首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
Thirteen low-tannin faba bean genotypes grown at two locations in north central Alberta in 2009 were evaluated to investigate the variation in seed characteristics, phenolic and phytate contents, and phytase and antioxidant activities and to elucidate the relationship of these components as a breeding strategy. Seed characteristics including color were predominantly genotype dependent. The faba bean genotypes with total phenolic content ranging from 5.5 to 41.8 mg of catechin equiv/g of sample was linearly related to tannin content and the best predictor of antioxidant activity. Phytic acid content and phytase activity varied significantly among genotypes and between locations, ranging from 5.9 to 15.1 g/kg and from 1606 to 2154 FTU/kg sample, respectively. Multivariate data analysis performed on 19 components analyzed in this study using principal component analysis (PCA) and cluster analysis demonstrate that differences in seed characteristics, phenolic components, phytic acid, and phytase are major factors in segregating faba bean genotypes. The relatively low phytic acid content and high phytase activity of these low-tannin faba bean genotypes are beneficial/essential traits for their use in human and animal nutrition.  相似文献   

2.
Three phytases were purified about 14200-fold (LP11), 16000-fold (LP12), and 13100-fold (LP2) from germinated 4-day-old lupine seedlings to apparent homogeneity with recoveries of 13% (LP11), 8% (LP12), and 9% (LP2) referred to the phytase activity in the crude extract. They behave as monomeric proteins of a molecular mass of about 57 kDa (LP11 and LP12) and 64 kDa (LP2), respectively. The purified proteins belong to the acid phytases. They exhibit a single pH optimum at 5.0. Optimal temperature for the degradation of sodium phytate is 50 degrees C. Kinetic parameters for the hydrolysis of sodium phytate are K(M) = 80 microM (LP11), 300 microM (LP12), and 130 microM (LP2) and k(cat) = 523 s(-1) (LP11), 589 s(-1) (LP12), and 533 s(-1) (LP2) at pH 5.0 and 35 degrees C. The phytases from lupine seeds exhibit a broad affinity for various phosphorylated compounds and hydrolyze phytate in a stepwise manner.  相似文献   

3.
This study was to examine the time course of sample-specific linearity of intrinsic phytase hydrolysis in major cereal grains and in ileal digesta and fecal samples and to determine the time course of the microbial phytase-catalyzed hydrolysis of various sources of phytate for estimating phytate phosphorus (P) content. The intrinsic phytase activity in barley, corn, oat, and wheat samples was measured over multiple time points from 0 to 120 min at 1.5 mmol.L(-1) of sodium phytate at pH 5.5 and 37 degrees C. Time courses of hydrolysis of purified phytate and phytate associated with the cereal grain samples and the pig digesta and fecal samples were examined with the Natuphos microbial phytase over multiple time points from 0 to 48 h of incubation. The intrinsic phytase hydrolysis was linear (P < 0.05) for up to 120 min for the barley, corn, and wheat samples, whereas in the oat sample the hydrolysis was linear (P < 0.05) for only up to 30 min of incubation. The intrinsic phytase activities (phytase unit: mumol.kg(-1) of dry matter.min(-1)) for the barley, corn, and wheat samples were estimated to be 693, 86, and 1189 by linear regression analysis. Intrinsic phytase activity (412 phytase units) for the oat sample based on a 30-min incubation was considerably higher than the value (103 phytase units) determined from the 120-min incubation for the same oat sample. There were quadratic with plateau relationships (P < 0.05) between the hydrolytic release of inorganic P from various sources of phytate and the incubation time. The minimal incubation times required for the complete hydrolysis of phytate were estimated to be 4, 3, and 11 h for the purified phytate, the cereal grain samples, and the pig digesta and feces, respectively. It was concluded that multiple time point experiments need to be conducted to determine valid intrinsic phytase activity and phytate P content in samples through intrinsic and microbial phytase hydrolysis incubations.  相似文献   

4.
Five copper (Cu) sources were studied at pH 2.5, 5.5, and 6.5 to determine how Cu affects phytate phosphorus (PP) hydrolysis by phytase at concentrations up to 500 mg/kg diet (60 min, 40-41 degrees C). Subsequently, Cu solubility with and without sodium phytate was measured. Adding Cu inhibited PP hydrolysis at pH 5.5 and pH 6.5 (P < 0.05). This inhibition was greater with higher concentrations of Cu. Tri-basic copper chloride and copper lysinate inhibited PP hydrolysis much less than copper sulfate pentahydrate, copper chloride, and copper citrate (P < 0.05). A strong negative relationship was observed between PP hydrolysis and soluble Cu at pH 5.5 (r = -0.76, P < 0.0001) and 6.5 (r = -0.54, P < 0.0001). In conclusion, pH, Cu concentration, and source influenced PP hydrolysis by phytase in vitro and were related to the amount of soluble Cu and the formation of insoluble copper-phytin complexes.  相似文献   

5.
Fungal phytases belonging to "histidine acid phosphatase" or HAP class of phosphohydrolases that catalyze the hydrolysis of phytic acid could also hydrolyze O-phospho-L-tyrosine, which is also called phosphotyrosine. Two phytases from Aspergillus niger and Aspergillus awamori with pH optima 2.5 were tested for phosphotyrosine hydrolase activity; both enzymes cleaved the phosphomonoester bond of phosphotyrosine efficiently at acidic pH. The Km for phosphotyrosine ranged from 465 to 590 microM as opposed to 135 to 160 microM for phytate. The Vmax, however, is 2-4 times higher for phosphotyrosine than it is for phytate. The catalytic efficiency of phytase for phosphotyrosine is on the same order as it is for phytate (3.5 x 10(6) to 1.6 x 10(7) M(-1) s(-1)); the pH versus activity profile for phosphotyrosine is, however, different from what it is for phytate. The temperature optima shifted 5 degrees C higher to 70 degrees C when phosphotyrosine was used as the substrate. Taken together, the kinetic data show that fungal HAPs that are known as PhyB are capable of cleaving the phosphomonoester bond in phosphotyrosine. This is the first time that phosphotyrosine phosphatase (PTPase) activity has been reported for the subgroup of HAP known as phytase.  相似文献   

6.
苯甲酸是引起蚕豆连作障碍的主要自毒物质之一。本文采用水培试验,研究了不同浓度苯甲酸[C0(0 mg?L-1)、C1(50 mg?L-1)、C2(100 mg?L-1)和C3(200 mg?L-1)]处理对与小麦间作的蚕豆幼苗生长和枯萎病发生的影响,从生理抗性角度探讨小麦与蚕豆间作对缓解苯甲酸自毒效应的机制,为合理利用间作缓解连作障碍,实现农业可持续发展提供科学依据。结果表明:与C0处理相比,不同浓度苯甲酸处理均显著抑制了蚕豆幼苗的生长,并且随处理浓度升高,抑制效应增强;同时显著提高了蚕豆枯萎病发病率和病情指数;蚕豆根系和叶片的MDA含量显著提高,但抗氧化酶(POD和CAT)活性和病程相关蛋白(β-1,3-葡聚糖酶和几丁质酶)活性均随苯甲酸处理浓度升高而降低。表明不同浓度苯甲酸处理均显著抑制了蚕豆的生长,降低蚕豆的生理抗性而促进枯萎病发生。与单作蚕豆相比,蚕豆与小麦间作显著提高了苯甲酸胁迫下蚕豆的地上部干重(17.0%~47.1%),降低了发病率(11.1%~25.0%)和病情指数(20.0%~42.1%);蚕豆根系和叶片中POD活性分别提高12.9%~16.9%和9.3%~24.9%,CAT活性分别提高10.3%~54.0%和6.6%~20.5%,蚕豆根系的β-1,3-葡聚糖酶和几丁质酶活性分别提高4.7%~13.1%和6.7%~15.8%,MDA含量分别降低19.5%~25.4%和20.5%~29.9%。C2处理下间作提高抗氧化酶和病程相关蛋白活性的效果最好,抗病效果最佳。表明小麦与蚕豆间作通过提高蚕豆的生理抗性而减轻苯甲酸引起的枯萎病危害,促进蚕豆生长,是缓解苯甲酸自毒效应的有效措施。  相似文献   

7.
Fuel ethanol production from grains is mainly based on dry‐grind processing, during which phytate is concentrated about threefold in distillers dried grains with solubles (DDGS), a major coproduct. To reduce phytate in DDGS, Natuphos and Ronozyme industrial phytase preparations were used to treat commercially made thin stillage (TS). Changes in phosphorous (P) profile were monitored, and effects of reaction temperature, time, and enzyme concentration were investigated. Results showed that at a temperature ≤60°C for Natuphos phytase (≤70°C for Ronozyme phytase) and a concentration ≤4.8 FTU/mL of TS for Natuphos phytase (≤48 FYT/mL for Ronozyme phytase), a complete phytate hydrolysis (phytate P decreased to 0) could be achieved within 5–60 min of enzymatic treatment. Reduction in phytate P was generally accompanied by increase in inorganic P, whereas total P remained relatively unchanged. When condensed distillers solubles (CDS), the concentrated form of TS, was used as the substrate, phytate hydrolysis by each of the two enzyme preparations was as effective as on TS. Because a previous study from the author's laboratory showed that all types of P are mostly concentrated in TS and CDS but much less in distillers wet grains, phytase treatments of TS and CDS described in the present study can be an effective means in producing low‐phytate DDGS.  相似文献   

8.
A flow injection spectrophotometric procedure with enzymatic hydrolysis was developed for determination of orthophosphate, phytate and total phosphorus in cereal samples. Phosphorus species were extracted from cereals with 0.05 mol L(-1) potassium hydrogen phthalate buffer solution at pH 5.7. Orthophosphate was directly determined in the extracts by molybdenum blue spectrophotometric method. The phytate was hydrolyzed by the enzyme phytase coupled to a solid phase packed into an enzymatic reactor, and the resulting hydrolyzed orthophosphate was also determined by spectrophotometry at 650 nm. After optimization for phosphorus species extraction and enzymatic hydrolysis, a linear calibration graph was obtained up to 196 x 10(-6) mol L(-1) orthophosphate (P conc = -2.67 + 0.52x, r = 0.9998). Measurements are characterized by relative standard deviation of 1.6% for a standard of 72 x 10(-6) mol L(-1) orthophosphate and no baseline drift was observed during 4 h operation periods. It provides 72 measurements per hour, with 2.4 x 10(-)6) mol L(-1) and 7.9 x 10(-6) mol L(-1) as detection and quantification limits, respectively.  相似文献   

9.
Using a multivariate experimental design, optimal conditions for phytate degradation were found to be pH 4.8 and 57 degrees C in barley flour (cv. Blenheim) and pH 5.2 and 47 degrees C in a crude extracted phytase from barley. Three methods for measuring phytase activity in raw and hydrothermally processed barley were compared. Incubation at pH 5 and 55 degrees C for 60 min did not give significantly different results (p > 0.05), whereas incubation at pH 5 and 50 degrees C for 10, 20, 30, and 60 min gave significantly different results (p < 0.001) between methods. The change in microstructure of phytate globoids during hydrothermal processing showed that the degradation was highest in the scutellum cells and less in the aleurone layer.  相似文献   

10.
During food processing such as baking, phytate is dephosphorylated to produce degradation products, such as myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphates. Certain myo-inositol phosphates have been proposed to have positive effects on human health. The position of the phosphate groups on the myo-inositol ring is thereby of great significance for their physiological functions. Using a combination of high-performance ion chromatography analysis and kinetic studies the stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme from baker's yeast (Saccharomyces cerevisiae) was established. The data demonstrate that the phytate-degrading enzyme from baker's yeast dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-Ins(1,2,4,5,6)P(5), D-Ins(1,2,5,6)P(4), D-Ins(1,2,6)P(3), D-Ins(1,2)P(2), to finally Ins(2)P (notation 3/4/5/6/1). Knowledge of the absolute stereochemical specificity of the baker's yeast phytase allows use of the enzyme to produce defined myo-inositol phosphates for kinetic and physiological studies.  相似文献   

11.
Using a combination of high-performance ion chromatography analysis and kinetic studies, the pathway of dephosphorylation of myo-inositol hexakisphosphate by the phytases purified from faba bean and lupine seeds, respectively, was established. The data demonstrate that the legume seed phytases under investigation dephosphorylate myo-inositol hexakisphosphate in a stereospecific way. The phytase from faba bean seeds and the phytase LP2 from lupine seeds degrade phytate by sequential removal of phosphate groups via D-Ins(1,2,3,5,6)P(5), D-Ins(1,2,5,6)P(4), D-Ins(1,2,6)P(3), and D-Ins(1,2)P(2) to finally Ins(2)P, whereas the phytases LP11 and LP12 from lupine seeds generate the final degradation product Ins(2)P via D-Ins(1,2,4,5,6)P(5), D-Ins(1,2,5,6)P(4), D-Ins(1,2,6)P(3), and D-Ins(1,2)P(2).  相似文献   

12.
Phytase and acid phosphatase activities in plant feedstuffs   总被引:8,自引:0,他引:8  
A total of 183 samples representing 24 feedstuffs were analyzed for total phosphorus, phytate phosphorus content, phytase (Phy), and acid phosphatase (AcPh) activities with the objective to predict the capacity to hydrolyze phytic acid and to contribute to formulating environmentally adequate diets for monogastric animals. Of the cereals and cereal byproducts analyzed, only rye (5147 U kg(-)(1); 21 955 U g(-)(1)), wheat (1637 U kg(-)(1); 10 252 U g(-)(1)), rye bran (7339 U kg(-)(1); 56 722 U g(-)(1)), and wheat bran (4624 U kg(-)(1); 14 106 U g(-)(1)) were rich in Phy and AcPh activities. Legume seeds and oilseeds contained negligible Phy activity and a moderate amount of AcPh activity, except for kidney bean (33 433 U g(-)(1)) and full-fat linseed meal (13 263 U g(-)(1)). On the other hand, a significant linear regression between phytate phosphorus (y) and total phosphorus (x) was observed in cereal byproducts (R(2) = 0. 95; y = 0.8458x - 0.0367; P < 0.001) and oil seeds (R(2) = 0.95; y = 0.945x - 0.20; P < 0.001). Phy and AcPh were positively correlated with respect to phytate phosphorus in cereals, cereal byproducts, and other byproducts and negatively correlated in legume seeds and oilseeds. Except for cereals, the highest correlation between enzyme activities and phytate phosphorus was found for phytase. It is not possible to predict Phy and AcPh activities from phytate phosphorus content by linear and quadratic regressions. Finally, only highly significant and positive correlation was found between Phy and AcPh activities for cereals, cereal byproducts, and oilseeds.  相似文献   

13.
Whole wheat bread is an important source of minerals but also contains considerable amounts of phytic acid, which is known to impair their absorption. An in vitro trial was performed to assess the effect of a moderate drop of the dough pH (around 5.5) by way of sourdough fermentation or by exogenous organic acid addition on phytate hydrolysis. It was shown that a slight acidification of the dough (pH 5.5) with either sourdough or lactic acid addition allowed a significant phytate breakdown (70% of the initial flour content compared to 40% without any leavening agent or acidification). This result highlights the predominance of wheat phytase activity over sourdough microflora phytase activity during moderate sourdough fermentation and shows that a slight drop of the pH (pH value around 5.5) is sufficient to reduce significantly the phytate content of a wholemeal flour. Mg "bioaccessibility"of whole wheat dough was improved by direct solubilization of the cation and by phytate hydrolysis.  相似文献   

14.
Five different methods were compared to elucidate the total activity of the acidic phytate-degrading enzymes present in the seeds of rye, wheat, and barley. Phytate-degrading activity was studied at pH 5.0 by quantifying the liberated phosphate. Rye showed the highest acid phytate-degrading activity among the cereals studied. Using an aqueous extract, only 30-50% of the activity was found (rye, 3443 mU g(-1) of grain; wheat, 1026 mU g(-1) of grain; barley, 1032 mU g(-1) of grain) compared to that found by the direct incubation of the dry-milled cereal grains in a buffered phytate-containing solution (rye, 6752 mU g(-1) of grain; wheat, 2931 mU g(-1) of grain; barley, 2093 mU g(-1) of grain). Extending the extraction time resulted in an increase in extractable phytate-degrading activity by, at maximum, 10-15%. Extraction of phytate-degrading activity is strongly enhanced in the presence of Triton X-100 and the protease inhibitor phenylmethylsulfonyl fluoride (rye, 6536 mU g(-1) of grain; wheat, 2873 mU g(-1) of grain; barley, 2023 mU g(-1) of grain), suggesting at least a partial association with membrane structures and a degradation by proteolytic activity during extraction. In addition, it was shown that determining phytate-degrading activity by quantification of the liberated inorganic phosphate is more robust and precise than determining phytate-degrading activity by quantification of the residual phytate.  相似文献   

15.
Lactic acid fermentation of cereal flours resulted in a 100 (rye), 95-100 (wheat), and 39-47% (oat) reduction in phytate content within 24 h. The extent of phytate degradation was shown to be independent from the lactic acid bacteria strain used for fermentation. However, phytate degradation during cereal dough fermentation was positively correlated with endogenous plant phytase activity (rye, 6750 mU g(-1); wheat, 2930 mU g(-1); and oat, 23 mU g(-1)), and heat inactivation of the endogenous cereal phytases prior to lactic acid fermentation resulted in a complete loss of phytate degradation. Phytate degradation was restored after addition of a purified phytase to the liquid dough. Incubation of the cereal flours in buffered solutions resulted in a pH-dependent phytate degradation. The optimum of phytate degradation was shown to be around pH 5.5. Studies on phytase production of 50 lactic acid bacteria strains, previously isolated from sourdoughs, did not result in a significant production of intra- as well as extracellular phytase activity. Therefore, lactic acid bacteria do not participate directly in phytate degradation but provide favorable conditions for the endogenous cereal phytase activity by lowering the pH value.  相似文献   

16.
田间玉米和蚕豆对低磷胁迫响应的差异比较   总被引:1,自引:1,他引:0  
【目的】植物在长期进化过程中形成了一系列适应机制,以应对低磷胁迫。本文提出玉米主要通过根系形态变化适应低磷胁迫的假设,并通过与蚕豆植株在根系形态与生理方面对低磷胁迫反应的比较试验加以验证。【方法】在中国农业大学上庄长期定位试验田进行两年田间实验,玉米和蚕豆分别单作,重复3次。在玉米抽雄前的拔节至大喇叭口期和蚕豆的初花至盛花期两次取样(两年的两次取样时间间隔10~12天),比较研究了不供磷和供磷100 kg/hm2下玉米和蚕豆生长和磷素吸收、根系在0—40 cm土层中分布、以及根际p H值和酸性磷酸酶活性的差异。【结果】1)玉米植株的生物量和含磷量远远高于蚕豆;第一次取样时蚕豆的根冠比高于玉米,而且两种植物低磷下的根冠比高于供磷充足处理。两次取样时玉米的总根长大于蚕豆,两种植物的大部分根系分布在0—20 cm表层土壤,玉米根系在0—10 cm土层的分布更多。2)蚕豆根系的比根长明显大于玉米,但单位根长吸磷量低于玉米,两种植物间的上述差异不受取样时间和供磷水平的影响。3)两次取样时,蚕豆根表的酸性磷酸酶活性均明显高于玉米。玉米根表的酸性磷酸酶活性在两个供磷水平下没有差异。第一次取样时,缺磷蚕豆根表的酸性磷酸酶活性高于供磷充足的蚕豆植株。4)缺磷蚕豆的根际土壤p H值明显低于供磷充足蚕豆;但玉米根际土壤p H值在缺磷和供磷充足条件下无显著差异。【结论】低磷条件下两种植物的根冠比均明显增加。玉米根系单位根长的吸磷量高于蚕豆,并且在含磷量丰富的表层土壤分布有更多根系,但缺磷条件下玉米没有增加根系的质子和酸性磷酸酶的分泌,主要以根系形态变化来适应低磷胁迫。结果支持本文提出的玉米主要通过根系形态变化适应低磷胁迫的假设。但蚕豆在低磷条件下除了增加根系生长外,还具有通过增加质子分泌和根表酸性磷酸酶活性提高根际土壤有效磷浓度的潜力。  相似文献   

17.
小麦||蚕豆间作提高间作产量的优势及其氮肥响应   总被引:3,自引:0,他引:3  
为探明小麦||蚕豆间作体系种间互补和竞争与产量优势的关系及其氮肥响应,为豆科禾本科间作最佳氮素管理提供指导,本研究通过为期2年(2015—2017年)的田间定位试验,在不施氮(N0)、低氮(N1,90 kg·hm-2)、常规施氮(N2,180 kg·hm-2)和高氮(N3,270 kg·hm-2)4个施氮水平下,研究小麦||蚕豆间作的产量优势及其相关种间关系。结果表明,与单作相比,两年的间作小麦产量平均显著增加23.50%,单、间作蚕豆的产量均维持在4 000 kg·hm-2左右,土地当量比均表现为N0 > N1 > N2 > N3 > 1的趋势,系统生产力平均达5 023 kg·hm-2。与单作相比,间作小麦和蚕豆的花后干物质累积比例、干物质转移率和贡献率均不同程度增加,增幅随着施氮量增加而降低。不同施氮水平下,小麦的种间相对关系指数均表现出明显的互利效应,相对种间竞争强度在低氮水平为种内竞争,常规氮和高氮水平为种间竞争;蚕豆的种间相对关系指数则表现出竞争效应,相对种间竞争强度表现为种内竞争。较蚕豆而言,小麦的相对种间竞争力表现出不同程度的竞争优势,在种间竞争力为0.629 2时可获得最大的间作体系混合干物质量16 093 kg·hm-2。综上,小麦||蚕豆间作降低了低氮水平下的种间竞争强度,扩大了小麦的互利效应和竞争优势,增加了间作作物的花后干物质累积比例以及干物质贡献率,表现出明显的间作产量优势。  相似文献   

18.
蚕豆枯萎病是土传病害,其发生与蚕豆根系分泌物有密切关系。本文以3个枯萎病不同抗性蚕豆品种——‘89-147’(高抗)、‘8363’(中抗)和‘云豆324’(感病)为材料,通过水培试验收集根系分泌物,测定根系分泌物对镰刀菌孢子萌发和菌丝生长的影响,分析对枯萎病表现出不同抗性的蚕豆品种根系分泌物中糖、氨基酸和有机酸的含量,分离鉴定了根系分泌物中氨基酸和有机酸的组分。结果表明,抗病品种的根系分泌物抑制了尖孢镰刀菌的孢子萌发和菌丝生长,在加入5 mL中抗品种根系分泌物时,显著促进尖孢镰刀菌孢子萌发,但对菌丝生长无显著影响;而在加入1 mL感病品种根系分泌物时,就能显著促进尖孢镰刀菌孢子萌发和菌丝生长。不同抗性蚕豆品种根系分泌物中氨基酸总量和总糖含量随抗性的降低而升高,有机酸分泌总量则随蚕豆品种对枯萎病的抗性增加而升高。感病品种和中抗品种中检出15种氨基酸,而高抗品种中检出14种,组氨酸只存在于中抗品种中,脯氨酸仅在感病品种中检出,3个蚕豆品种根系分泌物中均未检出精氨酸。蚕豆根系分泌物中天门冬氨酸、谷氨酸、苯丙氨酸、酪氨酸和亮氨酸含量高,可能会促进枯萎病的发生,而蛋氨酸、赖氨酸和丝氨酸含量高可能抑制枯萎病发生。酒石酸仅在抗病品种中存在,根系分泌物中有机酸种类丰富,有助于提高蚕豆对枯萎病的抗性。蚕豆对枯萎病的抗性不同,根分泌物对镰刀菌孢子萌发和菌丝生长的影响也不同,而这种抗病性差异与蚕豆根系分泌物中糖、氨基酸、有机酸的含量和组分密切相关。  相似文献   

19.
[目的]筛选适用于成都平原的高效广谱蚕豆根瘤菌,并对其相关促生功能进行初步评价,为成都平原高效蚕豆根瘤菌剂的研制与应用提供科学依据。[方法]供试6株根瘤菌由课题组前期分离自成都平原,其与四川主栽蚕豆‘大白蚕豆’匹配良好,采用常规方法测定了这6个菌株分泌生长素及溶磷能力。菌株与蚕豆品种匹配试验采用低氮砂培法,供试蚕豆品种为成都平原主栽品种‘成胡14’、‘成胡15’;两个品种的蚕豆种子播种后,分别接种6个菌株,以不接种为对照(CK),光照(控温22~25℃、光照强度2800 lx左右、日照时间14 h)下培养41天后收获,测定植株生物量和根瘤数。然后,对匹配性试验筛到的两株高效广谱根瘤菌进行田间验证,供试蚕豆品种为成胡15,将2个根瘤菌制备的菌剂(活菌数5.0×10^8 CFU/g以上,载体为泥炭)进行拌种,以不接菌处理的灭菌泥炭为对照。在盛花期(生育期105 d)采样测定株高、根瘤数、地上部分植株干重;收获期(生育期200 d)采样测产;测定两个时期植株样品氮、磷、钾含量。盛花期采用BOX-PCR分子标记法测定接种根瘤菌占瘤率,同时提取接种菌株SCAUf73、SCAUf76的总DNA,比较接种菌株及相应根瘤类菌体根瘤菌DNA的BOX-PCR分子指纹图谱。用多位点基因序列分析法对田间验证的优良菌株SCAU73进行分类地位研究。[结果]1)通过匹配性砂培试验,筛选到2株与2个成都平原主栽蚕豆品种均高效匹配的根瘤菌SCAUf73、SCAUf76。SCAUf76、SCAUf73能使‘成胡14’、‘成胡15’植株干重较CK显著增加40.5%~61.6%。2)通过两株菌田间接种试验发现,接种SCAUf76处理的蚕豆产量与CK差异不显著;接种SCAUf73处理蚕豆植株干重、全氮含量等指标均高于CK,籽粒鲜产比CK显著增加25.0%,并显著高于SCAUf76,其占瘤率达到33%。3)多位点基因序列分析表明,SCAUf73可能是Rhizobium的一个新类群。4)促生性试验表明,6株菌都能分泌生长素(IAA),最大分泌量为21.0 mg/L(SCAUf76);供试菌株的溶磷能力不明显。[结论]从成都平原上筛选的6个菌株中,SCAUf73具有分泌IAA能力,与蚕豆接种后,占瘤率达33%,可显著促进蚕豆氮素吸收积累,提高蚕豆籽粒产量。与成都平原的主栽蚕豆品种匹配的高效广谱根瘤菌SCAUf73,适用于成都平原的蚕豆生产。  相似文献   

20.
Food ingredients containing alpha-1,6-galactoside bonds elicit gastrointestinal disturbances in monogastric animals, including humans. Pretreatment of such ingredients with alpha-galactosidase (EC 3.2.1.22) has the potential to alleviate this condition. For this purpose, a thermostable alpha-galactosidase from Thermoanaerobacterium polysaccharolyticum was purified by a combination of anion exchange and size exclusion chromatographies. The enzyme has a monomeric molecular weight of approximately 80 kDa; however, it is active as a dimer. The optimum temperature for enzyme activity is 77.5 degrees C. Approximately 84 and 88% of enzyme activity remained after 36.5 h of incubation at 70 and 65 degrees C, respectively. Optimum activity was observed at pH 8.0, with a broad range of activity from pH 5.0 to 9.0. Different transition metals had weak to strong inhibitory effects on enzyme activity. The K(m) and V(max) of the enzyme are 0.29-0.345 mM and 200-232 micromol/min/mg of protein, respectively. Importantly, enzyme activity was only slightly inhibited by 75-100 mM galactose, an end product of hydrolysis. Enzyme activity was specific for the alpha-1,6-galactosyl bond, and activity was demonstrated on melibiose and soy molasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号