首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

2.
Biological control of Tetranychus urticae Koch (Acari: Tetranychidae), a key pest of clementines, can be improved in this crop with the establishment of a ground cover of Festuca arundinacea Schreber (Poaceae). This cover houses an abundant and diverse community of predatory Phytoseiidae mites including Euseius stipulatus (Athias-Henriot), Neoseiulus barkeri Hughes, Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot and a dense population of the grass thrips Anaphothrips obscurus Müller (Thysanoptera: Thripidae) throughout the year. The aim of this study was to determine whether the presence of this thrips species could be related to the improvement in the biological control of T. urticae. Therefore, the capacity of the abovementioned phytoseiids to feed and reproduce on A. obscurus and their feeding preferences when T. urticae and A. obscurus were simultaneously offered, were analyzed. The results show that E. stipulatus, N. barkeri and N. californicus have a type II functional response when offered A. obscurus nymphs, whereas P. persimilis barely feeds on this thrips species. Furthermore, N. barkeri and N. californicus can reproduce feeding only on thrips. Regarding prey preference, the Tetranychus spp.-specialist P. persimilis preferably preyed on T. urticae, the generalists N. barkeri and E. stipulatus preferred A. obscurus, and the selective predator of tetranychid mites N. californicus showed no preference. Therefore, we hypothesize that the enhanced biological control of T. urticae observed could be related to A. obscurus becoming an alternative prey for non-specialist phytoseiids, without altering the control exerted by the T. urticae-specialist P. persimilis and likely reducing intraguild predation.  相似文献   

3.
Trees on sand dunes are more sensitive to environmental changes because sandy soils have extremely low water holding capacity and nutrient availability. We investigated the dynamics of soil respiration(Rs) for secondary natural Litsea forest and plantations of casuarina,pine, acacia and eucalyptus. Results show that significant diurnal variations of Rsoccurred in autumn for the eucalyptus species and in summer for the pine species, with higher mean soil respiration at night. However, significant seasonal variations of Rswere found in all five forest stands. Rschanged exponentially with soil temperatures at the 10-cm depth; the models explain 43.3–77.0% of Rs variations. Positive relationships between seasonal Rsand soil moisture varied with stands. The correlations were significant only in the secondary forest, and the eucalyptus and pine plantations. The temperature sensitivity parameter(Q10 value) of Rsranged from 1.64 in casuarina plantation to 2.32 the in secondary forest; annual Rswas highest in the secondary forest and lowest in the pine plantation. The results indicate that soil temperatures and moisture are the primary environmental controls of soil respiration and mainly act through a direct influence on roots and microbial activity. Differences in root biomass, quality of litter,and soil properties(pH, total N, available P, and exchangeable Mg) were also significant factors.  相似文献   

4.
The temporal phenology of leaf bud bursting, leaf initiation, leaf maturation, leaf fall, flower initiation, fruit initiation and fruit fall was recorded for eight tree species (Ficus hispida, F. squamosa, Mallotus nudiflorus, M. philippensis, Shorea robusta, Schleichera oleosa, Pongamia pinnata and Terminalia arjuna) in the tropical moist deciduous forest of Himalayan Terai region from November 2009 to October 2012. The study revealed that a short low temperature dry period, sufficient winter rain and temperature rise are the triggering factors for summer leaf flushing and, the increased soil water availability for second leaf flushing in rains. Initiation of flowering with leaf emergence in the dry period supports higher rate of fruit setting due to maximum availability and activities of pollinators. The dispersal and post dispersal success of fruits increased by their ripening before and/or in the rainy season. In T. arjuna, no correlation has been found between the fruiting and rains. M. nudiflorus and M. philippensis initiate leaves and flowers with the first significant increase in temperature and photoperiod and are thus suggested as the potential tree species for climate change studies in tropics.  相似文献   

5.

Key message

The invasion of moso bamboo ( Phyllostachys edulis (Carriere) J. Houzeau) into neighboring Cryptomeria japonica (L. f.) D. Don plantations significantly altered soil P status and dynamics. This alteration in phosphorus dynamics must be considered when assessing the ecological consequence of moso bamboo invasion in subtropical China.

Context

Moso bamboo is a native species that commonly invades into adjacent forests in Asia. Such invasions may significantly alter soil chemical characteristics because moso bamboo has very different traits compared with the tree species it displaces. However, few studies have investigated the effects of moso bamboo invasion on soil phosphorus (P) dynamics.

Aims

The objective of this study was to investigate the effects of moso bamboo invasion on soil P dynamics. Specifically, we quantified soil total P, available P, acid phosphatase activity (APA), and microbial biomass P (MBP) in moso bamboo-invaded coniferous stands and compared them to uninvaded stands and pure moso bamboo stands.

Methods

We compared seasonal dynamics of soil P (e.g., total P, available P, APA, and MBP) over a 24-month period among three stand types at Lushan mountain in subtropical China: Cryptomeria japonica plantation (CR), Cryptomeria japonica plantation invaded by Phyllostachys edulis (PH-CR), and Phyllostachys edulis stand (PH).

Results

Total soil P concentration was significantly lower in PH-CR than in CR and PH stands, but soil available P concentration was significantly lower in CR and PH stands. Soil APA was significantly higher in PH-CR than in CR and PH stands. Similarly, soil MBP concentration was higher in PH-CR than in CR and PH stands. Also, soil total P, available P, APA, and MBP concentrations displayed seasonal fluctuations in PH-CR, but remained relatively stable in CR and PH stands during the 2 years.

Conclusion

The invasion of moso bamboo into adjacent C. japonica stands significantly increased soil available P, acid phosphatase activity, and microbial biomass phosphorus, but decreased soil total P. The implication of these changes to ecosystem composition, structure, and function must be explicitly considered in managing moso bamboo invasion in subtropical China.
  相似文献   

6.
The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems. Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result, an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine (Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature (rs = 0.655, p = 0.00315) or available soil water supply (rs = 0.892, p = 0.0068). In autumn within different years, significant correlation was shown with two (temperature of air and soil; rs = 0.789 and 0.896, p = 0.00045 and 0.000006, respectively) and four factors: temperature of air (rs = 0.749, p = 0.00129) and soil (rs = 0.84, p = 0.00000), available soil water supply (rs = 0.846, p = 0.00013) and irradiance (rs = 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn. This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn.  相似文献   

7.
Arbuscular mycorrhiza fungi(AMF) are vital in the regeneration of vegetation in disturbed ecosystems due to their numerous ecological advantages and therefore are good indicators of soil and ecosystem health at large. This study was aimed at determining how the seasonal, vegetation cover density, edaphic and anthropogenic factors affect AMF root colonization(RC) and spore density(SD)in Desa'a dry Afromontane forest. AMF RC and SD in the rhizosphere of five dominant woody species, Juniperus procera, Olea europaea, Maytenus arbutifolia, Carissa spinarum and Dodonaea angustifolia growing in Desa'a forest were studied during the rainy and the dry seasons in three permanent study vegetation cover density plots(dense, medium, and poor). Each plot(160 x40 m~2) has two management practices(fenced and unfenced plots) of area. A 100 g sample of rhizosphere soil from moisturefree composite soil was used to determine spore density.Spore density ranged from 50 to 4467 spores/100 g soil,and all species were colonized by AMF within a range of 4–95%. Glomus was the dominant genus in the rhizosphere of all species. Vegetation cover density strongly affected SD and RC. The SD was significantly higher(p 0.05) in the poor vegetation cover density than in the other two and lowest in the dense cover; root colonization showed the reverse trend. Management practices significantly(p 0.05) influenced AMF SD and RC, with the fenced plots being more favoured. Seasons significantly(p 0.05) affected RC and SD. More RC and SD were observed in the wet period than the dry period. Correlating AMF SD and RC with soil physical and chemical properties showed no significant difference(p 0.05) except for total nitrogen. Disturbance, vegetation cover density, season and total nitrogen are significant factors that control the dynamics and management interventions to maintain the forest health of dry Afromontane forests.  相似文献   

8.

Key message

Large genetic variation was found in Prunus avium L. populations from the northern parts of the species distribution range. The ranking of genotypes in terms of growth was stable when tested at three trial sites within the northern parts of the species distribution range.

Context

Peripheral populations especially those in the leading edge are isolated from rest of the areas in the species distribution range. This can make them less genetically diverse yet genetically distinct from the rest of the populations in the species distribution range. Evaluation of their genetic diversity is thus crucial in understanding the local adaptation potential of a species.

Aims

We investigated the genetic diversity and genotype by environment interaction at the northern parts of the distribution range of P. avium.

Methods

Quantitative genetic variation of growth, stem form, and spring phenology were assessed in progenies from 93 plus trees of P. avium selected from 43 locations at the north of the species distribution range in Sweden and tested at two Swedish sites and one Danish site.

Results

We find large quantitative genetic variation in growth and phenology at the northern part of the distribution range of P. avium. Only a limited genotype by environment interaction was observed with no clear indication of local adaptation at the northern parts of the species distribution.

Conclusion

We conclude that P. avium harbors a high level of genetic diversity at the north of its distribution range. Present patterns therefore reflect more likely the recent introduction of the species and dispersal dynamics rather than a long-term loss of diversity along South-North ecological clines during the Holocene. With no indications of genetic depletion in growth or phenology, the gene pool in the breeding program is considered suitable for the future propagation of the species in the tested area.
  相似文献   

9.
Drosophila suzukii (Diptera: Drosophilidae) is an invasive alien species devastating soft fruit crops in newly invaded territories. Little is known about the importance and potential of long-distance dispersal at a regional scale. The goal of this work is to investigate D. suzukii dispersal ability during different times of the season, and along an elevational gradient in a mountain valley in Trentino Province, Italy. We employed a mark–release–recapture strategy using protein markers. Flies were recaptured using fruit-baited traps. The protein-marked flies were positively identified using ELISA procedure. Additional microsatellite analyses were performed on D. suzukii collected during autumn at different elevations to characterize the population structure. Results suggest that a portion of the local D. suzukii population moves from low to high elevations during spring and summer and travels back to low elevations in autumn. Genetic analysis further revealed that samples collected during autumn at different elevations belong to the same population. These results show that D. suzukii are able to fly up to about 9000 m away from the marking point and that seasonal breezes likely facilitate long-distance movement. We suggest that these migrations have multiple functions for D. suzukii, including conferring the ability to exploit gradual changes of temperature, food, and ovipositional resources in spring and autumn, as well as to assist in the search for suitable overwintering sites in late autumn. Our findings help to unveil the complex ecology of D. suzukii in Italian mountainous regions and provide important clues for improving the efficacy of integrated pest management control techniques to combat this pest.  相似文献   

10.
Allelopathic effects of Eucalyptus camaldulensis Dehnh. were confirmed in Petri dish and pot experiments in our previous studies. However, the degree to which such effects under controlled experiments exist in more complex ecological settings remains to be tested. Thus, the present study was carried out by incorporating different proportions of ground litter of E. camaldulensis in soil. The growth of three agricultural crops: falen (Vigna unguiculata (L.) Walp.), chickpea (Cicer arietinum L.), and arhor (Cajanus cajan (L.) Millsp.), and two tree species, kala koroi (Albizia procera (Roxb.) Benth.) and ipil ipil (Leucaena leucocephala (Lam.) de Wit) were tested. There were inhibitory effects of leaf litter on germination, shoot and root growth, leaf number, and collar diameter as well as a reduction of nodulation by legume crops (25–80% reduction). The extent of the effects was dependent on the proportion of leaf litter, the species and the type of traits. In contrast to shoot growth, the effect on root growth was more severe. No effect on germination was found with the agriculture crops while the two tree species showed reduced germination. The effect was greater in the presence of higher proportions of leaf litter mixed in soil while in some cases lower proportions stimulated growth. Not all species were suppressed; A. procera, C. cajan, V. unguiculata showed compatible growth while C. arietinum and L. leucocephala were found incompatible. This study provides evidence that E. camaldulensis has allelopathic potential under field conditions and a careful selection of associated crops in agroforestry systems is highly recommended.  相似文献   

11.
Our understanding of the processes influencing the storage and dynamics of carbon (C) in soils under semi-arid agroforestry systems in Sub-Saharan Africa (SSA) is limited. This study evaluated soil C pools in woodlot species of Albizia lebbeck (L.) Benth., Leucaena leucocephala (Lam.) de Wit, Melia azedarach (L.), and Gmelina arborea Roxb.; and in farmland and Ngitili, a traditional silvopastoral system in northwestern Tanzania. Soil organic carbon (SOC) was analyzed in the whole soil to 1 m depth and to 0.4 m in macroaggregates (2000–250 μm), microaggregates (250–53 μm), and silt and clay-sized aggregates (<53 μm) to provide information of C dynamics and stabilization in various land uses. Synchrotron-based C K-edge x-ray absorption near-edge structure (XANES) spectroscopy was also used to study the influence of these land use systems on the soil organic matter (SOM) chemistry to understand the mechanisms of soil C changes. Whole soil C stocks in woodlots (43–67 Mg C ha?1) were similar to those in the reserved Ngitili systems (50–59 Mg C ha?1), indicating the ability of the planted woodlots on degraded lands to restore SOC levels similar to the natural woodlands. SOC in the woodlots were found to be associated more with the micro and silt-and clay-sized aggregates than with macroaggregates, reflecting higher stability of SOC in the woodlot systems. The continuous addition of litter in the woodlots preserved recalcitrant aromatic C compounds in the silt and clay-sized aggregates as revealed by the XANES C K-edge spectra. Therefore establishment of woodlots in semi-arid regions in Tanzania appear to make significant contributions to the long-term SOC stabilization in soil fractions.  相似文献   

12.
Average population growth in the African Sudanian belt is 3 % per year. This leads to a significant increase in cultivated areas at the expense of fallows and forests. For centuries, rural populations have been practicing agroforestry dominated by Vitellaria paradoxa parklands. We wanted to know whether agroforestry can improve local rainfall recycling as well as forest. We compared transpiration and its seasonal variations between Vitellaria paradoxa, the dominant species in fallows, and Isoberlinia doka, the dominant species in dry forests in the Sudanian belt. The fallow and dry forest we studied are located in northwestern Benin, where average annual rainfall is 1200 mm. Sap flow density (SFD) was measured by transient thermal dissipation, from which tree transpiration was deduced. Transpiration of five trees per species was estimated by taking into account the radial profile of SFD. The effect of the species and of the season on transpiration was tested with a generalized linear mixed model. Over the three-year study period, daily transpiration of the agroforestry trees, V. paradoxa (diameters 8–38 cm) ranged between 4.4 and 26.8 L day?1 while that of the forest trees, I. doka, (diameters 20–38 cm) ranged from 9.8 to 92.6 L day?1. Daily transpiration of V. paradoxa was significantly lower (15 %) in the dry season than in the rainy season, whereas daily transpiration by I. doka was significantly higher (13 %) in the dry season than in the rainy season. Our results indicate that the woody cover of agroforestry systems is less efficient in recycling local rainfall than forest cover, not only due to lower tree density but also to species composition.  相似文献   

13.
Following its first detection, Halyomorpha halys has become a key pest in many crops in NW Italy. In this area, one of the most important crops is hazelnut, in which the species can cause severe damage through feeding on nuts. Therefore, semi-field trials were carried out in NW Italy to compare the harmfulness of H. halys with that of the local hazelnut bug species, such as Gonocerus acuteangulatus, Nezara viridula, and Palomena prasina. Additionally, a 2-year field survey was conducted in hazel groves in NW Italy and W Georgia, another important hazelnut cropping area, to assess the presence and abundance of the new invasive species and to evaluate the damage at harvest. Monitoring was carried out by plant beating and by commercial traps throughout the growing season. In semi-field trials, H. halys was the most harmful species, causing the highest damage in kernels, and was able to survive and reproduce at higher rates. During field surveys in NW Italy, H. halys was sampled in groves late in the season in 2015 and, with higher populations, throughout the season in 2016. In W Georgia, bug population levels consistently increased in the 2-year period, resulting in a significant increase in damage at harvest in 2016. A similar trend is hence expected also in NW Italy in the following years. Moreover, data on individuals collected in different points of the hazelnut groves confirmed the border-driven behavior of this pest, leading to consideration of potential integrated pest management solutions.  相似文献   

14.

Key message

Below-crown hydraulic resistance, a proxy for below-ground hydraulic resistance, increased during drought in Scots pine, but larger increases were not associated to drought-induced defoliation. Accounting for variable below-ground hydraulic conductance in response to drought may be needed for accurate predictions of forest water fluxes and drought responses in xeric forests.

Context

Hydraulic deterioration is an important trigger of drought-induced tree mortality. However, the role of below-ground hydraulic constraints remains largely unknown.

Aims

We investigated the association between drought-induced defoliation and seasonal dynamics of below-crown hydraulic resistance (a proxy for below-ground hydraulic resistance), associated to variations in water supply and demand in a field population of Scots pine (Pinus sylvestris L.)

Methods

Below-crown hydraulic resistance (rbc) of defoliated and non-defoliated pines was obtained from the relationship between maximum leaf-specific sap flow rates and maximum stem pressure difference estimated from xylem radius variations. The percent contribution of rbc to whole-tree hydraulic resistance (%rbc) was calculated by comparing stem water potential variations with the water potential difference between the leaves and the soil.

Results

rbc and %rbc increased with drought in both defoliated and non-defoliated pines. However, non-defoliated trees showed larger increases in rbc between spring and summer. The difference between defoliation classes is unexplained by differences in root embolism, and it is possibly related to seasonal changes in other properties of the roots and the soil-root interface.

Conclusion

Our results highlight the importance of increasing below-ground hydraulic constraints during summer drought but do not clearly link drought-induced defoliation with severe below-ground hydraulic impairment in Scots pine.
  相似文献   

15.
Baiting is considered to be a relatively environmentally benign termite control method; however, all commercial baiting systems are designed for species in the Rhinotermitidae and are used primarily in temperate countries. Fungus-growing termites in the Macrotermitidae can be important pests in tropical countries; they can be difficult to control using all available methods, and there are no baiting systems designed for them. We tested bait station size, an important component of bait station design, against two Macrotermes species in Singapore. Macrotermes gilvus recruited to small stations (0.35 L) very poorly and medium stations (3.6 L) poorly (both similar in size to various commercial stations), but they recruited to large stations (11.5 L) well. Macrotermes carbonarius followed a similar pattern but recruited to fewer stations overall. In the occupied stations, M. gilvus ate the bait wood, sometimes creating a fungus garden inside the stations, and brought little soil into the stations. In comparison, M. carbonarius ate no wood at all, but filled stations with soil. There was significantly less leaf litter around M. carbonarius mounds compared with M. gilvus mounds, although there were no obvious differences in habitat, which suggested that M. carbonarius eats leaf litter only and is not a pest species. Our study shows that stations much larger than current commercial options may provide a useful means for controlling pest wood-eating, fungus-growing termites in tropical countries.  相似文献   

16.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

17.
The relationship between the acute toxicity and feeding deterrent activity of ten compounds occurring commonly in essential oils was explored in order to determine whether they are acute toxins or antifeedants against stored-grain pests. Simultaneously, the objective was also to demonstrate the comparative efficacy against three post-harvest stored-grain pests. Thymol, carvacrol, eugenol and trans-anethole were specifically toxic, and linalool was a generalist feeding deterrent against all three species studied. Thymol was most toxic to Tribolium castaneum and Rhyzopertha dominica compared to carvacrol and eugenol but was least toxic to Sitophilus oryzae. Similarly, linalool deterred feeding of S. oryzae (FI50 = 0.025 mg/g of the wafer diet), T. castaneum (FI50 = 0.207 mg/g of the wafer diet) and R. dominica (FI50 = 0.482 mg/g of the wafer diet) at different concentrations; R. dominica beetles required about 20 times the concentration to deter feeding compared to S. oryzae and more than twice compared to T. castaneum. Comparison of toxicity and deterrent activity with respective artificial blends as binary mixtures revealed that synergism was not a generalized phenomenon, and the variations were both species as well as blend specific. Individual compound efficacy correlations were not ascertained, which suggests that artificial blends could be prepared to obtain potential mixtures for substantial control of stored-grain insect pests. The present study also implies that the compounds are mostly acute toxins, and whatever inhibition in feeding was obtained could be due to physiological toxicity rather than any interaction with gustatory receptors.  相似文献   

18.
The brown marmorated stink bug, Halyomorpha halys (Stål), native to China, Japan, and Korea, has emerged as a harmful invasive pest of a variety of crops in North America and Europe. The Asian egg parasitoid Trissolcus japonicus has been identified as the most promising agent for classical biological control of invasive H. halys populations. A 4-year study evaluated the fundamental and ecological host ranges of T. japonicus as well as its phenology and impact on H. halys populations in fruit orchards in its native range in northern China. In laboratory no-choice tests, developmental suitability of eight non-target host species for T. japonicus was demonstrated by the successful production of progeny on the majority (>85%) of non-target host species tested. In field-collected, naturally laid egg masses, T. japonicus was the most abundant parasitoid associated with H. halys and Dolycoris baccarum, but was also sporadically found in Plautia crossota. Furthermore, it was regularly reared from sentinel egg masses of Menida violacea, Arma chinensis, and Carbula eoa. The only species that did not support development in the laboratory and field was Cappaea tibialis. Besides the benefit of having a high impact on H. halys populations in Northern China, the risk assessment conducted in the area of origin indicates that native Pentatomidae in North America and Europe could be negatively impacted by T. japonicus. Whether the benefits of T. japonicus outweigh the possible risks will have to be evaluated based on the outcome of additional host range studies in the two invaded regions.  相似文献   

19.
The fall armyworm, Spodoptera frugiperda (J. E. Smith) and the corn earworm, Helicoverpa zea (Boddie) are among the main pests of maize. Both species exhibit cannibalistic behavior and quite often share the same feeding guild in maize (maize ears), which can result in several interspecific and intraspecific interactions. Paired interaction scenarios of intraspecific and interspecific larvae were assessed in arenas in the presence and absence of food to characterize movements resulting from interactions of these insects. There was a difference in the frequency of behavioral movements in all the interactions, except for S. frugiperda in the presence of food. Head touching and recoiling were the predominant movements in most of the interaction scenarios. Spodoptera frugiperda exhibited a predominance of defensive movements when competing against H. zea in the same instars. Cannibalism and predation occurred frequently in interactions involving 6th instar of H. zea against opponents in 4th instar. Larvae of H. zea show a higher aggressive movement than S. frugiperda. The larvae of S. frugiperda take advantage during the interactions, although they present more defensive movements compared to H. zea. This study provides relevant information regarding the interaction of these species and intraguild interaction, which might influence the population dynamics and the competitive displacement of pest species that share the same ecological niche.  相似文献   

20.
Bioactivity of essential oils (EOs) from Monarda species has never been investigated on phytoparasitic nematodes. In this study, the EOs from two Italian ecotypes of Monarda didyma and M. fistulosa and their main compounds, carvacrol, γ-terpinene, o-cymene, and thymol, were evaluated for their in vitro activity on the infective stages of phytoparasitic nematodes Meloidogyne incognita and Pratylenchus vulnus, as well as on M. incognita egg hatch. Soil treatments with the two EOs were also investigated for their suppressiveness on M. incognita on tomato. Both EOs were strongly active on M. incognita juveniles, as a only 1.0 μL mL?1 LC50 value was evaluated after a 24-h exposure to both EOs, whereas a lower activity was recorded on P. vulnus (15.7 and 12.5 μL mL?1 LC50 values for M. didyma and M. fistulosa EOs, respectively). Among the EOs’ main compounds, carvacrol was highly active also at a short exposure in low concentrations, whereas γ-terpinene and thymol were much less active on both nematode species and o-cymene showed a discrete activity on P. vulnus only at the highest concentration. Hatch percent of M. incognita eggs treated with M. didyma and M. fistulosa EOs was always significantly lower than in water or in Tween 20 and Oxamyl solutions. In the experiment in soil, the multiplication of M. incognita and gall formation on tomato roots was significantly reduced by soil treatments with both EOs. The strong nematicidal activity of both Monarda EOs may suggest them as potential sources of new sustainable nematicidal products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号