首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments on melting and phase transformations on iron in a laser-heated, diamond-anvil cell to a pressure of 150 gigapascals (approximately 1.5 million atmospheres) show that iron melts at the central core pressure of 363.85 gigapascals at 6350 +/- 350 kelvin. The central core temperature corresponding to the upper temperature of iron melting is 6150 kelvin. The pressure dependence of iron melting temperature is such that a simple model can be used to explain the inner solid core and the outer liquid core. The inner core is nearly isothermal (6150 kelvin at the center to 6130 kelvin at the inner core-outer core boundary), is made of hexagonal closest-packed iron, and is about 1 percent solid (MgSiO(3) + MgO). By the inclusion of less than 2 percent of solid impurities with iron, the outer core densities along a thermal gradient (6130 kelvin at the base of the outer core and 4000 kelvin at the top) can be matched with the average seismic densities of the core.  相似文献   

2.
Vapor-deposited amorphous solid and hyperquenched glassy water were found to irreversibly transform, on compression at 77 kelvin, to a high-density amorphous solid. On heating at atmospheric pressure, this solid became viscous water (water B), with a reversible glass-liquid transition onset at 129 +/- 2 kelvin. A different form of viscous water (water A) was formed by heating the uncompressed vapor-deposited amorphous solid and hyperquenched liquid water. On thermal cycling up to 148 kelvin, water B remained kinetically and thermodynamically distinct from water A. The occurrence of these two states, which do not interconvert, helps explain both the configurational relaxation of water and stress-induced amorphization.  相似文献   

3.
The vapor-deposited low-density amorphous phase of H(2)O was directly compressed at 77 kelvin with a diamond-anvil cell, and the boundary between the low-density amorphous phase and the high-density amorphous phase was observed while the sample was warmed under compression. The transition from the low-density amorphous phase to the high-density amorphous phase was distinct and reversible in an apparently narrow pressure range at approximately 130 to approximately 150 kelvin, which provided experimental evidence for polymorphism in amorphous H(2)O.  相似文献   

4.
The efficiency of thermoelectric energy converters is limited by the material thermoelectric figure of merit (zT). The recent advances in zT based on nanostructures limiting the phonon heat conduction is nearing a fundamental limit: The thermal conductivity cannot be reduced below the amorphous limit. We explored enhancing the Seebeck coefficient through a distortion of the electronic density of states and report a successful implementation through the use of the thallium impurity levels in lead telluride (PbTe). Such band structure engineering results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin. Use of this new physical principle in conjunction with nanostructuring to lower the thermal conductivity could further enhance zT and enable more widespread use of thermoelectric systems.  相似文献   

5.
We have heated ferropericlases (Mg(0.60)Fe(0.40))O and (Mg(0.50)Fe(0.50))O to temperatures of 1000 kelvin at pressures of 86 gigapascals, simulating the stability of the solid solution at physical conditions relevant to Earth's lower mantle. The in situ x-ray study of the externally heated samples in a Mao-Bell-type diamond anvil cell shows that ferropericlase may dissociate into magnesium-rich and iron-rich oxide components. The result is important because the decomposition of ferropericlase into lighter and heavier phases will cause dynamic effects that could lead to mantle heterogeneity.  相似文献   

6.
Solidus of Earth's deep mantle   总被引:1,自引:0,他引:1  
The solidus of a pyrolite-like composition, approximating that of the lower mantle, was measured up to 59 gigapascals by using CO2 laser heating in a diamond anvil cell. The solidus temperatures are at least 700 kelvin below the melting temperatures of magnesiowustite, which in the deep mantle has the lowest melting temperatures of the three major components-magnesiowustite, Mg-Si-perovskite, and Ca-Si-perovskite. The solidus in the deep mantle is more than 1500 kelvin above the average present-day geotherm, but at the core-mantle boundary it is near the core temperature. Thus, partial melting of the mantle is possible at the core-mantle boundary.  相似文献   

7.
Iota V  Yoo CS  Cynn H 《Science (New York, N.Y.)》1999,283(5407):1510-1513
An extended-solid phase, carbon dioxide phase V (CO2-V), was synthesized in a diamond anvil cell by laser heating the molecular orthorhombic phase, carbon dioxide phase III, above 40 gigapascals and 1800 kelvin. This new material can be quenched to ambient temperature above 1 gigapascal. The vibration spectrum of CO2-V is similar to that of the quartz polymorph of silicon dioxide, indicating that it is an extended covalent solid with carbon-oxygen single bonds. This material is also optically nonlinear, generating the second harmonic of a neodymium-yttrium-lithium-fluoride laser at a wavelength of 527 nanometers with a conversion efficiency that is near 0.1 percent.  相似文献   

8.
Andrews L  Wang X 《Science (New York, N.Y.)》2003,299(5615):2049-2052
Although many volatile binary boron hydride compounds are known, binary aluminum hydride chemistry is limited to the polymeric (AlH3)(n) solid. The reaction of laser-ablated aluminum atoms and pure H2 during codeposition at 3.5 kelvin, followed by ultraviolet irradiation and annealing to 6.5 kelvin, allows dimerization of the intermediate AlH3 photolysis product to form Al2H6. The Al2H6 molecule is identified by seven new infrared absorptions that are accurately predicted by quantum chemical calculations for dibridged Al2H6, a molecule that is isostructural with diborane.  相似文献   

9.
Physics of iron at Earth's core conditions   总被引:1,自引:0,他引:1  
The bulk properties of iron at the pressure and temperature conditions of Earth's core were determined by a method that combines first-principles and classical molecular dynamic simulations. The theory indicates that (i) the iron melting temperature at inner-core boundary (ICB) pressure (330 gigapascals) is 5400 (+/-400) kelvin; (ii) liquid iron at ICB conditions is about 6% denser than Earth's outer core; and (iii) the shear modulus of solid iron close to its melting line is 140 gigapascals, consistent with the seismic value for the inner core. These results reconcile melting temperature estimates based on sound velocity shock wave data with those based on diamond anvil cell experiments.  相似文献   

10.
The interface between a two-dimensional (2D) molecular gas and a 2D molecular solid has been imaged with a low-temperature, ultrahigh-vacuum scanning tunneling microscope. The solid consists of benzene molecules strongly bound to step edges on a Cu{111} surface. Benzene molecules on the Cu{111} terraces move freely as a 2D gas at 77 kelvin. Benzene molecules transiently occupy well-defined adsorption sites at the 1D edge of the 2D solid. Diffusion of molecules between these sites and exchange between the two phases at the interface are observed. On raised terraces of the copper surface, the 2D gas is held in a cage of the solid as in a 2D nanometer-scale gas bulb.  相似文献   

11.
We observed coherent proton tunneling in the cyclic network of four hydrogen bonds in calix[4]arene. The tunneling frequency of 35 megahertz was revealed by a peak in the magnetic field dependence of the proton spin-lattice relaxation rate measured with field-cycling nuclear magnetic resonance in the solid state at temperatures below 80 kelvin. The amplitude of the coherent tunneling peak grows with temperature according to a Boltzmann law with energy D/kB = (125 +/- 10) kelvin (where kB is Boltzmann's constant). The tunneling peak can be interpreted in the context of level crossings in the region where the tunneling frequency matches the proton Larmor frequency. The tunneling spectrum reveals fine structure that we attribute to coupling between the hydrogen bonds in the network. The characteristics of the tunneling peak are interpreted in the context of the potential energy surface experienced by the hydrogen atoms in the network.  相似文献   

12.
Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.  相似文献   

13.
The Cassini spacecraft completed three close flybys of Saturn's enigmatic moon Enceladus between February and July 2005. On the third and closest flyby, on 14 July 2005, multiple Cassini instruments detected evidence for ongoing endogenic activity in a region centered on Enceladus' south pole. The polar region is the source of a plume of gas and dust, which probably emanates from prominent warm troughs seen on the surface. Cassini's Composite Infrared Spectrometer (CIRS) detected 3 to 7 gigawatts of thermal emission from the south polar troughs at temperatures up to 145 kelvin or higher, making Enceladus only the third known solid planetary body-after Earth and Io-that is sufficiently geologically active for its internal heat to be detected by remote sensing. If the plume is generated by the sublimation of water ice and if the sublimation source is visible to CIRS, then sublimation temperatures of at least 180 kelvin are required.  相似文献   

14.
In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)SiO3-perovskite, the major component of the lower mantle, remained stable and did not decompose to its component oxides (Mg, Fe)O and SiO2. Perovskite was formed from these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. Both MgSiO3 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence measurements on chromium-doped samples synthesized at these conditions gave no indication of the presence of MgO.  相似文献   

15.
The melting curves of two compositions of (Mg,Fe) SiO3-perovskite, the likely dominant mineral phase in the lower mantle, have been measured in a C02 laser-heated diamond cell with direct temperature measurements and in situ detection of melting. At 625 kilobars, the melting temperature is 5000 +/- 200 kelvin, independent of composition. Extrapolation to the core-mantle boundary pressure of 1.35 megabar with three different melting relations yields melting temperatures between 7000 and 8500 kelvin. Thus, the temperature at the base of the lower mantle, accepted to lie between 2550 and 2750 kelvin, is only at about one-third of the melting temperature. The large difference between mantle temperature and corresponding melting temperature has several important implications; particularly the temperature sensitivity of the viscosity is reduced thus allowing large lateral temperature variations inferred from seismic tomographic velocity anomalies and systematics found in measured velocity-density functions. Extensive melting of the lower mantle can be ruled out throughout the history of the Earth.  相似文献   

16.
The rotational dynamics of C(60) in the solid state have been investigated with carbon-13 nuclear magnetic resonance ((13)C NMR). The relaxation rate due to chemical shift anisotropy (1/9T1(CSA)(1)) was precisely measured from the magnetic field dependence of T(1), allowing the molecular reorientational correlation time, tau, to be determined. At 283 kelvin, tau = 9.1 picoseconds; with the assumption of diffusional reorientation this implies a rotational diffusion constant D = 1.8 x 10(10) per second. This reorientation time is only three times as long as the calculated tau for free rotation and is shorter than the value measured for C(60) in solution (15.5 picoseconds). Below 260 kelvin a second phase with a much longer reorientation time was observed, consistent with recent reports of an orientational phase transition in solid C(60). In both phases tau showed Arrhenius behavior, with apparent activation energies of 1.4 and 4.2 kilocalories per mole for the high-temperature (rotator) and low-temperature (ratchet) phases, respectively. The results parallel those found for adamantane.  相似文献   

17.
Past temperatures directly from the greenland ice sheet   总被引:3,自引:0,他引:3  
A Monte Carlo inverse method has been used on the temperature profiles measured down through the Greenland Ice Core Project (GRIP) borehole, at the summit of the Greenland Ice Sheet, and the Dye 3 borehole 865 kilometers farther south. The result is a 50, 000-year-long temperature history at GRIP and a 7000-year history at Dye 3. The Last Glacial Maximum, the Climatic Optimum, the Medieval Warmth, the Little Ice Age, and a warm period at 1930 A.D. are resolved from the GRIP reconstruction with the amplitudes -23 kelvin, +2.5 kelvin, +1 kelvin, -1 kelvin, and +0.5 kelvin, respectively. The Dye 3 temperature is similar to the GRIP history but has an amplitude 1.5 times larger, indicating higher climatic variability there. The calculated terrestrial heat flow density from the GRIP inversion is 51.3 milliwatts per square meter.  相似文献   

18.
Sodium exhibits a pronounced minimum of the melting temperature at approximately 118 gigapascals and 300 kelvin. Using single-crystal high-pressure diffraction techniques, we found that the minimum of the sodium melting curve is associated with a concentration of seven different crystalline phases. Slight changes in pressure and/or temperature induce transitions between numerous structural modifications, several of which are highly complex. The complexity of the phase behavior above 100 gigapascals suggests extraordinary liquid and solid states of sodium at extreme conditions and has implications for other seemingly simple metals.  相似文献   

19.
固态电解质具有优异的安全性能、工作温度范围宽、回收方便等优点,已成为新一代柔性电子器件中最具前景的电解质材料.为探索兼具高离子电导率和优良机械性能的固态电解质,将无机活性陶瓷锂镧锆氧(Lithium lanthanum zirconium oxide,LLZO)与改性聚离子液体复合,制备了一种性能优异的复合固态电解质.研究了LLZO与复合材料间结构的差异、LLZO的含量对复合固态电解质在离子电导率、机械性能的影响以及其抗压能力.结果表明,聚离子液体粘结剂的加入,赋予了固态电解质良好的柔顺性,并显著地提升了电解质的离子传输效率. 当复合固态电解质中LLZO为质量分数50%时,复合固态电解质的室温离子电导率达到最高值(1.45×10-4 S·cm-1),比单一的LLZO固态电解质的离子电导率高了一个数量级以上. 用维氏硬度来表征复合固态电解质的抗压能力,发现当LLZO为质量分数50%时,复合固态电解质的硬度可以达到0.45 gf/μm2.  相似文献   

20.
A comprehensive investigation of polar stratospheric clouds was performed on 25 January 2000 with instruments onboard a balloon gondola flown from Kiruna, Sweden. Cloud layers were repeatedly encountered at altitudes between 20 and 24 kilometers over a wide range of atmospheric temperatures (185 to 197 kelvin). Particle composition analysis showed that a large fraction of the cloud layers was composed of nitric acid trihydrate (NAT) particles, containing water and nitric acid at a molar ratio of 3:1; this confirmed that these long-sought solid crystals exist well above ice formation temperatures. The presence of NAT particles enhances the potential for chlorine activation with subsequent ozone destruction in polar regions, particularly in early and late winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号