forest interior areas within a large forest fragment (3500 ha). These habitats were markedly different in terms of tree species richness, and in the proportion of pioneer, large-seeded, and emergent species. Age of second-growth stands explained between 31.4% and 88.2% of the variation in the functional attributes of tree assemblages in this habitat. As expected, most traits associated with forest edges and small forest fragments fell within the range shown by early (<25-yr old) and intermediate-aged secondary forest stands (25-45-yr old). In contrast to habitat type, tree assemblage attributes were not affected by vegetation type, soil type and the spatial location of plots. An ordination analysis documented a striking floristic drift in edge-affected habitats. Our results suggest that conservation policy guidelines will fail to protect aging, hyper-fragmented landscapes from drastic impoverishment if the remaining forest patches are heavily dominated by edge habitat.  相似文献   

2.
Habitat loss and fragmentation promote relatively predicable shifts in the functional signature of tropical forest tree assemblages, but the full extent of cascading effects to biodiversity persistence remains poorly understood. Here we test the hypotheses that habitat fragmentation (a) alters the relative contribution of tree species exhibiting different reproductive traits; (b) reduces the diversity of pollination systems; and (c) facilitates the functional convergence of reproductive traits between edge-affected and early-secondary forest habitats (5-32 years old). This study was carried out in a severely fragmented 670-km2 forest landscape of the Atlantic forest of northeastern Brazil. We assigned 35 categories of reproductive traits to 3552 trees (DBH ? 10 cm) belonging to 179 species, which described their pollination system, floral biology, and sexual system. Trait abundance was calculated for 55 plots of 0.1 ha across four habitats: forest edges, small forest fragments (3.4-83.6 ha), second-growth patches, and core tracts of forest interior within the largest available primary forest fragment (3500 ha) in the region. Edge-affected and secondary habitats showed a species-poor assemblage of trees exhibiting particular pollination systems, a reduced diversity of pollination systems, a higher abundance of reproductive traits associated with pollination by generalist diurnal vectors, and an elevated abundance of hermaphroditic trees. As expected, the reproductive signature of tree assemblages in forest edges and small fragments (edge-affected habitats), which was very similar to that of early second-growth patches, was greatly affected by both habitat type and plot distance to the nearest forest edge. In hyper-fragmented Atlantic forest landscapes, we predict that narrow forest corridors and small fragments will become increasingly dominated by edge-affected habitats that can no longer retain the full complement of tree life-history diversity and its attendant mutualists.  相似文献   

3.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

4.
Colluvial deposits consisting of silts and loams were detected in several climatologically different areas of NE Tibet (3200–3700 m a.s.l.). Layering, distinct organic content and low content of coarse matter as well as location in the relief revealed an origin from low-energy slope erosion (hillwash). Underlying and intercalated paleosols were classified as Chernozems, Phaeozems, Regosols and Fluvisols. Fifteen radiocarbon datings predominant on charcoal from both colluvial layers and paleosols yielded ages between 8988 ± 66 and 3512 ± 56 uncal BP. Natural or anthropogenic factors could have been the triggers of the erosional processes derived. It remains unclear which reason was mainly responsible, due to controversial paleoclimatic and geomorphic records as well as insufficient archaeological knowledge from this region. Determinations of charcoal and fossil wood revealed the Holocene occurrence of tree species (spruce, juniper) for areas which nowadays have no trees or only few forest islands. Thus large areas of NE Tibet which are at present steppes and alpine pastures were forested in the past.  相似文献   

5.
Dehesa ecosystems are open woodlands with scattered oak trees as their main component. As a result of differing land-uses, the structure of vegetation found within dehesas varies between: (i) oak trees and intercropped cereals (cropped), (ii) oak trees and native grass vegetation (grazed), and (iii) oak trees with abundant understorey shrubs (encroached). The aim of this study is to investigate whether land-use influences the water dynamics of dehesas by measuring available soil water content (AWC) in the upper 250 cm of the soil at different distances from tree trunks (maximum 30 m) at four Quercus ilex dehesas in Central–Western Spain. The technique used was Time Domain Reflectometry and the study was undertaken between May of 2002 and December of 2005. Leaf water potential (Ψ) was also measured on trees at one site by mean of a pressure chamber. Within the upper meter of the soil, it appears that trees, grasses and shrubs extracted soil water resources in a similar way from both beneath and beyond the tree canopy. However, encroached plots in general showed lower average AWC values than cropped or grazed plots (3.7, 5.6, and 6.2% in encroached, cropped and grazed, respectively). Cereal crops do not compete more strongly than grasses with trees for available soil water resources. The similar Ψ values found at cropped and grazed plots supported these results. From our results, it could be hypothesized that ploughed dehesas could facilitate soil re-watering in the plots with pronounced slopes. The decrease of AWC values at encroached plots with respect to the cropped and grazed plots was found mostly beyond the tree trunk at deeper soil layers, indicating that shrubs use water partly not accessible to trees. The presence of an understory of shrubs seems to have slightly increased the water constraints on trees during the summer period (Ψd values of − 0.5, − 0.5, and − 0.8 MPa in cropped, grazed, and encroached plots, respectively). In cropped and grazed plots, an important amount of water seems to have remained unused for trees and grasses.  相似文献   

6.
Soil warming can affect plant performance by increasing soil nutrient availability through accelerating microbial activity. Here, we test the effect of experimental soil warming on the growth of the three invasive plant species Trifolium pratense (legume), Phleum pratense (grass), and Plantago lanceolata (herb) in the temperate-boreal forest ecotone of Minnesota (USA). Plants were grown from seed mixtures in microcosms of soils with three different warming histories over four years: ambient, ambient +1.7 °C, and ambient +3.4 °C. Shoot biomass of P. pratense and P. lanceolata and plant community root biomass increased significantly in soils with +3.4 °C warming history, whereas T. pratense responded positively but not significantly. Soil microbial biomass and N concentration could not explain warming effects, although the latter correlated significantly with the shoot biomass of P. lanceolata. Our results indicate that soil with a warming history may benefit some invasive plants in the temperate-boreal ecotone with potential impacts on plant community composition. Future studies should investigate the impact of warming-induced differences in soil organisms and nutrients on plant invasion.  相似文献   

7.
Live retention trees are expected to support the recovery of epiphytes in regenerating stands by retaining a part of the populations in cutover sites and receiving propagules from adjacent forests. So far, the research has been focused on immediate post-harvesting mortality caused by microclimatic stress while a broader perspective on epiphyte community dynamics is lacking. We studied lichen and bryophyte communities on the trunks of retention trees and adjacent forest trees in Estonia, where significant desiccation (particularly of bryophytes) had been documented within 2-3 years after timber harvesting. The resampling 5-6 years after harvesting indicated that, during the 3 years passed, (1) lichen species richness per surviving tree increased and bryophyte species richness stabilised, (2) there were no clear successional changes in the composition of the communities and (3) retention trees were more frequently colonised than forest trees. Most epiphyte extinctions between the sampling years were related to the death of trees (particularly in the forests because of harvesting) and stochastic disappearances of the smallest populations. Also, retention trees were very rarely colonised by species of conservation concern. We conclude that, in addition to addressing the microclimatic stress in the first post-harvesting years, crucial elements in sustaining epiphytic bryophyte and lichen populations in green-tree retention systems include careful selection of the retention trees and a supportive reserve network. The selection of the trees should assure representativity and long-term survival of local populations, while reserves should host the most demanding species and be stable colonisation sources in general.  相似文献   

8.
Gap formation is suggested as an alternative forest management approach to avoid extreme changes in the N cycle of forest ecosystems caused by traditional management practises. The present study aimed to investigate the effect of gap formation on N availability in beech litter and mineral soil on sites, which experienced only little soil disturbance during tree harvest. N pools, litter decomposition, and N mineralization rates in mineral soil were studied in two gaps (17 and 30 m in diameter) in a 75-year-old managed European beech (Fagus sylvatica L.) forest in Denmark and related to soil temperature (5 cm depth) and soil moisture (15 cm depth). Investigations were carried out during the first 2 years after gap formation in measurement plots located along the north-south transect running through the centre of each gap and into the surrounding forest.An effect of gap size was found only for soil temperatures and litter mass loss: soil temperatures were significantly increased in the northern part of the large gap during the first year after gap formation, and litter mass loss was significantly higher in the smaller gap. All other parameters investigated revealed no effect of gap size. Nitrification, net mineralization, and soil N concentrations tended to be increased in the gaps. Cumulative rates of net mineralization were two fold higher in the gaps during the growing season (June-October), but a statistically significant increase was found only for soil NH4-N concentrations during this period. Forest floor parameters (C:N ratios, mass loss, N release) were not significantly modified during the first year after gap formation, neither were the total C content nor the C:N ratio in mineral soil at 0-10 cm depth.  相似文献   

9.
The extent to which complex interrelationships between plants and microorganisms influence organic matter dynamics is critical to our understanding of global C cycles in changing environments. We examined the hypothesis that patterns of soil microbial activity and functional composition differ among vegetation types in northern peatland ecosystems. Microbial characteristics were compared among peatlands differing in plant growth form (tree, shrub/moss, sedge) in two regions (New York State and West Virginia). Microbial activity (basal respiration) was greater in surface (0-15 cm) than subsurface (15-30 cm) peat and from sites dominated by shrubs and Sphagnum moss (3.9±0.65 μg C g−1 h−1) compared to forested (1.8±0.20 μg C g−1 h−1) or sedge-dominated sites (1.9±0.38 μg C g−1 h−1). Microbial activity was not related to decomposability of peat organic matter among vegetation types, and activity was unexpectedly higher in sites with lower peat pH and higher water table level. Substrate-induced respiration (SIR) did not show a clear pattern among vegetation types, but was greater in surface than subsurface peat. Microbial responsiveness to added glucose was very low. The ratio of basal respiration to SIR varied between 0.39 and 0.72 and, like activity, was highest in shrub/Sphagnum sites. Microbial substrate utilization patterns (assayed with BIOLOG® GN plates) also differed between shrub/Sphagnum sites and forest or sedge sites, suggesting that C fluxes were mediated by different assemblages of microorganisms in shrub/Sphagnum peatlands. Principal component (PC) scores indicated more utilization of N-containing compounds and carboxylic acids, and less utilization of carbohydrates by microbial communities in shrub/Sphagnum sites. PC scores were much more variable both within and among vegetation types for sites in West Virginia than in New York State, and a greater diversity of C sources were utilized in WV (57±3) than NYS (47±2) peat. Our results suggest a link between microbial respiratory activity and microbial functional composition as they vary among these peatland vegetation types.  相似文献   

10.
Biological communities differ over time and in space, and in the forest these communities often vary according to trees and tree gaps, mediated by mechanisms that are likely to change over time and as a tree are removed. In this paper we ask the questions: What is the influence of individual trees on soil microbial community structure? Does the soil microbial community change in the short-term when a tree is removed, and does this change depend on the initial influence of the tree? We use phospholipid fatty acid (PLFA) analysis and a geostatistical approach to study effects of trees and tree removal (thinning) on soil microbial community structure in a young boreal Norway spruce (Picea abies) forest. An experiment was setup where half (four) of the included trees were cut and soil was collected prior to (t0) and one month after (t1) tree felling. The samples were collected along two perpendicular transects originating from each of the eight study trees. A tree influence index was calculated for each sample point from the distances to neighbouring trees, weighted by tree diameter. We found that individual trees are important in structuring the soil microbial community as microbial community structure responded to the gradient in tree influence. Also strong spatial structure was found corresponding to the patch structure induced by trees. Changes in microbial community structure before and after tree felling (t0 and t1) was found to differ significantly between felled and non-felled trees: samples from felled trees came to resemble samples with a low value of tree influence and samples from below non-felled trees came to resemble samples with a high value for tree influence. We thus found that soil microbial community structure in a boreal forest is spatially structured by the distribution of single trees, and that soil microbial community structure varies seasonally and is affected by tree removal, in an intricate manner that reflects the initial influence of trees.  相似文献   

11.
Six Malayan sun bears were captured and radio-collared from June 1999 to December 2001 in Ulu Segama Forest Reserve, Sabah, Malaysia Borneo to study home-range characteristics, movement patterns, activity patterns, population density, and bedding sites. A total of 343 locations were recorded. Home range sizes, calculated by the 95% adaptive kernel method, averaged 14.8 ± 6.1 (SD) km2. Bears were found in both primary and logged forests. Daily movement distances from these bears averaged 1.45 ± 0.24 (SD) km, and were affected by food availability, especially availability of figs. Male Malayan sun bears were primarily diurnal, but a few individuals were active at night for short periods. The majority of the 26 bedding sites consisted of fallen hollow logs. Other bedding sites included standing trees with cavities, cavities underneath fallen logs or tree roots, and tree branches high above the ground. Malayan sun bears exist in primary and logged forests. Well-designed logging practices, maintenance of large trees with cavities, protection of fig trees, and strict control of poaching should be incorporated into forest management practices in logged forests.  相似文献   

12.
We measured methane (CH4) emissions from the stem surfaces of mature Fraxinus mandshurica var. japonica trees in a floodplain forest. Flux measurements were conducted almost monthly from May to October 2005, and positive CH4 fluxes were detected throughout the study period, including the leafless season. The mean CH4 flux was 176 and 97 μg CH4 m−2 h−1 at the lower (15 cm above the ground) and upper (70 cm above the ground) stem positions, respectively. The CH4 concentration was lower in soil gas than in ambient air to a depth of at least 40 cm. One possible source of CH4 emitted from the stems might be the dissolved CH4 in groundwater; maximum concentrations were 10,000 times higher than atmospheric CH4 concentrations. Our results suggest that CH4 transport from the submerged soil layer to the atmosphere may occur through internal air spaces in tree bodies.  相似文献   

13.
Ungulate herbivory can have strong impacts on plant communities, but these impacts are rarely considered in recovery plans of endangered species. This study examined the effects of the endangered Key deer (Odocoileus virginianus clavium) on its environment in the lower Florida Keys. The Key deer population has increased to over 700 deer from approximately 50 deer in the 1950s; however, approximately 75% of the population resides on only a few islands (Big Pine, No Name, Big Munson) where Key deer herbivory on forest communities may be substantial. Effects of deer herbivory on plant densities were estimated on these islands using vegetation quadrats in hardwood hammock, buttonwood transition, and mangrove wetlands and compared to nine other islands with intermediate or low deer densities. On islands with high deer density, densities of preferred woody plant species <1.2 m tall (within Key deer reach) were significantly lower than islands with lower deer densities, while densities of some nonpreferred species were significantly higher. Deer exclosures established in hardwood hammock on a high-density deer island revealed a mean increase in abundance/height of preferred woody species inside exclosures, while nonpreferred species significantly increased in open plots. We conclude that on high deer density islands, highly preferred plant species might eventually fail to regenerate and unpalatable plant species may become dominant. Careful criteria need to be developed to maintain Key deer numbers above an endangered species status yet below levels that are destructive to local forest species.  相似文献   

14.
Many remote islands are degraded as a result of deforestation and browsing of vegetation by introduced goats. Goat eradication is therefore a focus for island restoration, but there are few long-term records of change on islands after eradications. In 1946, three permanent plots were established immediately after goats were eradicated from Great Island (Manawa Tawhi), 60 km from northern New Zealand, and provide a 57-year record of change across a sequence of forest succession. Since 1946, the native and non-native bird communities that disperse 75% of the woody flora have increased from six to eight species and bird-dispersed woody plants in plots have increased from 7 to 11 species. After 1946, palatable trees were recruited in the plots. Unpalatable understorey sedges, present when goats were abundant, have persisted and may impede tree seedling establishment. Of the bird-dispersed woody plant species, 41% occur in the plots compared with 67% of the non-bird-dispersed species. Large-seeded species were unable to germinate away from parents until native pigeons Hemiphaga novaeseelandiae were present during the last decade. Forest succession is a consequence of interactions between the legacy of goat grazing and current disperser communities. Survival of seed-limited rare plants is not guaranteed in these circumstances. Although non-native goats no longer influence succession directly, non-native birds have been and remain important components of the disperser community. Our study supports the view that a whole-ecosystem understanding of the interactions between native and non-native species is needed to predict the consequences of eradications on islands worldwide.  相似文献   

15.
Strict protected areas are a critical component in global biodiversity conservation, but the future of biodiversity conservation may well depend upon the ability to experiment successfully with a range of institutional forms, including those that permit human use. Here, we focus on forest commons in human-dominated landscapes and their role in biodiversity conservation at the same time as they provide livelihood benefits to users. Using a dataset of 59 forest commons located in Bhutan, India, and Nepal, we estimated tree species richness from plot vegetation data collected in each forest, and drew on interview data to calculate a livelihoods index indicating the overall contribution of each forest to villager livelihoods for firewood, fodder, and timber. We found that tree species richness and livelihoods were positively and significantly correlated (rho = .41, p < 0.001, N = 59). This relationship held regardless of forest type or country, though significance varied somewhat across these two factors. Further, both benefits were similarly associated with several drivers of social-ecological change (e.g., occupational diversity of forest users, total number of users, and forest size), suggesting identification of potential synergies and complexes of causal mechanisms for future attention. Our analysis shows that forest commons in South Asia, explicitly managed to provide livelihoods for local populations, also provide biodiversity benefits. More broadly, our findings suggest that although strict protected areas are effective tools for biodiversity conservation, a singular focus on them risks ignoring other resource governance approaches that can fruitfully complement existing conservation regimes.  相似文献   

16.
Biomechanical effects of trees on soils and surface processes may be extensive in forest environments. Two blowdown sites caused by a November 2005 tornado in the Ouachita National Forest, Arkansas allowed a case study examination of bioturbation associated with a specific forest blowdown event, as well as detailed examination of relationships between tree root systems, soils, and underlying bedrock. The sites occur within mixed shortleaf pine and hardwood forests. More than 95% of trees in the severe blowdown areas were either uprooted or suffered trunk break, with uprooting more common than breakage. Within the most heavily damaged areas all uprooted trees were pines, while all trees left standing were hardwoods. Root wads of uprooted trees had a mean surface area of about 3 m2 and volume of about 2 m3, though individual sizes were quite variable. Nearly 4% of the ground surface area was affected by uprootings, with a soil volume equivalent to a disturbance of the entire surface area to a depth of 2.4 cm. Tree size (as measured by diameter at breast height) was significantly related to the area and volume of root wads (R2 = 0.55, 0.71, respectively), with volume of uprooted soil varying as diameter to the ~ 3 power, suggesting that the timing of blowdown events relative to tree age or growth stage significantly influences the area of disturbance and the mass and volume of material involved. In 93% of cases the roots of the uprooted trees contacted or penetrated the underlying bedrock, and in all those cases bedrock was quarried by uprooting. Only 11% of the tree throws showed evidence of general lateral root turning at the soil–bedrock interface; in most cases roots penetrated bedrock along joints. The propensity for tree roots to penetrate bedrock joints, facilitate weathering, and excavate bedrock during uprooting supports the idea that tree roots play a predominant role in locally deepening soils.  相似文献   

17.
The effects of timber harvesting and the resultant soil disturbances (compaction and forest floor removal) on relative soil water content, microbial biomass C and N contents (Cmic and Nmic), microbial biomass C:N ratio (Cmic-to-Nmic), microbial respiration, metabolic quotient (qCO2), and available N content in the forest floor and the uppermost mineral soil (0-3 cm) were assessed in a long-term soil productivity (LTSP) site and adjacent mature forest stands in northeastern British Columbia (Canada). A combination of principal component analysis and redundancy analysis was used to test the effects of stem-only harvest, whole tree harvest plus forest floor removal, and soil compaction on the studied variables. Those properties in the forest floor were not affected by timber harvesting or soil compaction. In the mineral soil, compaction increased soil total C and N contents, relative water content, and Nmic by 45%, 40%, 34% and 72%, respectively, and decreased Cmic-to-Nmic ratio by 29%. However, these parameters were not affected by stem only harvesting or whole tree harvesting plus forest floor removal, contrasting the reduction of white spruce and aspen growth following forest floor removal and soil compaction reported in an earlier study. Those results suggest that at the study site the short-term effects of timber harvesting, forest floor removal, and soil compaction are rather complex and that microbial populations might not be affected by the perturbations in the same way as trees, at least not in the short term.  相似文献   

18.
We examined the influence of habitat characteristics at the microhabitat, macrohabitat, and landscape spatial scales on small mammals occurring in 12 forest patches within four agricultural landscapes of Prince Edward Island (Canada). Landscape features were important determinants of small mammal variables at all levels, but especially at the community level, whereas microhabitat characteristics tended to influence small mammals at the population level. Macrohabitat characteristics had only minor effects on small mammals occurring in our study sites. Species richness was most strongly influenced by patch area, reaching a threshold at forest patches of roughly 8-10 ha. The proportions of both forest and hedgerow cover within 400 m from the study site were also significant determinants of small mammals species diversity, possibly reflecting their ability to perceive suitable habitats, forage in areas outside the forest patches, and/or disperse in agricultural landscapes. At least one small mammal species (Napaeozapus insignis) benefitted from the presence of agricultural fields at distances up to 1000 m. Tamias striatus benefitted from the presence of hedgerow cover within 400 m from forest patches, possibly allowing them to move between forest patches. Clearly, the maintenance of forest patches of 8-10 ha and of forest cover within 400 m from them is fundamental for the conservation of small mammals inhabiting agricultural landscapes on the Island. Conservation strategies should also consider the establishment of more effective regulations to prevent and/or reduce hedgerow removal on Prince Edward Island.  相似文献   

19.
More than 200,000 ha of short rotation Eucalyptus globulus plantations have been established in south-western Australia to supply wood for the pulp and paper industries. Sustaining the productivity of these tree crops over successive rotations will depend in part on maintenance of soil fertility, especially soil nitrogen (N) supply. We investigated the impact of four alternative strategies for management of harvest residues on soil N dynamics in recently logged first rotation plantations. The experiments were conducted over 5 years following harvesting at two sites with contrasting soils—a coarse textured grey sand over laterite (Podzol) with low natural fertility and a relatively fertile red earth soil (Ferralsol). At the grey sand site, 31 t ha−1 of residues containing 219 kg N ha−1 were deposited following harvest while at the red earth site the equivalent figures were 51 t ha−1 of residues and 347 kg N ha−1. Experimental treatments applied included residues burned, removed, retained and retained with double the amount of residues. The impact of treatments on soil nitrogen supply was investigated by incubating intact soil cores in the field to determine rates of net N mineralization. Additionally, the effect of treatments on soil moisture and temperature, the resident pool of soil mineral N and the amount of N potentially available for mineralization was assessed. The mulching effect of retained residues resulted in higher soil moisture where residues had been retained and a trend for soil on these treatments to dry out more slowly with the onset of the dry summer season, especially in the first year following harvest. Diurnal variations in soil temperature were moderated and average soil temperatures were reduced during summer where residues were retained. Concentrations of mineral N in soil were high in the 2 years following harvest at both sites and declined as newly established seedlings developed. At the more fertile site, where mineral N occurred predominantly as nitrate, retention of residues resulted in lower pools of soil mineral N following harvest. The effect of residue treatments on soil mineral N pools was less marked at the grey sand site. Concentrations of potentially mineralizable soil N and the amounts of N mineralized annually were greater where residues were retained at both sites. The results indicate that retention of harvest residues will favour the conservation of N following logging. However, accumulation of soil mineral N following harvesting due to reduced plant uptake will result in leaching of N early in the rotation that is largely independent of residue management. Retaining harvest residues will contribute to enhanced N supply for the next tree crop through mineralization in the long term. However, on some sites, additions of nitrogenous fertilizers will still be required to maximise the rate of tree growth.  相似文献   

20.
Soil soluble organic nitrogen (SON) can play an important role in soil nitrogen (N) cycling in forest ecosystems. This study examined the effect of land-use change from a native forest (NF) to a first rotation (1R) and subsequent second rotation (2R) hoop pine (Araucaria cunninghamii) plantation on soil SON pools. The impact of residue management on SON pools was also investigated in the 2R forest, where SON was measured in tree rows (2R-T) and windrows (2R-W). Various extraction techniques were used to measure SON pool size in the 0-10, 10-20 and 20-30 cm layers of soil. The results showed that land-use change had a significant impact on soil SON pools. In the 0-10 cm layer, 3.2-8.7, 14-23, 20-28, 60-160 and 127-340 mg SON kg−1 were extracted by water, 0.5 M K2SO4, 2 M KCl, hot water and hot 2 M KCl, respectively. The size of the SON pools and the potential production of SON (PPSON) were generally highest in the NF soil and lowest in the 2R-T soil, and in all forest types decreased with soil depth. The larger SON pools in the NF soil coincided with lower soil, litter and root C:N ratios, suggesting that the difference in the size of SON pools between the NF and 1R soil may be related to differences in the quality of organic matter input under the different forest ecosystems. Differences in the size of SON pools between the 1R soil and the 2R soils and between the 2R-T soil and the 2R-W soil may be related to the quantity of organic matter input and time since disturbance. Significant relationships were found between the SON extracted by 0.5 M K2SO4 (SONps) and 2 M KCl (SONKCl), and also among the SON extracted by hot 2 M KCl (SONhKCl), hot water (SONhw) and water (SONw), suggesting that the organic N released by these groups of extracts may be at least partly from similar pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号