首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
稻田土壤微生物数量和酶活性对水碳调控的响应   总被引:1,自引:0,他引:1  
为探究水碳调控稻田土壤微生物数量和酶活性变化,基于田间与室内试验,研究不同水碳处理稻田土壤微生物数量、过氧化氢酶和蔗糖酶的活性随土层深度的变化规律。结果表明,土壤过氧化氢酶活性随土层深度的增加呈现先增后减的趋势,土壤微生物数量和蔗糖酶活性随土层的加深而逐渐减小。与常规肥管理相比,有机肥施用和秸秆还田对稻田土壤过氧化氢酶活性无显著影响,而对土壤微生物数量和蔗糖酶活性影响较大。与淹水灌溉相比,控制灌溉提高了土壤过氧化氢酶活性,不同施肥管理条件下,控制灌溉对稻田土壤微生物数量和蔗糖酶活性的影响不一致。控制灌溉和有机肥施用、秸秆还田联合调控总体提高了稻田土壤微生物数量、过氧化氢酶和蔗糖酶的活性,且控制灌溉与有机肥施用结合效果更加明显。控制灌溉和有机肥施用、秸秆还田联合调控稻田0~40 cm土层土壤菌落数均值分别增加了1.73×105~3.83×105和2.33×104~2.43×105,土壤过氧化氢酶活性分别增加了1.82%~4.14%和2.95%~5.66%,土壤蔗糖酶活性分别增加了30.47%~64.25%和-25.04%~20.98%。  相似文献   

2.
膜下滴灌棉花植株耗水率与土壤水分的关系   总被引:17,自引:0,他引:17  
膜下滴灌技术不仅可减少地面水分蒸发 ,还可以避免深层渗漏。为了合理地确定膜下滴灌技术体系 ,以水量平衡原理为基础 ,对轻壤土、中壤土和重壤土进行不同土壤含水率处理 ,试验得出了棉花生育期植株耗水规律 ,以及棉花成铃数与生育期耗水量的对应关系。在不产生深层渗漏的条件下 ,土壤含水率越高 ,棉株耗水越大 ,但成铃数的增加有限。另外 ,观察到膜下滴灌棉花的根系主要吸水层在 60 cm土层深度以内  相似文献   

3.
干湿交替灌溉对水稻产量、品质和土壤生物学性状的影响   总被引:1,自引:1,他引:0  
干湿交替灌溉是一项重要的水稻高产节水栽培技术。干湿交替改变了稻田土壤水分状况,从而会引起稻田土壤理化和生物学性状的改变,并直接或间接影响水稻的生长发育和产量形成。综述干湿交替灌溉对水稻产量、品质以及稻田土壤呼吸、土壤酶活性和微生物等生物学性状的影响,并提出未来干湿交替灌溉条件下稻田土壤生物学性状的研究重点,以期为水稻高产节水栽培和稻田土壤的定向调控提供理论依据。  相似文献   

4.
分蘖期控制灌溉对土温及水稻干物质积累等的影响   总被引:5,自引:0,他引:5  
为了研究超级稻在双季稻区分蘖时期的最佳控水模式,2014年在华南农业大学农场以超级稻玉香油占为试材进行大田试验。在水稻分蘖数达到不同的2个阶段分别设置2个水分梯度处理,记录了控制灌溉期间土壤温度的变化,研究了其对干物质积累动态、LAI变化动态、光合特性以及成穗率和最终产量等的影响。结果表明:分蘖期控制灌溉(0~20 cm土层平均土壤相对含水率为(60±5)%能够扩大土壤5 cm深度日温差,减少拔节前干物质积累,提高拔节期净光合速率和生育后期叶面积指数,优化干物质积累动态,最终提高了W1和W2处理的成穗率与产量。因此,在玉香油占分蘖期控制0~20 cm土层平均土壤相对含水率为(60±5)%,能够达到节水高效栽培的目的。  相似文献   

5.
为研究不同灌溉方式对直播稻产量和品质的影响。以3个水稻品种为试验材料,在大田旱直播栽培模式下,设置常规灌溉和节水灌溉2种灌溉方式,分析测定直播稻的叶片光合、稻谷产量和品质等指标。结果表明,相对于常规灌溉,节水灌溉处理剑叶叶绿素含量和叶片含水率分别下降3.66%和4.37%,灌浆中后期剑叶光合速率和水稻产量分别提高5.78%和5.69%。对稻米品质的影响因不同品种表现不同,对于‘新稻567’和‘新稻568’两品种,节水灌溉处理稻米加工和食味品质分别下降了6.21%和3.84%,垩白粒率和垩白度分别增加了18.9%和5.37%;对于‘新科稻31’,节水灌溉处理稻米的加工品质提高了3.4%,垩白粒率和垩白度分别下降了19.59%和27.84%。相关分析表明,叶片含水率与光合速率呈正相关,产量和品质与光合速率的关系因不同灌浆时段而异。提高灌浆中后期光合速率,可以提高水稻产量和稻米的加工品质,但稻米外观和食味品质有所下降。综上表明,通过节水灌溉可以提高水稻产量,但在米质调控上因品种而异。因种设定不同的土壤水势灌溉标准,对发展节水型直播稻生产和提高稻田水分利用效率具有重要意义。  相似文献   

6.
土壤耕作和水分管理对水稻土壤肥力性状的影响   总被引:3,自引:1,他引:2  
曾可  江立庚 《中国农学通报》2010,26(23):234-237
为了探讨耕作方式和水分管理对水稻土壤肥力性状的影响,以金优253为材料进行大田试验,设置常耕、免耕二种土壤耕作方式,浅水层灌溉、交替灌溉、水气平衡灌溉三种水分管理方式,然后在水稻成熟期测定分析土壤肥力因子的变化。结果表明,土壤碱解氮含量以浅水层灌溉最高,水气平衡灌溉次之,交替灌溉的最低,土壤有效磷含量从高到低分别为水气平衡灌溉、交替灌溉、浅水层灌溉;土壤速效钾含量从高到低分别为交替灌溉、水气平衡灌溉、浅水层灌溉;土壤有机质含量从高到低分别为水气平衡灌溉、浅水层灌溉、交替灌溉;土壤pH值从高到低分别为水气平衡灌溉、交替灌溉、浅水层灌溉。三种灌溉方式下常耕稻田土壤碱解氮、有效磷和有机质含量含量高于免耕稻田,免耕稻田pH值、土壤速效钾含量却高于常耕稻田。水分管理对土壤肥力的影响比耕作方式的影响更大。  相似文献   

7.
膜下滴灌条件下不同灌水量对玉米产量及土壤水分的影响   总被引:3,自引:2,他引:1  
为建立赤峰地区膜下滴灌玉米灌溉制度,指导农业生产,通过连续两年的田间试验,研究不同灌水定额对玉米产量的影响,分析了不同灌水定额的土壤水分动态变化规律,进而讨论了在不同灌水定额条件下玉米的产量、总耗水量、以及水分利用效率的差异。结果表明:膜下滴灌条件下玉米土壤水分运移变化多在60cm土层以上,尤其以0~20cm土层变化最为明显。膜下滴灌玉米产量和全生育期耗水量与灌水定额大小成正比,随灌水量的增加而增加,水分利用效率与之相反。综合连续两年的产量、耗水量及水分利用效率对比分析,认为赤峰地区膜下滴灌玉米的灌水量为150~180mm是较为适宜的,为指导赤峰地区玉米膜下滴灌合理灌溉及增产节水提供理论依据。  相似文献   

8.
在温室土壤-作物-环境的连续体中,作物水分损耗、吸收和水分利用效率一直是研究的热点,温室作物水分来源的唯一途径是灌溉。为了在生产实践中指导节水灌溉,从近些年来节水灌溉的新技术新方法--滴灌和调亏灌溉入手,主要综述了温室内作物调亏灌溉的研究,包括调亏灌溉的节水及增产机理,调亏灌溉相应的灌溉指标,影响调亏灌溉的环境因素,以及作物本身不同时期对水分亏缺的反应。  相似文献   

9.
采用秸秆、地膜等覆盖技术,具有减少土壤水无效消耗,增加土壤中含水量,提高水分利用率(WUE),具有一定节水增产效果。尤其是W地膜覆盖新技术可使玉米增产12.34%,提高WUE23.81%~25.71%,降低耗水量7.37%~12.68%和耗水强度5.09%~5.67%,具有显著的节水增产效果,应当作为贵州省今后一项节水增效技术加以大力推广。  相似文献   

10.
张耗  杨建昌 《作物杂志》2016,32(5):67-280
以三种主要粮食作物(水稻、小麦、玉米)为材料,设置常规灌溉(对照)和节水灌溉处理(水稻全生育期轻干湿交替灌溉技术、小麦控制土壤干旱灌溉技术、玉米控制低限土壤水分的分区交替灌溉技术),研究了节水灌溉技术对三种粮食作物产量和水分利用效率的影响。结果表明:与对照相比,节水灌溉技术的产量增加了8.56%~9.23%,水分利用效率提高了25.00%~31.43%。节水灌溉技术显著降低了三种粮食作物叶片的蒸腾速率和着生角度,显著增加了弱势粒中脱落酸(ABA)与赤霉素(GA3)的比值(ABA/GA3)、茎中蔗糖磷酸合成酶(SPS)和子粒中蔗糖合酶(SuS)活性、平均灌浆速率、茎鞘中非结构性碳水化合物(NSC)的运转率以及收获指数,显著提高了水稻和小麦的分蘖成穗率。表明减少奢侈的蒸腾和无效分蘖冗余生长、改善冠层结构、促进物质运转和子粒库活性、提高收获指数是节水灌溉技术协同提高产量和水分利用效率的重要原因。  相似文献   

11.
为了探究半干旱地区苹果树的需水规律,以封闭果树根域土壤为试材,防止地面蒸发,采用定期连续测定土壤含水量的方法来测算果树的蒸腾量。结果表明:9年生矮化中间砧果树吸收土壤水分的主要垂直空间在0~60 cm土层,60 cm以下土层含水量变化不明显。果树秋季蒸腾耗水量为134 kg/棵,春季萌芽到花期,蒸腾耗水量为104 kg/棵。因此,在进行田间管理时,以0~60 cm湿润层确定节水灌溉较为科学。  相似文献   

12.
覆盖措施对春小麦田土壤含水量及耗水规律的影响   总被引:1,自引:1,他引:0  
马莉 《中国农学通报》2016,32(35):130-133
高效节水措施的使用有利于提高作物水分利用效率,缓解我国荒漠绿洲区灌溉农业生产中水资源不足的问题。基于此设定了大田定点观测试验研究不同覆盖措施对荒漠绿洲区春小麦耗水规律的影响,试验分别设置石子覆盖(S)、地膜覆盖(B)、秸秆覆盖(M)和对照(CK)4个处理。试验结果表明:覆盖措施使土面蒸发量降低了25.6%~37.9%,有效的提高了土壤含水量。春小麦耗水量分别为B处理减少了13%,M处理减少了14%,S减少了8%,但B处理下的春小麦水分利用效率(WUE)和灌溉水分利用效率(WUEi)最高。可见,地膜覆盖是是适合该地区最佳的节水种植方式。  相似文献   

13.
不同灌水量对枸杞土壤水分动态及蒸散耗水规律的影响   总被引:3,自引:1,他引:2  
为了充分利用有限的水资源,调节土壤水分状况,根据枸杞生育期内土壤水分的变化特点,利用时域反射仪,在非称重式蒸渗仪(测坑)中研究不同灌水量下枸杞土壤水分动态变化和耗水规律。结果表明:灌水是影响枸杞园内土壤水分变化重要因素,土壤水分的消耗主要依靠灌水来补充;枸杞耗水量显著受土壤水分的影响,土壤越湿润,耗水量也越大;受温度和枸杞生长的影响,不同水分条件下枸杞月耗水高峰在5-9月,最高月耗水量在7月;最高旬耗水量分别在5月下旬、6月中旬和7月下旬;阶段耗水量的趋势均表现为:盛果期>盛花期>营养生长期>秋果生长期>秋果采收期。  相似文献   

14.
为进一步研究冬小麦节水灌溉,明确其水分运筹规律,2014—2015年度和2015—2016年度,在冬小麦全生育期降雨量与常年相当的情况下,采取趁墒播种等技术措施,示范研究了"一水千斤"简化栽培模式。试验表明:石家庄地区近十年冬小麦全生育期平均降雨量为132.4 mm,仅占平均需水量三分之一左右;不考虑0~40 cm水分活跃层的情况,40 cm以下土层土壤含水量随土层的下降呈逐渐增加的趋势,冬小麦拔节前各土层的含水量均在萎蔫系数之上;"一水千斤"模式下全生育期冬小麦平均耗水量4404.0 m~3/hm~2,土壤平均耗水量1852.5 m~3/hm~2,全生育期耗水量与常规灌溉模式下接近;明确了冀中南地区实施"一水千斤"模式实现节水与高产相统一,冬小麦灌水量应在1200 m~3/hm~2以上,全生育总耗水量应达到4650 m~3/hm~2以上。  相似文献   

15.
降水与墒情关系及抗旱需水量评估技术研究   总被引:1,自引:1,他引:0  
为了合理开发利用水资源,提高半干旱地区水资源利用率,为现代农业发展提供更精细化的气象服务,通过研究阜新地区土壤水分与降水量关系及特征,找出了阜新地区土壤水分变化规律,并在此基础上,建立了阜新地区农田抗旱需水量评估方法。结果表明:(1)较大降水后,浅层土壤增墒迅速,几小时内土壤重量含水率可达到最大值,并在20 cm左右土壤中形成1个高含水层;深层增墒相对缓慢,需要十几到二十几小时达到最大值;(2)较大降水发生1天后,10~50 cm层土壤重量含水率达到最大值,然后在无降水的情况下土壤重量含水率缓慢下降,基本呈直线型,直到下一次较强降水的到来,重量含水率再次上升;(3)降水增墒速度大于墒情递减速度;(4)受多种因素影响,降水后10~50 cm层各月土壤增墒率和晴好天气下各月逐日土壤墒情递减率有各自的变化规律。其中,4月、7月降水增墒率相对较小,9月最大,8月次之;4月、5月逐日土壤墒情递减率最小,6—9月相对较大,其中,7月最大。土壤墒情递减率对抗旱需水量中流失的水分计算起到重要作用;(5)实际抗旱需水量大于设定重量含水率所需的含水量,因为要考虑土壤蒸发、作物吸收、深层渗透、降水径流等流失的水分;(6)抗旱需水量评估方法对抗旱方面的政府决策气象服务起着重要作用。可用于自然降水对旱情缓解的分析、节水灌溉工程的精细化气象服务等。  相似文献   

16.
林祥  王东 《作物学报》2017,43(9):1357-1369
我国黄淮平原水资源紧缺,而且年际间降水量及其时间分布存在较大差异,探明不同底墒条件下补充灌溉对冬小麦产量和水分利用效率的调节效应及其生理基础,可为该地区冬小麦节水高产栽培提供理论和技术支持。2013—2014和2014—2015年冬小麦生长季,在播种期0~100 cm土层土壤贮水量分别为201.5(A)、266.3(B)和317.0mm(C)3种底墒条件下,各设置4个补灌水处理,包括不灌水、拔节期+开花期补灌、越冬期+拔节期+开花期补灌、播种期+拔节期+开花期补灌,研究不同处理冬小麦耗水特性、旗叶光合、干物质积累与分配、产量及水分利用效率的差异。结果表明,冬小麦生育期总耗水量和土壤水消耗量均随播种期底墒的提高而增加。在底墒A和B条件下,冬小麦主要消耗降水和灌溉水。提高播种期补灌水平或于越冬期补灌,冬小麦在底墒A条件下对土壤水的消耗量显著增加,在底墒B条件下对土壤水的消耗量显著减少。在底墒C条件下,冬小麦耗水以土壤水为主,其次为降水,再次为灌溉水;播种期或越冬期补灌显著增加生育期总耗水量,对土壤水消耗量则无显著影响。于播种期、拔节期和开花期补灌,冬小麦在底墒A条件下可获得较高的籽粒产量,但水分利用效率较低;在底墒B条件下籽粒产量和水分利用效率均较高;在底墒C条件下,仅于拔节期和开花期补灌即可获得高产和高水分利用效率,播种期和越冬期无需补灌。综上所述,播前底墒是实施冬小麦合理补灌的重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号