首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
QEet.ocs‐5A.1, a quantitative trait locus controlling ear emergence time, has been detected on wheat chromosome 5AL using single chromosome recombinant lines (SCRs) developed from a cross between ‘Chinese Spring’ (CS) (‘Cappelle‐Desprez’ 5A) and CS (Triticum spelta 5A). This locus has little influence on grain yield and its components, and thus has breeding potential for changing ear emergence time without yield reduction. To characterize the phenotypic expression of QEet.ocs.1 and to test its interaction with the Vrn‐A1 gene for vernalization response, six near‐isogenic SCRs differing for these two gene regions were grown together with the parental controls under different vernalization and photoperiod regimes. The T. spelta allele of QEet.ocs.1 accelerated heading time when vernalization and photoperiod were satisfied, demonstrating that the function of this QTL is earliness per se. There was no interaction between Vrn‐A1 and QEet.ocs.1.  相似文献   

2.
I. Leonova    E. Pestsova    E. Salina    T. Efremova    M. Röder  A. Börner  G. Fischbeck 《Plant Breeding》2003,122(3):209-212
An F2 population segregating for the dominant gene Vrn‐B1 was developed from the cross of the substitution line ‘Diamant/'Miro‐novskaya 808 5A’ and the winter wheat cultivar ‘Bezostaya 1′. Microsatellite markers (Xgwm and Xbarc) with known map locations on chromosome 5B of common wheat were used for mapping the gene Vrn‐B1. Polymorphism between parental varieties was observed for 28 out of 34 microsatellite markers (82%). Applying the quantitative trait loci mapping approach, the target gene was mapped on the long arm of chromosome 5B, closely linked to Xgwm408. The map position of Vrn‐B1 suggests that the gene is homoeologous to other vernalization response genes located on the homoeologous group 5 chromosomes of wheat, rye and barley.  相似文献   

3.
Summary The advent of molecular marker systems has made it possible to develop comparative genetic maps of the genomes of related species in the Triticeae. These maps are being applied to locate and evaluate allelic and homoeoallelic variation for major genes and quantitative trait loci within wheat, and to establish the pleiotropic effects of genes. Additionally, the known locations of genes in related species can direct searches for homoeologous variation in wheat and thus facilitate the identification of new genes. Examples of such analyses include the validation of the effects of Vrn1 on chromosome 5A on flowering time in different crosses within wheat; the indication of pleiotropic effects for stress responses by the Fr1 locus on chromosome 5A; the detection of homoeologous variation for protein content on the homoeologous Group 5 chromosomes; and the detection of a new photoperiod response gene Ppd-H1 in barley from homoeology with Ppd2 of wheat.  相似文献   

4.
Molecular and physical mapping of genes affecting awning in wheat   总被引:5,自引:0,他引:5  
P. Sourdille    T. Cadalen    G. Gay    B. Gill  M. Bernard 《Plant Breeding》2002,121(4):320-324
Quantitative trait loci (QTL) for three traits related to awning (awn length at the base, the middle and the top of the ear) in wheat were mapped in a doubled‐haploid line (DH) population derived from the cross between the cultivars ‘Courtot’ (awned) and ‘Chinese Spring’ (awnless) and grown in Clermont‐Ferrand, France, under natural field conditions. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 550 markers was used for the QTL mapping. The genome was well covered (more than 95%) and a set of anchor loci regularly spaced (one marker every 20.8 cM) was chosen for marker regression analysis. For each trait, only two consistent QTL were identified with individual effects ranging from 8.5 to 45.9% of the total phenotypic variation. These two QTL cosegregated with the genes Hd on chromosome 4A and B2 on chromosome 6B, which are known to inhibit awning. The results were confirmed using ‘Chinese Spring’ deletion lines of these two chromosomes, which have awned spikes, while ‘Chinese Spring’ is usually awnless. No quantitative trait locus was detected on chromosome 5A where the B1 awn‐inhibitor gene is located, suggesting that both ‘Courtot’ and ‘Chinese Spring’ have the same allelic constitution at this locus. The occurrence of awned speltoid spikes on the deletion lines of this chromosome suggests that ‘Chinese Spring’ and ‘Courtot’ have the dominant B1 allele, indicating that B1 alone has insufficient effect to induce complete awn inhibition.  相似文献   

5.
Seed storability in rice (Oryza sativa L.) is an important agronomic trait. We previously showed a quantitative trait locus of seed storability, qSS‐9, on chromosome 9 in a backcross population of ‘Koshihikari’ (japonica) / ‘Kasalath’ (indica) // ‘Koshihikari’. In this study, fine mapping of the chromosomal location of qSS‐9 was performed. Effect of ‘Kasalath’ allele of qSS‐9 was validated using a chromosome segment substitution line, SL36, which harboured the target quantitative trait loci (QTL) from ‘Kasalath’ in the genetic background of ‘Nipponbare’ under different ageing treatments in different environments. Subsequently, an F2 population from a cross between ‘Nipponbare’ and SL36 was used for fine mapping of qSS‐9. Simultaneously, four subnear isogenic lines (sub‐NILs) that represented different recombination breakpoints across the qSS‐9 region were developed from F3 progeny. Finally, the qSS‐9 locus was located between the Indel markers Y10 and Y13, which delimit a region of 147 kb in the ‘Nipponbare’ genome. These results provide a springboard for map‐based cloning of qSS‐9 and possibilities for breeding rice varieties with strong seed storability.  相似文献   

6.
Waiting for fine times: genetics of flowering time in wheat   总被引:17,自引:0,他引:17  
To maximise yield potential in any environment, wheat cultivars musthave an appropriate flowering time and life cycle duration which`fine-tunes' the life cycle to the target environment. This in turn, requiresa detailed knowledge of the genetical control of the key components of thelife cycle. This paper discusses our current knowledge of the geneticalcontrol of the three key groups of genes controlling life-cycle duration inwheat, namely those controlling vernalization response, photoperiodresponse and developmental rate (`earliness per se', Eps genes).It also discusses how our ability to carry out comparative mapping of thesegenes across Triticeae species, and particularly with barley, is indicatingnew target genes for discovery in wheat. Major genes controllingvernalization response, the Vrn-1 series, have now been located bothgenetically and physically on the long arms of the homoeologous group fivechromosomes. These genes are homoeologous to each other and to thevernalization genes on chromosomes 5H of barley and 5R of rye.Comparative analysis with barley also indicates that other series ofvernalization response genes may exit on chromosomes of homoeologousgroups 4 (4B, 4D, 5A) and 1. The major genes controlling photoperiodresponse in wheat, the Ppd-1 genes, are located on the homoeologousgroup 2 chromosomes, and are homoeologous to a gene on barleychromosome 2H. Mapping in barley also indicates a photoperiod responselocus on barley 1H and 6H, indicating that a homoeologous series shouldexist on wheat group 1 and 6 chromosomes. In wheat, only a few`earliness per se loci have been located, such as on chromosomes ofhomoeologous group 2. However, in barley, all chromosomes appear tocarry such loci, indicating that several series of loci that affectdevelopmental rate independent of environment remain to be discovered.Overall, comparative studies indicate that there are probably twenty-fiveloci controlling the duration of the life-cycle, Vrn, Ppd and Eps genes, that remain to be mapped in wheat. There are major gaps inour knowledge of the detailed physiological effects of genes discovered todate on the timing of the life cycle from different sowing dates. This isbeing addressed by studying the phenology of isogenic and deletion lines inboth field and controlled environmental conditions. This has indicated thatthe vernalization genes have major effects on the rate of primodiaproduction, whilst the photoperiod genes affect the timing of terminalspikelet production and stem elongation, and these effects interact withsowing date.  相似文献   

7.
Flood  R. G.  Halloran  G. M. 《Euphytica》1984,33(1):91-98
Summary Studies were made of days to ear emergence under the constant temperatures of 9, 14, 19 and 25°C and 16 h photoperiod in three sets of wheat lines each possessing genotypes differing for developmental responses.Days to ear emergence in three near-isogenic lines of the wheat cultivar Triple Dirk, which differed for vernalization response, increased as the strength of the response increased. At the four temperatures Triple Dirk D (Vrn 1 vrn 2) was not significantly different from normal Triple Dirk (Vrn 1 Vrn 2) but Triple Dirk B (vrn 1 Vrn 2) was significantly (P=0.01) later than normal Triple Dirk at each temperature. This indicates that the vrn 1 allele confers stronger vernalization response than vrn 2 over the range of temperatures (9–24°C). However, Triple Dirk C (vrn 1 vrn 2) failed to head after 120 days at each temperature indicating strong interaction between vrn 1 and vrn 2 with each other (and possibly the Triple Dirk back-ground) to give a much stronger vernalization response than predictions from additivity of their individual effects.The second set comprised the four Chinese Spring/Thatcher chromosome substitution lines CS/T 3B, 6B, 7B and 5D, plus Chinese Spring and Thatcher, and were grown in the unvernalized condition. CS/T 5D was similar in days to ear emergence as Chinese Spring at all four temperatures but the other three lines were earlier to ear emergence, particularly as the temperature increased. Days to ear emergence was fastest at 14°C in all lines, except CS/T 3B, in which it decreased progressively from 9 to 24°C.The third set of Chinese Spring and Thatcher and the homoeologous group 2 chromosomes of Thatcher substituted in Chinese Spring, the group which is considered to be involved in the control of photoperiod sensitivity. The three substitution lines responded differently to temperature compared with Chinese Spring and with each other, with chromosome 2D being the least, and chromosome 2B the most, responsive to temperature.  相似文献   

8.
In order to develop QTL applications, eight new loci were mapped on barley chromosome 7 using 124 doubled haploid lines of the North American Barley Genome Mapping Project (NABGMP) progeny (‘Steptoe’בMorex’)- These loci involve six genomic DNA restriction fragment length polymorphisms (RFLPs) and two cDNA-RFLPs including a puroindoline gene. The distribution of these markers on barley chromosome 7 was compared with that of homoeologous wheat counterparts, i.e. wheat group 5. One locus on chromosome 7 was associated with a QTL for β-glucanase activity measured in green and finished barley malt.  相似文献   

9.
This study used cytogenetic stocks to investigate the chromosomal location of genes responsible for polyphenol oxidase (PPO) activity in common and durum wheat seeds. Substitution lines of chromosome 2A of hexaploid varieties ‘Cheyenne’, ‘Thatcher’ and ‘Timstein’ in ‘Chinese Spring’ showed significantly higher PPO activity than all other substitution lines of the same variety, with the exception of substitutions of ‘Cheyenne’ chromosome 3A and ‘Thatcher’ chromosome 4B. Substitution lines of chromosome 2A of Triticum turgidum var. dicoccoides and of chromosome 2D of ‘Chinese Spring’ into the tetraploid variety ‘Langdon’ showed a significant increase in PPO activity relative to all other substitution lines in Langdon. The gene(s) responsible for high PPO activity in chromosome 2D from ‘Chinese Spring’ was mapped on the long arm within a deletion that represents 24% of the distal part of the arm. This study shows that genes located in homoeologous group 2 play a major role in the activity of PPO in wheat.  相似文献   

10.
To identify homoeologous group-3 chromosomes that carry genes for vernalization, day-length responses, and earliness per se, a series of aneuploid lines (mono-somics and tetrasomics) and chromosome-substitution lines in ‘Chinese Spring’ (CS) were surveyed under different vernalization and day-length regimes in controlled environments. The results indicated that genes on all three chromosomes of group 3 can have striking effects on ear-emergence time. The replacement of CS 3B by its homologues in ‘Lutescens 62’ and ‘Cheyenne’ produced an increased insensitivity to vernalization, while 3B homologues from ‘Ceska Presivka’ gave CS a remarkable sensitivity to vernalization. This provided evidence for multiple allelism at a new Vrn locus on chromosome 3B. A negative association between gene dosage and day-length response was found in CS 3D which was thought to carry a gene for promoting insensitivity to day-length. The behaviour of CS monosomic 3A and CS (Timstein 3A), in reducing numbers of days to heading independently of environmental stimuli, suggested the presence of earliness per se genes on this chromosome.  相似文献   

11.
Barley—Pyrenophora graminea interaction: QTL analysis and gene mapping   总被引:2,自引:0,他引:2  
Pyrenophora graminea is a seed-borne pathogen and is the causal agent of the barley leaf stripe disease. Our aim is to study the genetic basis of barley resistance to leaf stripe. A qualitatively acting resistance factor has been identified in the cultivar ‘Vada’ and the partial resistance of the cultivar ‘Proctor’ to a P. graminea isolate has been demonstrated to be dominated by a major quantitative trait locus (QTL), mapped on barley chromosome 1. Map colinearity between the leaf stripe ‘Proctor’ resistance QTLs,‘Vada’ resistance to leaf stripe, and other disease resistance loci have been investigated in this work using molecular markers. Moreover, since inoculation of barley rootlets by the fungus had been shown to induce the accumulation of several PR (pathogen-related) mRNA families, seven barley PR genes have been mapped as RFLPs, and one assigned to a chromosome arm via ditelosomic analysis to verify possible map associations with resistance QTLs. This work discusses the genetic relationships between the known leaf stripe resistance loci, resistance loci towards other seed-borne pathogens and defence gene loci.  相似文献   

12.
Previous studies in several Triticeae species have suggested that salt tolerance is a polygenic trait, but that genes on some chromosomes confer better tolerance to salt stress than others. This suggests an intriguing possibility that there may be a similar basis for salt tolerance in the species of the tribe Triticeae. In this study, chromosomal control of the tolerance to sudden salt stress, measured as the mean rate of leaf elongation in solution cultures with a single increment of 200 mM NaCl, was investigated in the genomes of cultivated barley (Hordeum vulgare L.), rye (Secale cereale L.), and Dasypyrum villosum (L.) Can-dargy by using disomic addition lines of individual pairs of chromosomes or chromosome arms of each of the three species in the ‘Chinese Spring’ wheat genetic background. It was observed that the chromosomes of homoeologous groups 3, 4, and 5 in barley, 5 and 7 in rye, and 4 and 6 in D. villosum carry loci with significant positive effects on salt tolerance. Increased doses of chromosomes of group 2, however, reduce or do not increase the tolerance to salt stress. These results are in agreement with a previous study of the tolerance of this salt stress regime in wheat and wheatgrass Lophopyrum elongatum. A ranking analysis of the chromosomal effects within each genome of the five Triticeae species investigated in this and previous studies revealed that the chromosomes of homoeologous groups 3 and 5 consistently confer large positive effects on the tolerance of sudden salt stress, while the chromosomes of homoeologous group 2 in increased dose have no or negative effects on the tolerance. This strongly suggests that species of the tribe Triticeae share some common genetic mechanisms of tolerance of sudden salt stress. The findings in this study give credence to the proposal that wild relatives can be exploited in the development of wheat cultivars with greater tolerance to salt stress.  相似文献   

13.
A hybrid between an induced tetraploid of Hordeum chilense (2n = 28 = HchHchHchHch) and Triticum aestivum var. ‘Chinese Spring’ (2n = 42 = AABBDD) has been produced to test gene effects of this wild barley on homoeologous pairing in wheat. Cytological investigations in metaphase I have shown that the hybrid, which is perennial like H. chilense but morphologically more similar to the wheat parent, possesses the expected genome composition HchHch ABD and a stable euploid chromosome number of 2n = 35. Pairing among the homologous H. chilense chromosomes was almost complete. The level of non-homologous chromosome association proved to be lower than the range of pairing known from euhaploids of ‘Chinese Spring’.  相似文献   

14.
Resistance to Pseudocercosporella herpotrichoides in five wheat cultivars, accession W6 7283 of Dasypyrum villosum, and ‘Chinese Spring’ disomic addition lines of the D. villosum chromosomes IV, 2V, 4V, 5V, 6V and 7V, was evaluated in seedlings by measuring disease progress 6 weeks after inoculation with a β—glucuronidase—transformed strain of the pathogen and by visual estimates of disease severity. D. villosum and the disomic addition line of chromosome 4V were as resistant as wheat cultivars ‘VPM—1’ and ‘Cappelle Desprez’, but less resistant than ‘Rendezvous’. Resistance of the chromosome 4V disomic addition line was equivalent to that of D. villosum.‘Chinese Spring’ and disomic addition lines of IV, 2V, 5V, 6V and 7V were all susceptible. These results confirm Sparaguee's (1936) report of resistance in D. villosum to P. herpotrichoides and establish the chromosomal location for the genes controlling resistance. The presence of chromosome 4V in the addition line and its homocology to chromosome 4 in wheat were confirmed by Southern analysis of genomic DNA using chromosome group 4-specific clones. This genetic locus is not homoeologous with other known genes for resistance to P. herpotrichoides located on chromosome group 7, and thus represents a new source of resistance to this pathogen.  相似文献   

15.
Two major genes (eam8 and eam10) and two quantitative trait loci (QTL) determining flowering time in barley were associated with restriction fragment length polymorphism markers. The loci eam8 and eam10 were found to map in regions of chromosomes 1HL and 3HL, respectively, already estimated from previous classical linkage analyses. While investigating doubled haploid lines of a spring habit barley mapping population, two QTL for flowering time were detected on chromosomes 1HL and 7HS, respectively, when the material was grown under long photoperiod conditions. When growing the same lines under short photoperiod, no QTL were discernible. Allelic and homoeologous relationships with flowering time loci described earlier in barley and other Triticeae species are discussed.  相似文献   

16.
The responses to salt stress in NFT (nutrient film) hydroponics of ‘Chinese Spring’ wheat and a number of its aneuploids involving the chromosomes of homoeologous group 5 were studied. This showed that the absence of chromosome 5D allowed plants to survive better than in the euploid condition. Much of this response could be related to the effects of Vrn3, which conditions the spring habit of ‘Chinese Spring’. The ability to survive relatively high levels of stress was promoted by the group 5 homoeologue from Thinopyrum bessarabicum.  相似文献   

17.
B. Keller  N. Stein  C. Feuillet 《Euphytica》2001,119(1-2):131-133
The hexaploid wheat genome is too complex for direct map-basedcloning and model genomes have to be used to isolate genes from wheat.Comparative genomic analysis at the genetic map level has shown extensiveconservation of the gene order between the different grass genomes inmany chromosomal regions. However, little is known about the geneorganization in grass genomes at the microlevel. We have investigated themicrocollinearity at Lrk gene loci in the genomes of four grass species:wheat, barley, maize and rice. The Lrk genes, which encodereceptor-like kinases, were found to be consistently associated with anothertype of receptor-like kinase (Tak) on chromosome groups 1 and 3 inTriticeae and on chromosomes homoeologous to Triticeae group 3 in theother grass genomes. On Triticeae chromosome group 1, Tak and Lrk together with genes putatively encoding NBS/LRR proteins form acluster of genes. Comparison of the gene composition at orthologous Lrk loci in wheat, barley and rice revealed a maximal gene density of onegene per 5 kb. We conclude that small and large grass genomes containregions which are highly enriched in genes. Microrearrangements betweendifferent grass genomes have been found and therefore, the choice of agood model genome is critical. We have recently started to work on theT. monococcum model genome and confirmed its usefulness foranalysis of the Lr10 leaf rust disease resistance locus in wheat.  相似文献   

18.
A barley drought tolerance Quantitatif Trait Locus (QTL) on chromosome 2 was transferred from tolerant cultivar ‘Tadmor’ to susceptible ‘Baronesse’ and ‘Aydanhanım’. Effects of this QTL on drought tolerance and other traits were studied using near-isogenic lines under controlled environments and field trials for two years. This QTL resulted in 5.0% and 9.1% improvement in leaf relative water content of ‘Baronesse’ and ‘Aydanhanım’ cultivars, respectively, under controlled environments. The QTL accelerated heading and maturity by 2.5 days in ‘Baronesse’ and by 5–6 days in ‘Aydanhanım’. It was associated with shorter stature and more ears. This QTL region increased grain yields by 1.1 and 0.6 t/ha in ‘Baronesse’ and ‘Aydanhanım’, respectively, mainly by increasing the number of tillers. There were previous reports related to yield promoting effects of this region harbouring flowering locus eps2 (barley HvCEN gene). However, sequencing of 1025 bp fragment encompassing HvCEN coding region revealed that our parents and near-isogenic lines had no Single Nucleotide Polymorphism (SNP) variation, ruling out direct involvement of eps2. These findings pointed to the possible effect of another flowering locus in the QTL region.  相似文献   

19.
In order to determine the genetic relatedness of individual barley chromosomes to wheat chromosomes, ‘Betzes’ barley chromosomes 1, 3 and 6 were substituted for individual ‘Chinese Spring’ wheat chromosomes of homoeologous groups 7, 3 and 6, respectively. The substitution status of these lines has been confirmed using isozyme selective markers, chromosome pairing behaviour in F1 hybrids between the substitution lines and the appropriate double ditelocentric stocks of wheat, and hybridization of cDNA probes to the genomic DNA digests of these substitution lines. Each of the three barley chromosomes provided genetic compensation for the wheat chromosomes they replaced in the substitution plants. From the basis of this compensation with respect to plant vigour and fertility, barley chromosomes 1, 3 and 6 have been designated 7H, 3H and 6H.  相似文献   

20.
The length of chromosomal segments retained around the Vrn‐B1 gene controlling sensitivity to vernalization in wheat (Triticum aestivum L.) was studied in the first and third backcrosses by using microsatellite markers. Eleven polymorphic markers located on chromosome 5B were used for microsatellite analysis. It was shown in the first backcross that plants with a donor segment around the gene of interest not longer than 50% of chromosome 5B could be selected. When selection is not molecular‐marker assisted, the length of the chromosomal donor segment with the target gene may reach 94% of chromosome 5B even in plants of the third backcross generation. The considerable length differences in the 5B microsatellite loci between the winter and spring lines of wheat studied indicate that these markers are promising in marker‐assisted backcrossing or marker‐assisted selection for the Vrn‐B1 gene using different combinations of Spring and Winter genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号