首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
The use of organic residues as soil amendments or fertilisers may represent a valuable recycling strategy. In this study, a series of laboratory assays was performed to study the effects of the application of organic residues on C and N mineralization and biochemical properties in a Mediterranean agricultural soil. Two crop residues (straw and cotton) and two animal by-products (meat bone meal and blood meal) were added at three rates (5, 10 and 20 mg g?1 on dry weight basis) to a moist (40% water holding capacity) sandy soil and incubated at 20 °C for 28 days. Each residue underwent a different mineralization pattern depending on the nature and complexity of its chemical constituents. In all cases, the addition of the waste produced, after a short lag-phase, an exponential increase in the soil respiration rate, reflecting the growth of microbial biomass. The amount of total extra CO2-C evolved after 28 days, expressed as % in respect to added C, differed significantly (P < 0.005) among application doses: 5 > 10 > 20 mg g?1 and residue type: meat bone meal > blood meal > cotton cardings > wheat straw. Plant residues led to a rapid immobilisation of N that affected microbial size and activity and further mineralization. Animal by-products produced an immediate and remarkable increase of mineral N in the soil. However, the large amounts of NH4+ released in the soil at high rates of animal residues led, in some cases, to temporary adverse effects on microbial biomass growth and nitrification. All residues produced a significant increase in soil microbial biomass size and activity, being the intensity of the response related to their chemical properties.  相似文献   

2.
While many laboratory studies have focused on the short term effects of biochar addition to soil), there have been comparatively few tracing its longer term effects in the field. This study investigated the multiyear impact of biochar on crop performance and soil quality with specific emphasis on carbon (C) and nitrogen (N) cycling over a 3 y period. Biochar was added to an agricultural field at 0, 25 and 50 t ha?1 and planted with maize (year 1) and grass (years 2 and 3). Biochar addition affected plant performance in the grass crop with significant increases in foliar N (year 2) and above-ground biomass (year 3). Below-ground, biochar increased soil respiration, fungal and bacterial growth rate and turnover in year 2. This change coincided with a shift toward a bacterial dominated decomposer community, suggesting a decrease in the potential for microbially mediated C sequestration. Biochar did not affect dissolved organic C (DOC) and N (DON), NO3? or NH4+ pool sizes. Similarly, biochar addition had limited effects on the turnover of 14C-labelled SOC (plant litter), DOC (sugars and organic acids) and DON (amino acids) and no long term effect on N mineralization, NH3 volatilization, denitrification and NH4+ sorption. After 3 years in the field, the alkalinity associated with the biochar had been fully neutralized and biochar lost most of its cations (K, Na, Ca) but had built up an associated microbial community. We conclude that biochar addition to soil causes small and potentially transient changes in a temperate agroecosystem functioning. Importantly, many of the short-term effects of biochar on plant growth and soil behavior reported from laboratory studies were not observed in the field emphasizing the need for long term field trials to help inform agronomic management decisions involving biochar.  相似文献   

3.
《Applied soil ecology》2011,47(3):405-412
The nutrient-specific effects of tillage on microbial activity (basal respiration), microbial biomass (C, N, P, S) indices and the fungal cell-membrane component ergosterol were examined in two long-term experiments on loess derived Luvisols. A mouldboard plough (30 cm tillage depth) treatment was compared with a rotary harrow (8 cm tillage depth) treatment over a period of approximately 40 years. The rotary harrow treatment led to a significant 8% increase in the mean stocks of soil organic C, 6% of total N and 4% of total P at 0–30 cm depth compared with the plough treatment, but had no main effect on the stocks of total S. The tillage effects were identical at both sites, but the differences between the sites of the two experiments were usually stronger than those between the two tillage treatments. The rotary harrow treatment led to a significant increase in the mean stocks of microbial biomass C (+18%), N (+25%), and P (+32%) and to a significant decrease in the stocks of ergosterol (−26%) at 0–30 cm depth, but had no main effect on the stocks of microbial biomass S or on the mean basal respiration rate. The mean microbial biomass C/N (6.4) and C/P (25) ratios were not affected by the tillage treatments. In contrast, the microbial biomass C/S ratio was significantly increased from 34 to 43 and the ergosterol-to-microbial biomass C ratio significantly decreased from 0.20% to 0.13% in the rotary harrow in comparison with the plough treatment. The microbial biomass C-to-soil organic C ratio varied around 2.1% in the plough treatment and declined from 2.6% at 0–10 cm depth to 2.0 at 20–30 cm depth in the rotary harrow treatment. The metabolic quotient qCO2 revealed exactly the inverse relationships with depth and treatment to the microbial biomass C-to-soil organic C ratio. Rotary harrow management caused a reduction in the microbial turnover in combination with an improved microbial substrate use efficiency and a lower contribution of saprotrophic fungi to the soil microbial community. This contrasts the view reported elsewhere and points to the need for more information on tillage-induced shifts within the fungal community in arable soils.  相似文献   

4.
Soil N2O emissions can affect global environments because N2O is a potent greenhouse gas and ozone depletion substance. In the context of global warming, there is increasing concern over the emissions of N2O from turfgrass systems. It is possible that management practices could be tailored to reduce emissions, but this would require a better understanding of factors controlling N2O production. In the present study we evaluated the spatial variability of soil N2O production and its correlation with soil physical, chemical and microbial properties. The impacts of grass clipping addition on soil N2O production were also examined. Soil samples were collected from a chronosequence of three golf courses (10, 30, and 100-year-old) and incubated for 60 days at either 60% or 90% water filled-pore space (WFPS) with or without the addition of grass clippings or wheat straw. Both soil N2O flux and soil inorganic N were measured periodically throughout the incubation. For unamended soils, cumulative soil N2O production during the incubation ranged from 75 to 972 ng N g−1 soil at 60% WFPS and from 76 to 8842 ng N g−1 soil at 90% WFPS. Among all the soil physical, chemical and microbial properties examined, soil N2O production showed the largest spatial variability with the coefficient of variation ~110% and 207% for 60% and 90% WFPS, respectively. At 60% WFPS, soil N2O production was positively correlated with soil clay fraction (Pearson's r = 0.91, P < 0.01) and soil NH4+–N (Pearson's r = 0.82, P < 0.01). At 90% WFPS, however, soil N2O production appeared to be positively related to total soil C and N, but negatively related to soil pH. Addition of grass clippings and wheat straw did not consistently affect soil N2O production across moisture treatments. Soil N2O production at 60% WFPS was enhanced by the addition of grass clippings and unaffected by wheat straw (P < 0.05). In contrast, soil N2O production at 90% WFPS was inhibited by the addition of wheat straw and little influenced by glass clippings (P < 0.05), except for soil samples with >2.5% organic C. Net N mineralization in soil samples with >2.5% organic C was similar between the two moisture regimes, suggesting that O2 availability was greater than expected from 90% WFPS. Nonetheless, small and moderate changes in the percentage of clay fraction, soil organic matter content, and soil pH were found to be associated with large variations in soil N2O production. Our study suggested that managing soil acidity via liming could substantially control soil N2O production in turfgrass systems.  相似文献   

5.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

6.
Isothermal microcalorimetry measures the thermal flows occurring in systems with very high precision and may be used to quantify carbon (C) assimilation and resource-use efficiencies in soils. We determined the thermodynamic efficiency of soil microbial communities located in soils which had received contrasting long-term management regimes (53 y) with respect to organic matter and nitrogen (N) inputs, viz. farmyard manure, sewage sludge, straw and calcium nitrate, calcium nitrate only, or ammonium sulphate. Two thermodynamic efficiency indices were considered: (i) total thermodynamic efficiency of soil microbial communities (ηeff), i.e. general heat production released following substrate addition, per unit heat energy input to the soil system, and (ii) a specific thermodynamic efficiency index of energy retained in the soil system (ηsoil). The latter index provides quantitative data on how much C is assimilated and energy retained in the soil system. Further, we derived a ‘substrate-induced heat production’ (SIHP) index, which adjusts for size of the microbial biomass. Optimised concentrations of water or glucose plus water were added to the soil samples and resultant thermal signatures and C mineralisation were determined over a 48-h incubation period at 25 °C. The thermal signatures were further related to the microbial community profiles of the soils. The phenotypic structural and functional diversity profiles of the microbial communities in soils were assessed by phospholipid fatty acid and multi-substrate induced respiration methods at the start of the experiment, confirming significant differences between all five treatments in community composition and functional capabilities. Both the total and specific thermodynamic efficiency indices of the soil microbial communities exposed to long-term stress by heavy metal toxicity (sewage sludge) and low pH ((NH4)2SO4) were significantly smaller in magnitude than those under the three conventional (i.e. Ca(NO3)2, Straw + Ca(NO3)2, farmyard manure) input regimes (P < 0.05). The SIHP index however, was highest in the treatments receiving long-term inorganic inputs, indicating more heat production per unit biomass, than that found in all three organic input regimes. These differences in efficiencies were reflected in both the phenotypic and functional profiles of the communities. These indices may provide quantification of C assimilation and resource-use efficiency under different land-use and management scenarios, and potentially allow evaluation of the role of soils in governing the terrestrial C balance by studying the fate and regulation of C in soil systems.  相似文献   

7.
《Applied soil ecology》2007,35(2-3):160-167
Soluble organic N and C were extracted from soils under long-term kikuyu grass pasture, annual ryegrass pasture and annual maize production using water, 0.5 M K2SO4 and 2 M KCl. Quantities extracted with K2SO4 were more than double those extracted with water while those extracted with KCl exceeded those using K2SO4. Differences in soluble organic C and N between land uses were much more obvious when water rather than salt solutions were used. It was suggested that water extracts give more realistic values than salt solutions. Regardless of the extractant used, the proportion of total N present as soluble N was considerably greater than the equivalent proportion of organic C present as soluble C. While the percentage of soil organic C and total N present in the light fraction and microbial biomass was lower in the kikuyu than ryegrass and maize soils, the equivalent values for water soluble C and N were, in fact, greatest in the kikuyu soil.The leaching of organic C, N and NO3 from these soils was also measured over a 6-month period in a greenhouse lysimeter study. The soils were either left undisturbed or were disturbed (broken into clods <50 mm diameter) to simulate tillage and stimulate microbial activity. Quantities of organic C and N leached were greater from the kikuyu than other treatments and tended to be greatest from the disturbed kikuyu soil. The percentage of total soil N leached as organic N was considerably greater than that of total organic C leached as soluble C. Leaching of NO3 was greatest from the disturbed kikuyu soil and least from the undisturbed kikuyu soil. The mean percentage of total soluble N present in organic form in leachates ranged from 17 to 32% confirming the importance of this form of N to leaching losses of N from agricultural soils.  相似文献   

8.
《Applied soil ecology》2006,34(3):269-277
Effluents from leather processing, a major industry that produces up to 64320 t wastewater year−1 in the town of León (Guanajuato, Mexico), are normally discharged to the river Turbio without treatment. This water is downstream used to irrigate agricultural land. Tannery wastewater contains valuable nutrients, but also contaminants, such as salts and chromium (Cr), that might affect soil processes and crop production. We investigated how almost 25 years of irrigation of agricultural land with water from the river Turbio affected soil characteristics, dynamics of carbon (C) and nitrogen (N), and microbial biomass C. Soil sampled from three adjacent fields irrigated with tannery effluent (soil A), in the vicinity irrigated with well water (soil B), and at a distance of 10 km from the irrigation canals (soil C), was characterized while dynamics of C and N were measured in an aerobic incubation experiment. Irrigation with water from the river Turbio for over 25 years had significantly increased the electrolytic conductivity from 0.64 to 2.29 dS m−1, organic C and total N content two-times, total concentration of Cr four-times, copper (Cu) two-times and sodium (Na) six-times in the clayey soils (P < 0.05). Microbial biomass was two-times larger in soil A than in soil C, while the activity of proteases and hydrolases releasing ninhydrin positive compounds and organic C appeared not to be affected. The concentrations of ammonium (NH4+) and nitrate (NO3) were not significantly different between the soils. The concentration of nitrite (NO2) was approximately twice larger in soil A than in soil C (P < 0.05). Although there appeared to be no adverse impact on soil characteristics and microbial biomass, oxidation of NO2 was inhibited indicating that the biological functioning of the soil might be affected. The increase in heavy metals in soil was limited, but continued irrigation with water from the river Turbio might increase sodicity and salinity that could deteriorate soil and pose a threat to future crop production.  相似文献   

9.
《Applied soil ecology》2011,48(3):210-216
Labile soil organic matter (SOM) can sensitively respond to changes in land use and management practices, and has been suggested as an early and sensitive indicator of SOM. However, knowledge of effects of forest vegetation type on labile SOM is still scarce, particularly in subtropical regions. Soil microbial biomass C and N, water-soluble soil organic C and N, and light SOM fraction in four subtropical forests were studied in subtropical China. Forest vegetation type significantly affected labile SOM. Secondary broadleaved forest (SBF) had the highest soil microbial biomass, basal respiration and water-soluble SOM, and the pure Cunninghamia lanceolata plantation (PC) the lowest. Soil microbial biomass C and N and respiration were on average 100%, 104% and 75%, respectively higher in the SBF than in the PC. The influence of vegetation on water-soluble SOM was generally larger in the 0–10 cm soil layer than in the 10–20 cm. Cold- and hot-water-soluble organic C and N were on average 33–70% higher in the SBF than in the PC. Cold- and hot-soluble soil organic C concentrations in the coniferous-broadleaved mixed plantations were on average 38.1 and 25.0% higher than in the pure coniferous plantation, and cold- and hot-soluble soil total N were 51.4 and 14.1% higher, respectively. Therefore, introducing native broadleaved trees into pure coniferous plantations increased water-soluble SOM. The light SOM fraction (free and occluded) in the 0–10 cm soil layer, which ranged from 11.7 to 29.2 g kg−1 dry weight of soil, was strongly affected by vegetation. The light fraction soil organic C, expressed as percent of total soil organic C, ranged from 18.3% in the mixed plantations of C. lanceolata and Kalopanax septemlobus to 26.3% in the SBF. In addition, there were strong correlations among soil organic C and labile fractions, suggesting that they were in close association and partly represented similar C pools in soils. Our results indicated that hot-water-soluble method could be a suitable measure for labile SOM in subtropical forest soils.  相似文献   

10.
It has been demonstrated that soil amended with biochar, designed specifically for use as a soil conditioner, results in changes to the microbial populations that reside therein. These changes have been reflected in studies measuring variations in microbial activity, biomass, and community structure. Despite these studies, very few experiments have been performed examining microbial genes involved in nutrient cycling processes. Given the paucity of research in this area, we designed a 6 month study in a Portneuf subsoil treated with three levels (1%, 2%, and 10% w/w ratio) of a biochar pyrolyzed from switchgrass (Panicum virgatum) at 350 °C and steam activated at 800 °C to measure the abundances of five genes involved in N cycling. Gene abundances were measured using qPCR, with relative abundances of these genes calculated based on measurement of the 16S rRNA gene. At the end of the 6 month study, all measured genes showed significantly greater abundances in biochar amended treatments as compared to the control. In soil amended with 10% biochar, genes involved in nitrogen fixation (nifH), and denitrification (nirS), showed significantly increased relative abundances. Lastly, gene abundances and relative abundances correlated with soil characteristics, in particular NO3-N, % N and % C. These results confirm that activated switchgrass-derived biochar, designed for use as a soil conditioner, has an impact on the treated soils microbial communities. We therefore suggest that future use of biochar as a soil management practice should take into account not only changes to the soil's physiochemical properties, but its biological properties as well.  相似文献   

11.
Meat and bone meal (MBM) utilization for animal production was banned in the European Union since 2000 as a consequence of the appearance of transmissive spongiform encephalopathies. Soil application could represent a lawful and effective strategy for the sustainable recycling of MBM due to its relevant content of nutritive elements and organic matter. The effectiveness of MBM as organic fertilizer needs to be thoroughly investigated since there is a lack of knowledge about the mineralization dynamics of MBM in soil and the impact of such residues, in particular the high content of lipids, on soil biochemical and microbiological properties. For this aim, a defatted (D) and the correspondent non-defatted (ND) MBM were added at two rates (200 and 400 kg N ha?1) to two different moist soils and incubated at 15 and 20 °C for 14 d. MBM mineralization dynamics was studied by measuring CO2 evolution. Water extractable organic C, K2SO4-extractable NO3? and NH4+, microbial biomass ninhydrin-reactive N, enzymatic activities (FDA, urease, protease, alkaline phosphatase) and microbial composition (aerobic and anaerobic bacteria, fungi) were measured 2 and 14 d after MBM addition to the soil. The rate of CO2 evolution showed a maximum 2–3 d after the addition of MBM, followed by a decrease approaching the control. MBM mineralization was fast with, on average, 54% of total CO2 evolved in the first 4 d of incubation at 20 °C. The percentage of added C which was evolved as CO2 at the end of the incubation period ranged between 8% and 16% and was affected by temperature, soil type and MBM treatment (ND > D). Soil amendment with MBM caused a noteworthy increase in both extractable NH4+ and NO3? (about 50% of added N) which was higher for ND. The addition of MBM also enhanced microbial content and activity. Microbial biomass increased as a function of the rate of application and was higher for ND with respect to D. The increase in numbers of aerobic and anaerobic bacteria and fungi caused by MBM addition was, in general, more pronounced with ND. Enzymatic activity in amended soils showed an enhancement in nutrient availability and element cycling. At the rate of application of present work, lipids did not cause adverse effects on soil microorganisms.The potential of MBM as effective organic fertilizer was supported by the large increase in available N and the enhancement of the size and activity of soil microorganisms.  相似文献   

12.
《Applied soil ecology》2011,48(3):153-159
In this study, we investigated the effects of plant residue decomposition and biological aggregating agents (microbial extracellular polysaccharides and fungal hyphae) on soil aggregate stability and determined the microbial population at different stages of soil aggregate stabilization. Experiments were conducted in a 40 days incubation period with the following six treatments: the control (soil only), soil + fungicide, soil + bactericide, soil + maize residues, soil + maize residues + fungicide, and soil + maize residues + bactericide. The maize residues treatments greatly enhanced the formation of macroaggregates. In the residue treatments, the addition of fungicide led to a significant suppression of fungal biomass and activity as well as a reduction of soil aggregate stability, which demonstrated the profound influence of fungal activity on aggregate formation. The addition of bactericide also significantly reduced soil aggregate stability, indicating that bacterial activity also played an important role in the macroaggregate formation. However, the effect of microbial extracellular polysaccharides on soil aggregate stability was not significant, which might be attributable to the fast wet sieving method used for aggregate separation. For the treatments of soil + residues and soil + residues + bactericide, the temporal variations of soil aggregate formation with two peak values suggested that other factors, such as hydrophobic compounds and phenolic acids, might be involved in the soil aggregate stabilization process.  相似文献   

13.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

14.
《Applied soil ecology》2007,35(2):319-328
The effects of salinity on the size, activity and community structure of soil microorganisms in salt affected arid soils were investigated in Shuangta region of west central Anxi County, Gansu Province, China. Eleven soils were selected which had an electrical conductivity (EC) gradient of 0.32–23.05 mS cm−1. There was a significant negative exponential relationship between EC and microbial biomass C, the percentage of soil organic C present as microbial biomass C, microbial biomass N, microbial biomass N to total N ratio, basal soil respiration, fluorescein diacetate (FDA) hydrolysis rate, arginine ammonification rate and potentially mineralizable N. The exponential relationships with EC demonstrate the highly detrimental effect that soil salinity had on the microbial community. In contrast, the metabolic quotient (qCO2) was positively correlated with EC, and a quadratic relationship between qCO2 and EC was observed. There was an inverse relationship between qCO2 and microbial biomass C. These results indicate that higher salinity resulted in a smaller, more stressed microbial community which was less metabolically efficient. The biomass C to biomass N ratio tended to be lower in soils with higher salinity, reflecting the bacterial dominance in microbial biomass in saline soils. Consequently, our data suggest that salinity is a stressful environment for soil microorganisms.  相似文献   

15.
《Applied soil ecology》2001,16(3):229-241
Changes in the proportions of water-stable soil aggregates, organic C, total N and soil microbial biomass C and N, due to tillage reduction (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions were studied in a tropical rice–barley dryland agroecosystem. The values of soil organic C and total N were the highest (11.1 and 1.33 g kg−1 soil, respectively) in the minimum tillage and residue retained (MT+R) treatment and the lowest (7.8 and 0.87 g kg−1, respectively) in conventional tillage and residue removed (CT−R) treatment. Tillage reduction from conventional to minimum and zero conditions along with residue retention (MT+R,ZT+R) increased the proportion of macroaggregates in soil (21–42% over control). The greatest increase was recorded in MT+R treatment and the smallest increase in conventional tillage and residue retained (CT+R) treatment. The lowest values of organic C and total N (7.0–8.9 and 0.82–0.88 g kg−1 soil, respectively) in macro- and microaggregates were recorded in CT−R treatment. However, the highest values of organic C and total N (8.6–12.6 and 1.22–1.36 g kg−1, respectively) were recorded in MT+R treatment. The per cent increase in the amount of organic C in macroaggregates was greater than in microaggregates. In all treatments, macroaggregates showed wider C/N ratio than in microaggregates. Soil microbial biomass C and N ranged from 235 to 427 and 23.9 to 49.7 mg kg−1 in CT−R and MT+R treatments, respectively. Soil organic C, total N, and microbial biomass C and N were strongly correlated with soil macroaggregates. Residue retention in combination with tillage reduction (MT+R) resulted in the greatest increase in microbial biomass C and N (82–104% over control). These variables showed better correlations with macroaggregates than other soil parameters. Thus, it is suggested that the organic matter addition due to residue retention along with tillage reduction accelerates the formation of macroaggregates through an increase in the microbial biomass content in soil.  相似文献   

16.
Dissolved organic matter (DOM) plays a central role in driving biogeochemical processes in soils, but little information is available on the relation of soil DOM dynamics to microbial activity. The effects of NO3 and NH4+ deposition in grasslands on the amount and composition of soil DOM also remain largely unclear. In this study, a multi-form, low-dose N addition experiment was conducted in an alpine meadow on the Qinghai–Tibetan Plateau in 2007. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha−1 yr−1. Soil samples from surface (0–10 cm) and subsurface layers (10–20 cm) were collected in 2011. Excitation/emission matrix fluorescence spectroscopy (EEM) was used to assess the composition and stability of soil DOM. Community-level physiological profile (CLPP, basing on the BIOLOG Ecoplate technique) was measured to evaluate the relationship between soil DOC dynamics and microbial utilization of C resources. Nitrogen (N) dose rather than N form significantly increased soil DOC contents in surface layer by 23.5%–35.1%, whereas it significantly decreased soil DOC contents in subsurface layer by 10.4%–23.8%. Continuous five-year N addition significantly increased the labile components and decreased recalcitrant components of soil DOM in surface layer, while an opposite pattern was observed in subsurface layer; however, the humification indices (HIX) of soil DOM was unaltered by various N treatments. Furthermore, N addition changed the amount and biodegradability of soil DOM through stimulating microbial metabolic activity and preferentially utilizing organic acids. These results suggest that microbial metabolic processes dominate the dynamics of soil DOC, and increasing atmospheric N deposition could be adverse to the accumulation of soil organic carbon pool in the alpine meadow on the Qinghai-Tibetan Plateau.  相似文献   

17.
The repeated addition of organic materials to the soil greatly affects the physical, chemical and biological characteristics. In the present work, we analyzed changes in soil quality properties of the tilled layer caused by different agronomic managements of maize which supply different amounts of carbon (C) and nitrogen (N) through the addition of slurry, farmyard manure or plant residues. The agronomic history of the analyzed soils, which derived from a medium-term (11 yr) field experiment located in NW Italy, represents typical managements of maize for this region. The area is characterized by highly intensive agriculture, with consequent risks to soil degradation that could be limited by the efficient utilization of organic inputs and by recycling within cropping systems, the large amounts of manure that are produced from the many animal breeding farms in this region. We used a combination of both different chemical (soil organic C and total N) and biochemical indicators (potential soil respiration, potentially mineralizable N (PMN) and potential soil microbial biomass (SMB)). We considered the suitability of the selected biochemical indicators to describe the changes in soil characteristics resulting from the past management.The results showed that the application of the different organic materials, in addition to urea-N fertilizer, increased SOM contents and altered the selected soil biochemical properties compared with the unfertilized treatment, especially in the upper 15 cm of the 0?30 cm tilled soil layer. Farmyard manure applications caused the greatest increase in SOM content, PMN and potential SMB, whilst return of maize straw produced the largest increase in potential soil respiration, but had less effect on total soil organic C and SMB. The use of slurry only caused a moderate increase in SOM and showed intermediate changes in biochemical properties. Also, the rate of C accumulation in the soil per unit of C applied was higher for farmyard manure application than for slurry and straw incorporation in the soil. Fertilization with only mineral N did not induce an increase in Corg and Ntot and even reduces soil N mineralization potential.Because of the high variability in the data, potential SMB carbon could be considered as a less successful indicator for differentiating between past agronomic histories and effects on soil quality, whilst microbial activity (measured by potential soil respiration) and PMN, gave a more reliable and useful indication of the amount of easily decomposable organic carbon.  相似文献   

18.
Biochar additions have been suggested to influence soil microbial communities that, through a cascade effect, may also impact soil fauna. In turn, any direct biochar effects on fauna can influence microbial communities through grazing, physical fragmentation of organic debris (and biochar) and modifying soil structure. If biochar creates a favorable environment for soil microorganisms, it is also plausible for fauna to be attracted to such microbially enriched habitats. However, how soil fauna respond to biochar addition to soil and what are the main factors that drive their behavior has rarely been experimentally addressed. Therefore, the behavior of two mesofauna species was assessed as a result of corn stover biochar (slow pyrolysis at 600 °C) additions to a loamy temperate soil, after preincubation for 2, 17, 31 and 61 d, and related to variations in microbial biomass and activity. Microbial biomass increased by 5–56% and activity by 6–156% with increasing biochar rates for the different preincubation times. Over the incubation time, microbial biomass did not change or increased at most 15% with the different biochar rates, while in turn microbial activity decreased steadily (around 70–80% at day 61). Enchytraeids generally did not show avoidance or preference to biochar when provided with an alternative unamended soil, while collembolans often showed avoidance responses. However, collembolan avoidance to biochar decreased or disappeared in biochar mixtures with higher microbial biomass and water extractable NH4-N content, agreeing with the plausible role of microorganisms to potentially attract soil fauna after biochar applications. Avoidance response was mainly explained by environmental preferences of the test species and not by any toxic effect of the biochar in this study. However, avoidance after the application of biochar may still need to be considered due to the potential negative impacts of individuals’ migration on soil ecosystem functioning.  相似文献   

19.
The primary aim of the study was to determine the long-term (12 years) effects of leguminous cover crops like Atylosia scarabaeoides, Centrosema pubescens, Calopogonium mucunoides and Pueraria phaseoloides on important soil biochemical and biological properties and their interrelationships in the organic (fresh litter layer, F and fermented + humus layer, F + H) and mineral (0–10 and 10–20 cm) layers of soils of a 19-year-old coconut plantation.The total biomass production (above-ground) for the 12-year period varied significantly between the cover crops and ranged from 34.86 (calopo) to 90.43 (pueraria) Mg ha–1. Total N and C additions at the cover cropped (CC) site for the 12-year period were 0.97–3.07 Mg ha–1 and 16.90–43.34 Mg ha–1, respectively. Irrespective of layers, the levels of organic C, total N, organic substrates viz., dissolved organic C and N, labile organic N, water soluble carbohydrates, and light fraction organic matter-C and were markedly higher in the CC site compared to the control. Consequently, the levels of microbial biomass-C (CMIC), -N (NMIC) and -P (PMIC), net N mineralization rates, CO2 evolution, metabolic quotient (qCO2) and the activities of l-asparaginase, l-glutaminase and β-glucosaminidase were significantly higher in the CC site compared to the corresponding levels in the control site. Between layers, the levels of various chemical, biochemical and microbial parameters were consistently higher in the organic layers compared to the mineral layers at all the sites including control. Among the ratios of various microbial indices, the ratios of CMIC: organic C and CMIC: PMIC did not differ significantly between the layers and sites. However, the ratio of CMIC: NMIC was relatively higher in the mineral layers and control site. The variation in individual soil properties between layers and sites reflected the concomitant changes occurring in soil organic matter content. Apparently, microbial activity was limited by the supply of biologically available substrates in the mineral layers and the control site. Contrarily, the more direct supply of nutrients from decomposing plant litter and the indirect supply of nutrients from the mineralization of organic matter led to significantly higher levels of microbial biomass in the organic layers.  相似文献   

20.
Relationships between soil pH and microbial properties in a UK arable soil   总被引:1,自引:0,他引:1  
Effects of changing pH along a natural continuous gradient of a UK silty-loam soil were investigated. The site was a 200 m soil transect of the Hoosfield acid strip (Rothamsted Research, UK) which has grown continuous barley for more than 100 years. This experiment provides a remarkably uniform soil pH gradient, ranging from about pH 8.3 to 3.7. Soil total and organic C and the ratio: (soil organic C)/(soil total N) decreased due to decreasing plant C inputs as the soil pH declined. As expected, the CaCO3 concentration was greatest at very high pH values (pH > 7.5). In contrast, extractable Al concentrations increased linearly (R2 = 0.94, p < 0.001) from below about pH 5.4, while extractable Mn concentrations were largest at pH 4.4 and decreased at lower pHs. Biomass C and biomass ninhydrin-N were greatest above pH 7. There were statistically significant relationships between soil pH and biomass C (R2 = 0.80, p < 0.001), biomass ninhydrin-N (R2 = 0.90, p < 0.001), organic C (R2 = 0.83, p < 0.001) and total N (R2 = 0.83, p < 0.001), confirming the importance of soil organic matter and pH in stimulating microbial biomass growth. Soil CO2 evolution increased as pH increased (R2 = 0.97, p < 0.001). In contrast, the respiratory quotient (qCO2) had the greatest values at either end of the pH range. This is almost certainly a response to stress caused by the low p. At the highest pH, both abiotic (from CaCO3) and biotic Co2 will be involved so the effects of high pH on biomass activity are confounded. Microbial biomass and microbial activity tended to stabilise at pH values between about 5 and 7 because the differences in organic C, total N and Al concentrations within this pH range were small. This work has established clear relationships between microbial biomass and microbial activity over an extremely wide soil pH range and within a single soil type. In contrast, most other studies have used soils of both different pH and soil type to make similar comparisons. In the latter case, the effects of soil pH on microbial properties are confounded with effects of different soil types, vegetation cover and local climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号