首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.  相似文献   

2.
H Thybo  E Perchuc 《Science (New York, N.Y.)》1997,275(5306):1626-1629
Strong, scattered reflections beyond 8 degrees (8degrees) offset are characteristic features of all high-resolution seismic sections from the continents. The reflections identify a low-velocity zone below approximately 100 kilometers depth beneath generally stratified mantle. This zone may be caused by partial melting, globally initiated at equal depth in the continental mantle. Solid state is again attained at the Lehmann discontinuity in cold, stable areas, whereas the zone extends to near the 400-kilometer discontinuity in hot, tectonically active areas. Thus, the depth to the Lehmann discontinuity may be an indicator of the thermal state of the continental mantle.  相似文献   

3.
Arrivals of P waves from a recent event at the Nevada Test Site, recorded at a distance of 15.3 degrees , passed beneath the Yellowstone caldera at depths of 200 and 400 kilometers. The travel time anomalies are modeled by a vertical cylindrical structure with a high-velocity core and a low-velocity collar as compared with the more normal mantle. The velocity structure and vertical extent of this feature are consistent with a chemical mantle plume beneath the Yellowstone caldera.  相似文献   

4.
Li YG  Leary P  Aki K  Malin P 《Science (New York, N.Y.)》1990,249(4970):763-766
Three-component borehole seismic profiling of the recently active Oroville, California, normal fault and microearthquake event recording with a near-fault three-component borehole seismometer on the San Andreas fault at Parkfield, California, have shown numerous instances of pronounced dispersive wave trains following the shear wave arrivals. These wave trains are interpreted as fault zone-trapped seismic modes. Parkfield earthquakes exciting trapped modes have been located as deep as 10 kilometers, as shallow as 4 kilometers, and extend 12 kilometers along the fault on either side of the recording station. Selected Oroville and Parkfield wave forms are modeled as the fundamental and first higher trapped SH modes of a narrow low-velocity layer at the fault. Modeling results suggest that the Oroville fault zone is 18 meters wide at depth and has a shear wave velocity of 1 kilometer per second, whereas at Parkfield, the fault gouge is 100 to 150 meters wide and has a shear wave velocity of 1.1 to 1.8 kilometers per second. These low-velocity layers are probably the rupture planes on which earthquakes occur.  相似文献   

5.
The C-region of the upper mantle has two transition regions 75 to 90 kilometers thick. In western North America these start at depths of 365 kilometers and 620 kilometers and involve velocity increases of about 9 to 10 percent. The locations of these transition regions, their general shape, and their thicknesses are consistent with, first, the transformation of magnesium-rich olivine to a spinel structure and, then, a further collapse of a material having approximately the properties of the component oxides. The velocity increases associated with each transition region are slightly less than predicted for the appropriate phase change. This can be interpreted in terms of an increasing fayalite content with depth. The location of the transition regions and the seismic velocities in their vicinity supply new information regarding the composition and temperature of the upper mantle. The depths of the transition regions are consistent with temperatures near 1500 degrees C at 365 kilometers and 1900 degrees C at 620 kilometers.  相似文献   

6.
Lunar seismic data from artificial impacts recorded at three Apollo seismometers are interpreted to determine the structure of the moon's interior to a depth of about 100 kilomneters. In the Fra Mauro region of Oceanus Procellarum, the moon has a layered crust 65 kilometers thick. The seismic velocities in the upper 25 kilometers are consistent with those in lunar basalts. Between 25 and 65 kilometers, the nearly constant velocity (6.8 kilometers per second) corresponds to velocities in gabbroic and anorthositic rocks. The apparent velocity is high (about 9 kilometers per second) in the lunar mantle immediately below the crust.  相似文献   

7.
Structure and dynamics of Earth's lower mantle   总被引:1,自引:0,他引:1  
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.  相似文献   

8.
Refraction measurements made in the deep ocean between the Marshall and Hawaiian islands reveal a layer of seismic velocity 7.3 kilometers per second between the 6.8 kilometer per second oceanic crustal layer and the mantle. This layer, normally masked as a second arrival, is revealed by continuous air gun refraction data. The layer may be widespread in the deep oceans.  相似文献   

9.
We applied global waveform tomography to model radial anisotropy in the whole mantle. We found that in the last few hundred kilometers near the core-mantle boundary, horizontally polarized S-wave velocities (VSH) are, on average, faster (by approximately 1%) than vertically polarized S-wave velocities (VSV), suggesting a large-scale predominance of horizontal shear. This confirms that the D" region at the base of the mantle is also a mechanical boundary layer for mantle convection. A notable exception to this average signature can be found at the base of the two broad low-velocity regions under the Pacific Ocean and under Africa, often referred to as "superplumes," where the anisotropic pattern indicates the onset of vertical flow.  相似文献   

10.
Seismic waves generated by earthquakes or explosions show a delay in travel times as they propagate across the Sierra Nevada from all directions except that of the Nevada test site. Early arriving waves from the test site can be explained if they emerge through a rock layer with high seismic velocity from the sharp eastern edge of the Sierran root. Such a layer could be formed by the subducted ophiolite slab that crops out in the western Sierra Nevada foothills. A synthesis of all seismic data indicates that the Sierran root projects downward into the mantle to a depth of about 55 kilometers beneath the high Sierra.  相似文献   

11.
Precursors to normtial seismic waves of the PKPPKP type in the distance range of 55 degrees to 75 degrees are ascribed to reflection of this phase from within the earth's upper mantle. The new observations confirm the existence of a sharply defined transition zone, probably worldwide in extent, at a depth of approximately 650 kilometers. These data are shown to be a useful tool for the study of upper mantle structure on a global basis.  相似文献   

12.
Sharp sides to the African superplume   总被引:3,自引:0,他引:3  
Beneath southern Africa is a large structure about 1200 kilometers across and extending obliquely 1500 kilometers upward from the core-mantle boundary with a shear velocity reduction of about 3%. Using a fortuitous set of SKS phases that travel along its eastern side, we show that the boundary of the anomaly appears to be sharp, with a width less than 50 kilometers, and is tilted outward from its center. Dynamic models that fit the seismic constraints have a dense chemical layer within an upwardly flowing thermal structure. The tilt suggests that the layer is dynamically unstable on geological time scales.  相似文献   

13.
Earlier observations of a seismic waveguide in the northwestern Pacific with a velocity of 8.3 kilometers per second to distances of approximately 30 degrees are complemented by suggestions of a possible waveguide with a velocity of 7.8 kilometers per second to distances well in excess of 30 degrees .  相似文献   

14.
The statistical correlation between the locations of hot spots at the surface of Earth and the distribution of ultra-low-velocity zones at the base of the mantle has about a 1 percent chance of arising randomly. This correlation is more significant than that between hot spots and negative velocity anomalies in tomographic models of deep mantle compressional and shear velocity. This correlation is consistent with the notion that many hot spots originate in a low-velocity, probably partially molten layer at the core-mantle boundary and undergo little lateral deflection on ascent.  相似文献   

15.
Wide-angle seismic data along the Mantle Electromagnetic and Tomography (MELT) arrays show that the thickness of 0.5- to 1. 5-million-year-old crust of the Nazca Plate is not resolvably different from that of the Pacific Plate, despite an asymmetry in depth and gravity across this portion of the East Pacific Rise. Crustal thickness on similarly aged crust on the Nazca plate near a magmatically robust part of the East Pacific Rise at 17 degrees15'S is slightly thinner (5.1 to 5.7 kilometers) than at the 15 degrees55'S overlapping spreading center (5.8 to 6.3 kilometers). This small north-south off-axis crustal thickness difference may reflect along-axis temporal variations in magma supply, whereas the across-axis asymmetry in depth and gravity must be caused by density variations in the underlying mantle.  相似文献   

16.
Seismic studies indicate that beneath some regions the 520-kilometer seismic discontinuity in Earth's mantle splits into two separate discontinuities (at approximately 500 kilometers and approximately 560 kilometers). The discontinuity near 500 kilometers is most likely caused by the (Mg,Fe)2SiO4 beta-to-gamma phase transformation. We show that the formation of CaSiO3 perovskite from garnet can cause the deeper discontinuity, and by determining the temperature dependence for this reaction we demonstrate that regional variations in splitting of the discontinuity arise from variability in the calcium concentration of the mantle rather than from temperature changes. This discontinuity therefore is sensitive to large-scale chemical heterogeneity. Its occurrence and variability yield regional information on the fertility of the mantle or the proportion of recycled oceanic crust.  相似文献   

17.
The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.  相似文献   

18.
Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.  相似文献   

19.
Serpentine stability to mantle depths and subduction-related magmatism   总被引:14,自引:0,他引:14  
Results of high-pressure experiments on samples of hydrated mantle rocks show that the serpentine mineral antigorite is stable to approximately 720 degrees C at 2 gigapascals, to approximately 690 degrees C at 3 gigapascals, and to approximately 620 degrees C at 5 gigapascals. The breakdown of antigorite to forsterite plus enstatite under these conditions produces 13 percent H(2)O by weight to depths of 150 to 200 kilometers in subduction zones. This H(2)O is in an ideal position for ascent into the hotter, overlying mantle where it can cause partial melting in the source region for calc-alkaline magmas at a depth of 100 to 130 kilometers and a temperature of approximately 1300 degrees C. The breakdown of antigorite in hydrated mantle produces an order of magnitude more H(2)O than does the dehydration of altered oceanic crust.  相似文献   

20.
Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (>/=2.4 x 10(10) Pascals) and temperatures. In particular, (Mg,Fe)SiO(3) perovskite, the most abundant mineral of Earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO(2) stishovite and MgSiO(3) perovskite) at the pressures of the core-mantle boundary, 14 x 10(10) Pascals. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 kilometers of Earth's mantle, the D" layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of Earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence Earth's magnetic field observed at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号