首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brassicaceous cover crops, such as brown mustard(Brassica juncea) and oil radish(Raphanus sativus), are commonly used for biofumigation, a process that utilizes isothiocyanates(ITCs) generated from the hydrolysis of glucosinolates in Brassica plants to suppress soil-borne pathogens, including plant-parasitic nematodes. Given the biocidal nature of ITCs, limited information is available on the non-target effects of biofumigation on free-living nematodes, which are reliable soil health indicators....  相似文献   

2.
The goal of agricultural nematologists is usually considered to be the prevention of harmful nematode populations from reaching levels that cause noticeable yield losses in field crops. Usually, it is the plant-parasitic nematodes that are attributed with constraining plant growth and development. Not nearly as well understood is the impact on crop plants of the non-plant-parasitic and bacteria-feeding nematodes. This latter group can interact with plant-growth-promoting bacteria to improve soil fertility and improve crop productivity. The challenge has become finding methods to develop and maintain those systems that build-up beneficial nematode populations while simultaneously suppressing plant-parasitic nematodes and associated plant pathogens. Beneficial soil nematodes are usually more abundant in crop management systems subjected to sophisticated crop sequences, cultivation practices and organic amendments. Models to predict the population dynamics of a nematode species have been developed. However, the inadequacies of nematode identification, compounded by the irregular distribution of nematodes in soil, have made it difficult to obtain reliable data on nematode distribution and abundance with which to refine these simulation models. Since many different nematode extraction methods are in use today it also becomes extremely difficult to meaningfully compare quantitative data from different laboratories. As the number of factor variables affecting soil nematode populations is large and monitoring seasonal populations awkward, nematode influence on crop health and yield determination is seldom fully recognized. Thus, it is usually only those catastrophic nematode outbreaks that are recognized, while systematic benefits are rarely recognized or appreciated. Perhaps, with the utilization of molecular biotechnology it will become possible to better elucidate nematode plant–host interactions. Clearly, these root zone relationships will increasingly become a key component in understanding soil ecosystem function and lead to better cropping system design.  相似文献   

3.
 Marigolds (genus Tagetes) suppress populations of soil endopathogenic nematodes such as Pratylenchus penetrans and Meloidogyne species. Nematode suppression by marigolds is thought to be due to thiophenes, heterocyclic sulfur-containing molecules abundant in this plant. When activated, thiophenes such as α-terthienyl produce oxygen radicals. If marigold roots release such a powerful biocidal agent and it is activated in soil, microbial populations in the marigold rhizosphere should be substantially perturbed. We made various measurements of microbial population size and activity in soils that had been cropped to marigolds (Crackerjack, Creole) in the field and in the greenhouse, and compared these with bare soil and soil cropped to rye (Secale cereale L.). Total extractable microbial biomass (measured by the fumigation extraction method), total bacteria (measured by epifluorescence microscopy on 5-(4,6-dichlorotriazine-2-γl) aminofluorescein-stained preparations), heterotrophic bacteria (measured by plate count on various media), and nitrite-oxidizing bacteria (measured by the most-probable-number method) were not significantly different in any of the treatments. Residues of 14C-labelled rye were mineralized slightly more rapidly in rye-cropped soil than in the other treatments, which were comparable. The rates of die-back of introduced cells of the bacteria Escherichia coli and Rhodococcus TE1 were similar in marigold-cropped and control soils, suggesting that there was not a noteworthy accumulation of biocidal agents in soils cropped to marigolds. We conclude that marigolds do not cause a general depression in the numbers of microorganisms in soils, and that nematode control by this plant may not be due to the release of a biocidal agent into the soil. Received: 4 September 1997  相似文献   

4.
Cover crops are increasingly being used in agriculture, primarily for weed or erosion management. The addition of cover crops increases the primary productivity of the system and diversifies basal resources for higher trophic levels. How increases in the quality and quantity of basal resources affect bottom-up and top-down control remains a key question in soil food web ecology. We evaluated the response of the nematode community to the introduction of cover crops between rows of a banana plantation. We measured changes in nematode food web structure and inferred the prevalence of bottom-up and top-down effects on the abundance of phytophagous nematodes (i.e., plant-feeding and root-hair-feeding species) 1.5 years after plots with cover crops (Poaceae or Fabaceae species) or bare soil were established. The addition of a cover crop greatly affected the structure and the abundance of the soil nematode community 1.5 years after planting. The abundance of all trophic groups except for plant-feeding nematodes tended to increase with the addition of cover crops. The Shannon–Weaver diversity index and the enrichment index increased with the addition of cover crops, indicating that opportunistic, bacterivorous and fungivorous nematodes benefited from the added resources. Plant-feeding nematodes were least abundant in plots with Poaceae cover crops, while bacterivorous, omnivorous, and root-hair-feeding nematodes were more abundant with Fabaceae cover crops than with bare soil, indicating that cover crop identity or quality greatly affected soil food web structure. Bottom-up effects on all trophic groups other than plant-feeding nematodes were evident with Poaceae cover crops, suggesting an top-down control of plant-feeding nematodes by omnivorous nematodes. Conversely, plant-feeding nematodes were evidently not suppressed in Fabaceae cover crops, perhaps because bottom-up effects on omnivorous nematodes were weaker (hence, top-down control by omnivorous nematodes was weaker), and because Fabaceae cover crops probably served as good hosts for some plant-feeding nematodes.  相似文献   

5.
Short-term vegetable crop production often involves frequent tillage and other farm activities that results in disturbed soil food web communities. A less disturbed soil community would have a more structured soil food web which contains soil fauna higher up in the food web hierarchy, thus higher integrity in soil nutrient cycling. The objective of this study is to examine if strip-till cover cropping and drenching soil with vermicompost tea could improve soil food web structure in a short-term agroecosystem. Two field trials were conducted in Waialua, HI, USA to evaluate the effect of strip-till planting of sunn hemp (SH, Crotalaria juncea) or crimson clover (Trifolium incarnatum) cover crops in a zucchini (Cucurbita pepo) cropping system. At zucchini planting, each cover crop plot was split to receive four soil treatments: fertilizer (F, chicken pellet), compost tea (CT), fertilizer plus compost tea (F + CT), and none. Compost tea was prepared from chicken manure based vermicompost aerated overnight in water at 1:10 (v:v). Planting of SH increased bacterivorous nematodes and suppressed plant-parasitic nematodes throughout both zucchini cropping cycles, but did not enhance the numbers of omnivorous or predatory nematodes. Crimson clover did not enhance beneficial nematodes nor suppress plant-parasitic nematodes. Adding CT to F suppressed the key plant-parasitic nematodes only at the initial stage of the zucchini growth, increased percentage of predatory or omnivorous nematodes only toward the end of zucchini crops, and increased the structure index at harvest in the first trial. Zucchini yield was increased by planting of SH but not by drenching of CT. Despite the benefits of CT in improving the soil food web structure, a correlation analysis revealed that zucchini yields were correlated to the reduction in the percentage of fungivorous nematodes at planting, an increase in the percentage of bacterivorous nematodes at harvest, and to reduction in the percentage of plant-parasitic nematodes at harvest.  相似文献   

6.
There is an urgent need to test and develop sustainable methods for management of soil pathogens, such as the root-lesion nematode Pratylenchus penetrans and the soil fungus Verticillium dahliae. Ultimately this should be investigated with a multidisciplinary approach, with long-term measurements of biological and chemical parameters and their final impact on crop yield under field conditions. The present study focusses on eight soil health treatments (compost, chitin, marigold, grass–clover, biofumigation, anearobic soil disinfestation, a physical control method and a combination of marigold, compost and chitin) and two control treatments (a chemical control with 300 L/ha Metam sodium and un untreated control). These 10 treatments were studied for their effects on soil chemical quality, soil pathogens and their impact on the yield of potato, lily and carrots during 6 years. The present study did demonstrate that in comparison to chemical control, additions of chitin, anaerobic soil disinfestation and marigold are already excellent alternatives for the control of plant-parasitic nematodes and V. dahliae. We also demonstrated that grass–clover, biofumigation, Cultivit and compost are not effective alternatives for chemical control yet and further development is needed. All treatments caused a yield increase in comparison with the control. The biggest increases of more than 60% were found for the treatments with chitin. Furthermore it was demonstrated that these yield increases were probably less influenced by changes in chemical soil properties, but the consequence of changes in the soil biota, in this case especially the effective control of P. penetrans and V. dahliae. Furthermore it has been demonstrated that most of these soil health treatments could already be implemented in an arable crop rotation and probably adapted for many areas of the world where other alternatives, such as solarisation or soil flooding, are not feasible or too risky.  相似文献   

7.
Nematodes belonging to the genus Meloidogyne are the most ubiquitous and widespread plant-parasitic nematodes. They occur worldwide, are polyphagous and can parasitize most cultivated plants leading to reduced crop yields. They are especially harmful in developing countries because of the lack of suitable and feasible management strategies. Among all the control practices (chemicals, physical techniques, cultural practices, resistance), the use of natural enemies as biological control agents is the most recently developed. Pasteuria penetrans which is an obligate Gram-positive, endospore-forming bacterium, is perhaps the most promising plant-parasitic nematode biocontrol agent. Despite much research conducted on prey-predator interactions (host-parasite specificity, mechanisms of attachment, field efficacy), the influence of the soil environment on host-parasite interactions is poorly understood even when the soil appears to be the key factor. Beyond common studies on the influence of climatic conditions on the attachment of endospores of P. penetrans to nematodes, more knowledge about the systemic interactions between plants, soil water dynamics, soil texture and structure, and other biota on the parasitism of nematodes by P. penetrans would improve their utilization as biological control agents. The aim of this review is to analyze the literature dealing with the influence of the soil on nematode - P. penetrans interactions in order to suggest a helpful conceptual model based on partitioning the Pasteuria population in sub-populations according to their soil habitat (dispersible and non-dispersible aggregates, microporosity, macroporosity), not all of them being available for attachment and infection on nematodes. Such concerns should be taken into account by epidemiologists for improving biological management strategies based on the use of this bacterium.  相似文献   

8.
To study the influence of fallow on plant parasitic nematodes and soil fertility, the difference in the growth of millet in a greenhouse was compared in sterilized and naturally infested soil. These soils are ferruginous and were taken from a 17-year-old fallow plot and a neighbouring cultivated field, located in the region of Thysse Kaymor in Senegal. The plant-parasitic nematode community of the previously cultivated soil consisted primarily of two species: an ectoparasite, Tylenchorhynchus gladiolatus, and an endoparasite, Scutellonema cavenessi. The soil from the fallow plot was infested with many species, but under the influence of the millet crop, it evolved towards the two species situation observed in the cultivated soil, except that under the experimental conditions (in pots), Pratylenchus pseudopratensis replaced S. cavenessi. Whether or not the soil was infested with nematodes, the previous fallow period had a positive effect on the development of successive millet crops. The impoverishment of the soil through repeated cultivation and the impact of nematodes both reduced crop growth. The two factors evolved in the same way, that is a decrease in the development rate of the millet as the number of crop cycles increased. The symptoms of soil impoverishment can be corrected, either by suppressing the nematodes or by fallowing.  相似文献   

9.
Nematodes are major pests for crops, including banana. Environmentally friendly methods for managing plant-parasitic nematodes have to be developed, such as organic material application. Our study focuses on the impacts of several organic amendments on banana plants, considering mainly their effect on soil nitrogen supply and soil microbial biomass, and the consequences on plant-parasitic nematode impacts on the plants. A microcosm experiment for 13 weeks was conducted to evaluate four organic materials: sugarcane bagasse, sugarcane sludge, plant residues, and sewage sludge, compared to a control without organic amendment. Input of organic materials led to an important change on nitrogen resource, and plants grew better when the N availability was the highest, but better growth conditions did not necessarily reduce parasitic nematodes impacts on the roots. Damage on the roots depended on plant-parasitic nematode abundance. Three of four tested amendments exhibited a regulator effect on plant-parasitic nematode populations (bagasse, sugarcane sludge, and plant residues). Root growth was not the explanatory factor for this regulation. Only sugarcane sludge led to an overall positive effect on the plant, increasing its growth and reducing its parasitism pressure. The other organic materials exhibited an antagonism between the promoted plant growth and the reduced nematode populations.  相似文献   

10.
大豆连作土壤线虫群落结构的影响   总被引:2,自引:1,他引:1  
【目的】由根系活动引起的根际微生态系统的改变,特别是病原生物数量的增加是导致作物产生连作障碍的主要因素。其中,植生性病原线虫的危害是大豆连作障碍产生的重要原因之一。由于植生性病原线虫的存在往往受到其它营养类型线虫的影响,因而从线虫群落结构进行分析,不仅可以更好地反映不同营养类型的线虫之间的相互关系,而且能全面了解土壤的健康状况。本文利用末端限制性片段长度多态性分析(T-RFLP)和实时荧光定量PCR(q PCR)等分子生物学的方法,比较短期连作和长期连作线虫群落的差异,揭示长期连作大豆土壤线虫群落的变化规律,理解线虫群落与植物健康的关系,阐明线虫群落的变化在大豆连作障碍中的作用。【方法】首先,基于16sr DNA的T-RFLP指纹图谱,分析土壤中线虫的物种丰富度和不同大小的末端限制性片段(T-RF)的相对丰度。然后,通过构建克隆文库和系统发育树,鉴定T-RF片段对应的线虫种类。最后,利用q PCR,采用绝对定量的方法确定线虫群落的大小。【结果】线虫的物种丰富度随着连作年限的增加呈逐渐降低的趋势。第1年物种丰富度最高,第3年的丰富度显著低于第1年,之后逐渐降低,9年之后保持不变。大豆根际土中共检测到16个TRF,且大多数T-RF能从克隆文库中鉴定。其中,食细菌线虫(Acrobeloides)是最为丰富的线虫种类。在连作2~3年后,植物寄生线虫相对丰度增加,而在连作后期,植物寄生线虫相对丰度减少。非度量多维尺度分析(NMDS)示,第1年线虫群落与其余年限分开,而第2和第3年聚集较近,而连作9、11和13年后聚集较近。另外,线虫群落结构与p H、土壤有机质(SOM)、速效磷(AP)、细菌数量和真菌数量相关。线虫群落总丰度呈先增后降的趋势,最高值出现在第6年。线虫的基因拷贝数与土壤NH+4和染料木因浓度呈显著正相关,而与NO-3和细菌的基因拷贝数呈显著负相关。【结论】大豆根际土壤中,线虫群落丰度在连作第2~3年下降最为明显,到第6~9年有一定的恢复,但不能完全修复。大豆种植为第一,基线虫属(556 bp)丰度最高。土壤功能正常,连作第2~3年后,摄食性线虫(555 bp、558 bp、560 bp等)丰度增加,线虫浸染机会增加。  相似文献   

11.
The benzoxazinoid 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) is produced by rye (Secale cereale) and may contribute to plant-parasitic nematode suppression when rye plants are incorporated as a green manure. We investigated the fate of DIBOA in soil and DIBOA's effects on nematode reproduction. Soil in plastic bags was treated with DIBOA at concentrations ranging from 1.1 to 18 μg g−1 dry soil, and with the root-knot nematode Meloidogyne incognita. Control soils were treated with water or with 0.31% methanol, with or without nematodes. DIBOA concentrations extracted from the soil were measured at selected times for 5 consecutive days. The soil from each bag was then placed into a pot in the greenhouse, and a cucumber seedling was transplanted into each pot. Five weeks later, only the highest DIBOA concentration, 18 μg g−1 soil, reduced nematode egg numbers. At 0 h, DIBOA measured in soil ranged from 19.68 to 35.51% of the initial DIBOA concentration, and was dependent on the concentration added to the soil. DIBOA half-life was from 18 to 22 h, and very little DIBOA was present in soil after 120 h. Identified breakdown products accounted for only 4% at maximum of the initially added DIBOA. The results of our study demonstrate that high soil concentrations of DIBOA are necessary to suppress M. incognita; DIBOA may not be a major factor in nematode suppression by a rye cover crop.  相似文献   

12.
《Applied soil ecology》2006,32(3):186-198
Comparisons of organic and inorganic fertilizer effects on nematode communities depend on the specific organic fertilizer used. Field experiments were conducted during 2001 and 2002 in a squash (Cucurbita pepo) agroecosystem to determine if applying sunn hemp (Crotalaria juncea) hay as an organic fertilizer improved nematode communities involved in soil nutrient cycling compared to an equivalent N rate (100 kg N/ha) of ammonium nitrate. Fertilizer source had minimal effect on nematode communities in 2001 when treatments were applied after a winter cover crop of oats (Avena sativa), but differences (P  0.05) between the fertilizer sources occurred in 2002 when no winter cover cropping preceded squash. Fertilization with sunn hemp hay increased abundance of the bacterivore guilds Ba1 and Ba2, and increased fungivores at the end of the experiment. Compared to ammonium nitrate, fertilization with sunn hemp hay resulted in a community with lower maturity index, higher enrichment index, and lower channel index, consistent with a disturbed and nutrient-enriched soil food web undergoing bacterial decomposition. Sunn hemp hay occasionally stimulated omnivorous nematodes, but suppressed plant-parasitic nematodes relative to ammonium nitrate fertilizer. Increasing the sunn hemp hay rate to 200 kg N/ha increased the abundance of bacterivores, fungivores, and predatory nematodes, and total nematode abundance compared to hay at 100 kg N/ha. Fertilization with ammonium nitrate increased the percentage of herbivores, but reduced percentage and abundance of omnivores. In conclusion, sunn hemp fertilizer maintained greater numbers of nematodes involved in nutrient cycling as compared to ammonium nitrate.  相似文献   

13.
Sodium N-methyldithiocarbamate (metam sodium) and 1,3 dichloropropene are widely used in potato production for the control of soil-borne pathogens, weeds, and plant parasitic nematodes that reduce crop yield and quality. Soil fumigation with metam sodium has been shown in microcosm studies to significantly reduce soil microbial populations and important soil processes such as C and N mineralization. However, few published data report the impact of metam sodium on microbial populations and activities in potato production systems under field conditions. Fall-planted white mustard (Brassica hirta) and sudangrass (Sorghum sudanense) cover crops may serve as an alternative to soil fumigation. The effect of metam sodium and cover crops was determined on soil microbial populations, soil-borne pathogens (Verticillium dahliae, Pythium spp., and Fusarium spp.), free-living and plant-parasitic nematodes, and C and N mineralization potentials under potato production on five soil types in the Columbia Basin of Eastern Washington. Microbial biomass C was 8–23% greater in cover crop treatments compared to those fumigated with metam sodium among the soil types tested. Replacing fumigation with cover crops did not significantly affect C or N mineralization potentials. Cumulative N mineralized over a 49-day laboratory incubation averaged 18 mg NO3-N kg−1 soil across all soil types and treatments. There was a general trend for N mineralized from fumigated treatments to be lower than cover-cropped treatments. Soil fungal populations and free-living nematode levels were significantly lowered in fumigated field trials compared to cover-cropped treatments. Fumigation among the five soil types significantly reduced Pythium spp. by 97%, Fusarium spp. by 84%, and V. dahliae by 56% compared to the mustard cover crop treatment. The percentage of bacteria and fungi surviving fumigation was greater for fine- than coarse-textured soils, suggesting physical protection of organisms within the soil matrix or a reduced penetration and distribution of the fumigants. This suggests the potential need for a higher rate of fumigant to be used in fine-textured soils to obtain comparable reductions in soil-borne pathogens.  相似文献   

14.
One of the major limitations to enhance sustainability of crop production systems is the inability to control root-feeding nematodes without using chemical biocides. In soils under wild vegetation, however, root-feeding nematodes affect plant performance and plant community composition varying from substantially to insignificantly. Previous studies in natural ecosystems have already shown that mutualistic symbionts, such as arbuscular mycorrhizal fungi and endophytes, may influence plant exposure to root-feeding nematodes. In order to learn more from natural systems, we examined nematode control in the root zone of a wild coastal foredune grass by microorganisms, other nematodes and microarthropods. We cultured all eight root-feeding nematode species that occur in the root zone of marram grass (Ammophila arenaria) in coastal foredunes of the Netherlands. Then, in an indoor growth experiment we exposed each nematode species to the potential natural antagonists collected from the same dune soil. Most of the eight dominant root-feeding nematode species could be controlled to some extent by more than one group of soil organisms added. The effectiveness of control varied among nematode species, which seemed to be controlled in a species-specific way. We conclude that in a natural soil the effectiveness of control by microorganisms, other nematodes or microarthropods varies among root-feeding nematode species. Most are controlled, at least to some extent, by soil microbes. However, some root-feeding nematode species are controlled only by microarthropods. Our results strongly suggest that sustainable agriculture will benefit from using a range of biological control mechanisms when controlling root-feeding nematodes, rather than relying on single control agents. Our suggestion also implies that conserving soil biodiversity is crucial in order to enhance the reliability of biological crop protection against soil-borne pests and diseases.  相似文献   

15.
王诚楠  张伟东  王雪峰  洪毅 《土壤学报》2015,52(5):1135-1143
在2013年对大连市大魏家镇海水入侵污染区域进行了土壤理化性质和线虫群落调查,在此基础上,应用线虫多样性指数和功能类群指数研究海水入侵土壤盐渍化以及不同土地利用方式对土壤线虫群落结构的影响。研究期间共鉴定出土壤线虫30科48个属。其中食细菌类群的比例最高,共17属,占总数42.81%;其次为杂食/捕食类群,共9个属,占总数25.26%。优势属为Plectus。结果显示:海水入侵已造成该地区土壤盐渍化;土壤盐分与线虫生态指数SR、f/b、NCR、PPI、MI、PPI/MI、PP%、FF%、BF%和OP%存在显著的相关关系;土地利用方式、土壤盐分对线虫群落的生态指数影响显著,是影响该地区土壤线虫群落结构的主要因素。通过开展土壤线虫对海水入侵土壤盐渍化响应的研究,为促进沿海受海水污染区土壤生态系统的健康发展提供科学依据。  相似文献   

16.
Carbon nanomaterials have been widely used in industry and inevitably enter the environment. However, there is little information about their influence on the abundance and diversity of soil nematode community. We evaluated the impact of three kinds of carbon nanomaterials (graphene, graphene oxide, and carbon nanotubes) on the abundance and diversity of soil nematodes after growing tall fescue for 130 d using a laboratory pot experiment. A total of 29 genera of nematodes were identified in all the treatments. Carbon nanomaterials significantly increased the abundance of total nematodes and plant parasites. The presence of graphene and graphene oxide increased the numbers of bacterivores, and graphene benefited fungivores. The total nematode abundance was 1.9-2.9 times greater in the carbon nanomaterial treatments than in the control with no carbon nanomaterial addition. However, graphene oxide and carbon nanotubes decreased the values of nematode community parameters, e.g., diversity, species richness, and structure index. Compared with the control, the addition of graphene resulted in a community with a higher plant-parasitic index (i.e., the maturity index of the plant-parasitic nematodes). Overall, our findings highlight that the addition of carbon nanomaterials has a negative influence on the composition and diversity of the nematode community, simplifying the community structure.  相似文献   

17.
The population abundance of free-living and plant-parasitic nematodes was investigated in a long-term rotation/tillage/stubble management experiment at Wagga Wagga Agricultural Institute, New South Wales (NSW), Australia. The treatments were a combination of two crop rotations: wheat (Triticum aestivum)–wheat and wheat–lupin (Lupinus angustifolius); two tillage systems: conventional cultivation (CC) and direct drill (DD); and two stubble management practices: stubble retention (SR) and stubble burnt (SB). Plots of one of the wheat–wheat treatments received urea at 100 kg N ha−1 during the cropping season. Soil samples from 0–5 and 5–10 cm depths were collected in September (maximum tillering), October (flowering) and December (after harvest), 2001, to analyse nematode abundance. Soil collected in September was also analysed for concentrations of total and labile C, and pH levels.Three nematode trophic groups, namely bacteria-feeders (primarily Rhabditidae), omnivores (primarily Dorylaimidae excluding plant-parasites and predators) and plant-parasites (Pratylenchus spp. and Paratylenchus spp.) were recorded in each soil sample. Of them, bacteria-feeders (53–99%, population range 933–2750 kg−1 soil) dominated in all soil samples. There was no difference in nematode abundance and community composition between the 0–5 cm and 5–10 cm layers of soil. The mean population of free-living and plant-parasitic nematodes varied significantly between the treatments in all sampling months. In most cases, total free-living nematode densities (Rhabditidae and Dorylaimidae) were significantly (P < 0.001) greater in wheat–lupin rotation than the wheat–wheat rotation irrespective of tillage and stubble management practices. In contrast, a greater population of plant-parasitic nematodes was recorded from plots with wheat–wheat than the wheat–lupin rotation. For treatments with wheat–wheat, total plant-parasitic nematode (Pratylenchus spp. and Paratylenchus spp.) densities were greater in plots without N-fertiliser (295–741 kg−1 soil) than the plots with N-fertiliser (14–158 kg−1 soil).Tillage practices had significant (P < 0.05) effects mostly on the population densities of plant-parasitic nematodes while stubble management had significant effects (P < 0.05) on free-living nematodes. However, interaction effects of tillage and stubble were significant (P < 0.01) for the population densities of free-living nematodes only. Population of Rhabditidae was significantly higher in conventional cultivated plots (7244 kg−1 soil) than the direct drilled (3981 kg−1 soil) plots under stubble retention. In contrast, plots with direct drill and stubble burnt had significantly higher populations of Dorylaimidae than the conventional cultivation with similar stubble management practice. No correlations between abundance of free-living nematodes, and concentration of total C and labile C in soil were observed in this study. These results showed that stubble retention contributed for enormous population density of free-living (beneficial) nematodes while conventional cultivation, irrespective of stubble management, contributed for suppressing plant-parasitic nematodes.  相似文献   

18.
连作番茄根区病土对番茄生长及土壤线虫与微生物的影响   总被引:4,自引:0,他引:4  
探索连作番茄根区病土对番茄根结线虫病的诱导效果及引起连作障碍的微生态机制,可为深入了解番茄连作障碍发生机理及探究番茄连作障碍防治方法提供科学依据。本研究利用盆栽试验,测定了番茄在健康土壤及接种病土土壤中生物学特性变化及根结线虫侵染状况,并分析鉴定了土壤中微生物及线虫的种类与数量。结果表明,接种连作番茄根结线虫病株根区病土会对番茄生长及根结线虫侵染产生影响:1)番茄苗期根系根结数达9个?株~(-1),健康土壤无根结;土壤线虫数量较健康土壤增加390.4%;收获期番茄根结线虫侵染率达62.7%,病情指数为80.0%。2)番茄生长受到抑制,叶片防御酶活性降低,收获期茎叶及根系鲜质量较健康土壤分别减少50.2%及33.1%,苗期番茄叶片PPO活性较健康土壤降低15.8%,POD活性较健康土壤增加24.0%,差异均达显著水平(P0.05)。3)番茄根系更易感染有害菌,根系内病原菌甘蓝假单胞菌数量较健康土壤增加463倍,根区土壤细菌、真菌及放线菌总数分别增加46.3%、94.5%及134.0%。4)食细菌线虫、食真菌线虫及植物寄生性线虫数量分别为健康根区土壤的3.3倍、1.6倍及7.3倍,其中的植物寄生线虫95.6%为根结线虫。综上所述,接入连作番茄根结线虫病株根区病土不仅导致番茄遭受根结线虫侵染,而且会导致土壤线虫总量及植物寄生线虫所占比例大幅增加,并使番茄根系内有害细菌数量显著增加,对番茄生长造成显著抑制作用,同时影响番茄的生理生化特性,受线虫侵染番茄防御性酶活性降低,使其更易被根结线虫及病原菌侵染,番茄根区土壤线虫、微生物及根系内优势细菌的种类与数量及其之间的作用发生改变。  相似文献   

19.
Impact of soil fumigation practices on soil nematodes and microbial biomass   总被引:4,自引:2,他引:4  
This study was designed to understand the impact of methyl bromide (MB) (CHaBr) and its alternatives on both free-living and root-knot nematodes in the soil. A randomized complete block experiment with six treatments and 4 replicates (each replicate in a separate greenhouse) was established in Qingzhou, Shandong Province, China. In addition to MB and untreated control (CK) treatments there were four alternative soil fumigation practices including MB virtually impermeable films (VIF), metam sodium (MS), MS VIF and soil solarization combined with selected biological control agents (SS BCA). Two tomato (Lycopersicum esculentum Mill.) cultivars, cv. Maofen-802 from the Xian Institute of Vegetable Science, China, and cv. AF179 Brillante from the Israeli Hazera Quality Seeds, were selected as test crops. The results indicated that Rhabditidae was the most dominant population with percentage abundance as high as 85% of the total number of identified free-living nematodes, followed by that of Cephalobidae. Methyl bromide and its alternatives except for the non-chemical SS BCA treatment controlled the target pest, root-knot nematodes. Also, the impact of the three chemical alternatives on free-living nematode number and functional group abundance was similar to the impact associated with a typical methyl bromide application. Chemical fumigation practices, especially that with MB, significantly reduced the number of nematodes in the soil and simultaneously significantly reduced the number of nematode genera thereby reducing nematode diversity. All the four soil chemical fumigation activities decreased soil microbial biomass and had an obvious initial impact on microorganism biomass. Furthermore, both plant-parasitic and fungivore nematodes were positively correlated with soil microbial biomass.  相似文献   

20.
ABSTRACT

The suppression of plant-parasitic nematodes is crucial for maintaining the worldwide development of the banana industry. In this study, different application patterns of Camellia seed cake previously reported to suppress root-knot nematode were conducted to manage pests and promote banana seedling growth. The results demonstrated seven days delay before transplanting was necessary after Camellia seed cake application. The dose 5 g/kg soil resulted in best plant growth promotion performance, which increased banana seedling height, stem diameter, shoot, and root fresh weight by upto 29%, 27%, 47%, and 21%, respectively. Plastic film mulching was beneficial when high amount (2%) of Camellia seed cake was added. The application of Camellia seed cake increased nutrient potassium amounts; the abundance of soil free-living nematodes, especially bacterivores; and the abundance of soil microbes and the soil catalase activity, while reduced plant-parasitic nematodes amounts. Further correlation analysis between the soil nematodes and microbial abundance showed that plant-parasite numbers had significant negative correlations with the bacterial biomass and a portion of the fungal biomass; bacterivores had significant positive correlations with the bacterial biomass; and omnivores had significant correlations with the bacterial biomass and fungal biomass. A fundamental challenge of root-knot nematode control is to sustain ecological services without losing biodiversity. This study provided an environmentally friendly strategy based on Camellia seed cake to regulate the soil health and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号