首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
利用分子标记或对特异位点的碱基序列进行分析是植物病原物分子检测的基础,可以在属和种的水平上对物种进行区分和鉴定。对疫霉属的不同种已有一系列的分子检测方法。SNARE蛋白相关基因YKT6拥有保守的侧翼编码区,适于设计疫霉属特异性的PCR引物,同时其内含子所具有的多态性可开发出几乎所有疫霉种的分子标记。利用疫霉属特异性引物对P-YKT6-F/P-YKT6-R可在31个疫霉种中特异地扩增出一条约600 bp的条带,而在腐霉或其他真菌中不能扩增出该条带。利用大豆疫霉的引物对Ps-YKT6-F/Ps-YKT6-R和辣椒疫霉的引物对Pc-YKT6-F/Pc-YKT6-R,能分别从大豆疫霉菌株和辣椒疫霉菌株中扩增出一条399 bp和282 bp的条带,常规PCR和巢式PCR的灵敏度分别达到100 pg和10 fg。利用这些引物也可从土壤和病组织中检测到目标病原菌。此外,利用上述特异性引物开发出了大豆疫霉和辣椒疫霉的实时定量PCR检测方法。基于YKT6基因的分子标记和检测方法可用于疫霉种的调查检测和法定定量检测。  相似文献   

2.
引起大豆疫霉根腐病的大豆疫霉菌(Phytophthora sojae)是危害大豆的破坏性病原菌之一,也是我国重要的检疫性植物病原菌。简单、快速、准确的鉴定和检测技术是阻止大豆疫霉菌传入和病害早期诊断的有效工具。本研究从大豆疫霉菌细胞色素氧化酶基因Ⅱ(coxⅡ)序列和两个激发素(elicitin)家族基因EST序列中开发了3对大豆疫霉菌特异引物:Cox3-F/Cox3-R、PSEL1-F/PSEL1-R和PSEL2-F/PSEL2-R。这3对引物在大豆疫霉菌中分别扩增出450、289bp和370bp的特异性片段,其检测大豆疫霉菌基因组DNA的灵敏度分别为20、2pg/μL和2pg/μL。3对引物能够有效检测大豆疫霉菌侵染的大豆病株,可以用于病害诊断和鉴别。  相似文献   

3.
李属植物检疫性丁香疫霉和栗黑水疫霉的三重PCR分子检测   总被引:2,自引:2,他引:0  
为建立我国禁止进境的2种检疫性真菌丁香疫霉Phytophthora syringae和栗黑水疫霉P.cambivora的同步分子检测方法,根据疫霉属的18S rRNA、HSP90和Ypt1基因分别设计通用引物、丁香疫霉和栗黑水疫霉的特异性引物,建立三重PCR检测方法,并进行灵敏度测试和模拟带菌试验。结果表明,可同时检测李属植物上丁香疫霉和栗黑水疫霉的特异三重PCR检测体系为:最佳引物浓度组合18SUF/18SUR、PCSF/PCSR和PSSF/PSSR依次为0.2、0.8、1.0μL,最佳退火温度为63℃,最佳退火时间为20 s。该体系扩增丁香疫霉出现884 bp的18S rRNA条带和683 bp的HSP90基因特异条带,扩增栗黑水疫霉出现884 bp的18S rRNA条带和314 bp的Ypt1基因特异条带,对照菌只出现18S rRNA条带;三重PCR反应体系检测灵敏度低于单重PCR;模拟带菌试验可同时扩增出3个片段。表明该三重PCR检测方法能实现丁香疫霉和栗黑水疫霉的同步特异性检测,可有效改进李属类水果及其种苗上检疫性疫霉的快速检测。  相似文献   

4.
非洲菊疫霉根腐病的快速分子诊断   总被引:1,自引:0,他引:1  
 隐地疫霉引起的根腐病是非洲菊生产上的主要病害,为发展该病的快速诊断技术,本文比较了卵菌核糖体基因ITS的序列,在此基础上设计了2条针对隐地疫霉的特异性PCR引物PC1和PC2。供试的23种不同真菌和疫霉菌的46个菌株中,利用这对引物能从隐地疫霉基因组DNA中扩增出一条分子量为620bp的特异性条带,该引物的检测灵敏度可达10pg。采用快速组织碱裂解法提取发病植物组织的DNA,结合PCR检测技术,4h内可从发病的非洲菊根部组织中特异性地检测到隐地疫霉菌。结果表明,建立的非洲菊疫霉根腐病菌分子检测方法可用于该病害的快速分子诊断。  相似文献   

5.
采用叶碟诱捕法从江苏口岸进境的大豆所携带的土壤中,共分离了疫霉12株,选取6个菌株,对病原菌进行了形态特征、致病性、寄主范围鉴定。结果表明,形态观察为疫霉属真菌,接种大豆后可出现典型的大豆疫病症状,且人工接种只侵染大豆、豇豆和菜豆等少数豆科植物。采用大豆疫霉的特异性引物检测表明,所有12个菌株均能扩增出分子量为330bp的特异性条带。结合形态和致病性测定,这些病原菌鉴定为大豆疫霉(Phytophthorasojae)。  相似文献   

6.
雪松疫霉(Phytophthora lateralis)的快速分子检测   总被引:1,自引:0,他引:1  
由雪松疫霉(Phytophthora lateralis)引起的疫病是一类植物检疫性病害。为建立该病原菌的快速检测技术,本文比较分析了雪松疫霉和其他疫霉的tRNA序列,在此基础上设计了一对检测雪松疫霉的特异性引物T1/T2,该对引物从雪松疫霉中扩增得到1条192 bp的条带,而其他15种疫霉和其他真菌菌株均无扩增条带,表明该对引物对雪松疫霉具有特异性。在25μL PCR反应体系中,引物T1/T2检测灵敏度为10 pg基因组DNA;而以引物T3/T4和T1/T2进行巢式PCR扩增,能够检测到1 fg基因组DNA,使检测灵敏度提高了10 000倍。该检测体系对灭菌水中游动孢子的检测灵敏度可达0.5个游动孢子,对人工接种发病的植物组织能够特异性地检测到该病原菌。此外,进一步建立了该病原菌的实时荧光定量PCR检测体系。  相似文献   

7.
冬生疫霉(Phytophthora hibernalis)的快速分子检测   总被引:4,自引:1,他引:3  
 由冬生疫霉(Phytophthora hibernalis)引起的疫病是一类植物检疫性病害。为建立该病原菌的快速检测技术,本文比较分析了冬生疫霉和其它疫霉的ITS序列,在此基础上设计了一对检测冬生疫霉的特异性引物751F/752R,该对引物从冬生疫霉中扩增得到一条616bp的条带,而其它19种疫霉和其它真菌菌株均无扩增条带,表明该对引物对冬生疫霉具有特异性。在25μL PCR反应体系中,引物751F/752R检测灵敏度为10龟基因组DNA;而以卵菌ITS区通用引物ITS1/ITS4和751F/752R进行套式PCR扩增,能够检测到10ag的基因组DNA,使检测灵敏度提高了1000倍。该检测体系对灭菌水中游动孢子的检测灵敏度可达0.5个游动孢子。结合快速碱裂解法提取发病组织的DNA,采用该PCR检测技术,在1个工作日内即可从人工接种发病的植物组织中特异性的检测到该病原菌。表明本研究建立的检测方法可用于冬生疫霉的快速分子检测。  相似文献   

8.
大豆疫霉侵染大豆引起的根腐病是大豆生产上的毁灭性病害之一。本研究以Ypt1基因作为靶标,利用环介导等温扩增(LAMP)技术,设计了特异性检测体系,整个过程仅需60 min,即可通过肉眼直接目测检测结果。反应后经浊度仪验证浊度变化、琼脂糖凝胶进行电泳验证和在扩增前加入染料HNB(羟基蔡酚蓝)作为反应指示剂验证扩增结果。特异性检测中,111个大豆疫霉菌株均能产生浊度曲线和扩增到梯形状的条带,同时HNB显色观察到天蓝色的阳性反应,而其它疫霉、腐霉和真菌供试菌株中均没有观察到这些现象;在灵敏度检测中,PsYpt1-LAMP技术最低检测限达到100 pg·μL~(-1),比普通PCR技术的最低检测限高出10倍;在田间应用方面,PsYpt1-LAMP检测技术明显提高了检测效率。本研究建立的LAMP检测体系可用于口岸和田间对大豆疫霉的快速检测。  相似文献   

9.
 为了快速、准确地检测丁香疫霉病菌 (Phytophthora syringae, PSY),根据GeneBank中PSY的ITS序列设计特异引物Psy1/Psy2和探针P-Psy,建立了常规PCR和实时荧光PCR检测方法。利用引物Psy1/Psy2扩增供试的26株PSY能得到585 bp的预期目标条带,但扩增其它61个非PSY供试菌株不能得到预期产物,检测灵敏度为12 pg菌丝DNA;探针P-Psy对供试26株PSY表现为阳性扩增,而对其它菌株和空白对照均表现为阴性扩增,检测灵敏度可达120 fg菌丝DNA,比常规PCR高100倍;引物Psy1/Psy2和探针P-Psy对5 g土壤中PSY卵孢子的检测灵敏度分别为20 000个和200个。样品检测试验表明两种PCR方法可用于口岸植物检疫中快速、准确和特异地检测丁香疫霉病菌。  相似文献   

10.
根据实验室设计的栎枯萎病菌的特异性引物CF01/CF02和2004年Hayden等设计的栎树疫霉猝死病菌特异性引物Phyto1/Phyto4,组合并优化出了可以同时检测2种病原菌的多重PCR检测体系,经PCR扩增可以分别得到687bp和280bp两条特异性条带,利用菌丝DNA检测,灵敏度为10pg基因组DNA。  相似文献   

11.
ABSTRACT Sudden oak death is a disease currently devastating forest ecosystems in several coastal areas of California. The pathogen causing this is Phy-tophthora ramorum, although species such as P. nemorosa and P. pseudo-syringae often are recovered from symptomatic plants as well. A molecular marker system was developed based on mitochondrial sequences of the cox I and II genes for detection of Phytophthora spp. in general, and P. ramorum, P. nemorosa, and P. pseudosyringae in particular. The first-round multiplex amplification contained two primer pairs, one for amplification of plant sequences to serve as an internal control to ensure that extracted DNA was of sufficient quality to allow for polymerase chain reaction (PCR) amplification and the other specific for amplification of sequences from Phytophthora spp. The plant primers amplified the desired amplicon size in the 29 plant species tested and did not interfere with amplification by the Phytophthora genus-specific primer pair. Using DNA from purified cultures, the Phytophthora genus-specific primer pair amplified a fragment diagnostic for the genus from all 45 Phytophthora spp. evaluated, although the efficiency of amplification was lower for P. lateralis and P. sojae than for the other species. The genus-specific primer pair did not amplify sequences from the 30 Pythium spp. tested or from 29 plant species, although occasional faint bands were observed for several additional plant species. With the exception of one plant species, the resulting amplicons were smaller than the Phytophthora genus-specific amplicon. The products of the first-round amplification were diluted and amplified with primer pairs nested within the genus-specific amplicon that were specific for either P. ramorum, P. nemorosa, or P. pseudo-syringae. These species-specific primers amplified the target sequence from all isolates of the pathogens under evaluation; for P. ramorum, this included 24 isolates from California, Germany, and the Netherlands. Using purified pathogen DNA, the limit of detection for P. ramorum using this marker system was approximately 2.0 fg of total DNA. However, when this DNA was spiked with DNA from healthy plant tissue extracted with a commercial miniprep procedure, the sensitivity of detection was reduced by 100- to 1,000-fold, depending on the plant species. This marker system was validated with DNA extracted from naturally infected plant samples collected from the field by comparing the sequence of the Phytophthora genus-specific amplicon, morphological identification of cultures recovered from the same lesions and, for P. ramorum, amplification with a previously published rDNA internal transcribed spacer species-specific primer pair. Results were compared and validated with three different brands of thermal cyclers in two different laboratories to provide information about how the described PCR assay performs under different laboratory conditions. The specificity of the Phytophthora genus-specific primers suggests that they will have utility for pathogen detection in other Phytophthora pathosystems.  相似文献   

12.
Wang Y  Zhang W  Wang Y  Zheng X 《Phytopathology》2006,96(12):1315-1321
ABSTRACT Root and stem rot caused by Phytophthora sojae is one of the most destructive diseases of soybean (Glycine max) worldwide. P. sojae can survive as oospores in soil for many years. In order to develop a rapid and accurate method for the specific detection of P. sojae in soil, the internal transcribed spacer (ITS) regions of eight P. sojae isolates were amplified using polymerase chain reaction (PCR) with the universal primers DC6 and ITS4. The sequences of PCR products were aligned with published sequences of 50 other Phytophthora species, and a region specific to P. sojae was used to design the specific PCR primers, PS1 and PS2. More than 245 isolates representing 25 species of Phytophthora and at least 35 other species of pathogens were used to test the specificity of the primers. PCR amplification with PS primers resulted in the amplification of a product of approximately 330 bp, exclusively from isolates of P. sojae. Tests with P. sojae genomic DNA determined that the sensitivity of the PS primer set is approximately 1 fg. This PCR assay, combined with a simple soil screening method developed in this work, allowed the detection of P. sojae from soil within 6 h, with a detection sensitivity of two oospores in 20 g of soil. PCR with the PS primers could also be used to detect P. sojae from diseased soybean tissue and residues. Real-time fluorescent quantitative PCR assays were also developed to detect the pathogen directly in soil samples. The PS primer-based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in soil and infected soybean tissue.  相似文献   

13.
Phytophthora cinnamomi is an ecologically and economically important pathogen. In this study, PCR assays were developed with primer pair LPV2 or LPV3 for rapid detection and identification of this organism. Both primer pairs were selected from putative storage protein genes. The specificity of these primer pairs was evaluated against 49 isolates of P. cinnamomi , 102 isolates from 30 other Phytophthora spp., 17 isolates from nine Pythium spp. and 43 isolates of other water moulds, bacteria and true fungi. PCR with both primer pairs amplified the DNA from all isolates of P. cinnamomi regardless of origin. The LPV3 primers showed adequate specificity among all other species tested. The LPV2 primers cross-reacted with some species of Pythium and true fungi, but not with any other Phytophthora species. PCR with the LPV3 primers detected the pathogen at levels of a single chlamydospore or 10 zoospores in repeated tests. The PCR assay was at least 10 times more sensitive than the plating method for detection of the pathogen from artificially infested soilless medium, and, to a lesser extent, from naturally infected plants. PCR with LPV3 primers can be a useful tool for detecting P. cinnamomi from soilless media and plant tissues at ornamental nurseries, whereas the LPV2 primers can be an effective alternative for identification of this species from pure culture. Applications of these assays for detection of P. cinnamomi in other environments were also discussed.  相似文献   

14.
双重PCR检测马铃薯晚疫病菌和青枯病菌方法的建立及应用   总被引:3,自引:0,他引:3  
 利用真菌通用引物ITS1和ITS4扩增马铃薯晚疫病菌转录间隔区并进行序列测定,通过序列比较,设计了1对马铃薯晚疫病菌的特异引物INF1/INF2,并对15种不同真菌、细菌和7种疫霉属和腐霉属卵菌基因组DNA进行PCR扩增,结果只有不同来源的马铃薯晚疫病菌株可获得324 bp的特异带。将引物INF1/INF2与卵菌通用引物进行巢式PCR扩增后,其检测灵敏度在DNA水平上可达30 fg。运用设计的引物与马铃薯青枯病菌特异引物结合建立了双重PCR体系,能从马铃薯晚疫病菌和马铃薯青枯病菌总基因组DNA以及人工接种和自然发病的马铃薯植株中分别或同时扩增到324 bp和281 bp的特异片段。实现了同时对马铃薯晚疫病菌和马铃薯青枯病菌的快速可靠检测。  相似文献   

15.
A species-specific PCR assay was established for rapid and accurate detection of the oomycete pathogen Phytophthora tentaculata in diseased plant tissues and infected soil.A pair of species-specific primers Pt1/Pt2 were designed on the basis of Ras-related protein(Ypt1) gene sequences of the Phytophthora species.PCR amplification with the Pt primers resulted in a 386 bp product only from isolates of P.tentaculata.The detection threshold with Pt primers was 100 pg of genomic DNA.A nested PCR procedure was developed using Ypt1F/Ypt1R as the first-round amplification primers and Pt1/Pt2 as the second-round primers,which increased the detection sensitivity 100-fold to 1 pg.PCR using these Pt primers can also be used to detect P.tentaculata in naturally infected plant tissues and soil.The PCR-based method developed in this study provides a rapid and sensitive tool for detection of P.tentaculata.  相似文献   

16.
Colletotrichum coccodes is the causal agent of the potato blemish disease black dot. Two PCR primer sets were designed to sequences of the ribosomal internal transcribed spacer (ITS1 and ITS2) regions for use in a nested PCR. The genus-specific outer primers (Cc1F1/Cc2R1) were designed to regions common to Colletotrichum spp., and the species-specific nested primers (Cc1NF1/Cc2NR1) were designed to sequences unique to C . coccodes . The primer sets amplified single products of 447 bp (Cc1F1/Cc2R1) and 349 bp (Cc1NF1/Cc2NR1) with DNA extracted from 33 European and North American isolates of C. coccodes. The specificity of primers Cc1NF1/Cc2NR1 was confirmed by the absence of amplified product with DNA of other species representing the six phylogenetic groups of the genus Colletotrichum and 46 other eukaryotic and prokaryotic plant pathogenic species. A rapid procedure for the direct extraction of DNA from soil and potato tubers was used to verify the PCR assay for detecting C. coccodes in environmental samples. The limit of sensitivity of PCR for the specific detection of C. coccodes when inoculum was added to soils was 3·0 spores per g, or the equivalent of 0·06 microsclerotia per g soil, the lowest level of inoculum tested. Colletotrichum coccodes was also detected by PCR in naturally infested soil and from both potato peel and peel extract from infected and apparently healthy tubers. Specific primers and a TaqMan fluorogenic probe were designed to perform quantitative real-time (TaqMan) PCR to obtain the same levels of sensitivity for detection of C. coccodes in soil and tubers during a first-round PCR as with conventional nested PCR and gel electrophoresis. This rapid and quantitative PCR diagnostic assay allows an accurate estimation of tuber and soil contamination by C. coccodes .  相似文献   

17.
PCR primers were designed based on the sequence of Ras-related protein gene (Ypt1) of P. capsici. According to the multiple sequence alignment, Ypt1 has the sufficiently polymorphic intron region for the development of P. capsici-specific primers (PcYpt1F/PcYpt1R). One primer pair was developed which can amplify one P. capsici-specific fragment of 156 bp. Using the primer pair, the P. capsici infected plants and soils were detected. Additionally, Ypt1 has an appropriate region for the development of Phytophthora genus-specific primers (Ypt1F/Ypt1R), which can amplify a fragment of about 540 bp from 14 different Phytophthora specices and a fragment of about 350 bp in Pythium species, with no amplification from fungal species. By PCR optimization using P. capsici genomic DNA, the detection sensitivities of 10 pg and 10 fg DNA were achieved in standard PCR (PcYpt1F/PcYpt1R) and nested PCR (Ypt1F/Ypt1R and PcYpt1F/PcYpt1R), respectively. The developed primers were proved to be efficient in detection of Phytophthora pathogens from diseased plant tissues and residues in soils.  相似文献   

18.
A PCR-based 'molecular tool box', based on a region of the ras-related protein gene Ypt 1, was developed for the identification of 15 Phytophthora species that damage forests and trees: P. cactorum , P. cambivora , P. cinnamomi , P. citricola , P. europaea , P. inundata , P. lateralis , P. megasperma , P. nemorosa , P. kernoviae , P. pseudosyringae , P. psychrophila , P. quercina , P. ramorum and P. ilicis . Most primers proved highly specific in blast analyses and in tests with DNA from 72 isolates of 35 species of Phytophthora and nine species representative of Pythium . Exceptions were primers designed for P. cactorum and P. ilicis , which cross-reacted with P. idaei and P. nemorosa , respectively. Amplification with Phytophthora -genus-specific primers before amplification with the various species-specific primers (nested PCR) increased the sensitivity of detection over amplification with species-specific primers only: detection limits ranged between 100 and 10 pg target DNA µ L−1 in the latter, compared with 100 fg µ L−1 in nested PCR. Using existing methods for rapid extraction and purification of DNA, single-round amplification was appropriate for detection of target Phytophthora species in leaves, but nested PCR was required for soil and water samples. The quarantine pathogens P. ramorum and P. kernoviae were detected in a number of naturally infected leaves collected in England and Wales, whereas P. citricola was commonest in water and soil samples from natural Scottish ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号