首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
An 8‐week growth trial investigated the effect of dietary lipid level on growth performance of a carnivorous fish, Chinese longsnout catfish (Leiocassis longirostris Günther) and an omnivorous fish, gibel carp (Carassius auratus gibelio). For each species, seven isonitrogenous semi‐purified diets (455 g kg?1 crude protein for Chinese longsnout catfish and 385 g kg?1 crude protein for gibel carp) were formulated to contain 30, 60, 90, 120, 150, 180 or 210 g kg?1 lipid. For Chinese longsnout catfish, feed intake (FI) decreased with increasing dietary lipid and there was no significant difference in feed intake from 90 to 210 g kg?1 lipid. Specific growth rate (SGR) increased with dietary lipid level (P < 0.05) and the 150 and 180 g kg?1 groups were the best. Feed conversion efficiency (FCE), protein retention efficiency (PRE) and energy retention efficiency (ERE) were higher at 180 g kg?1 lipid. For gibel carp, FI decreased with increased dietary lipid and 180 and 210 g kg?1 lipid groups showed lower values. SGR increased with dietary lipid level and the 150 and 180 g kg?1 were the best. FCE was higher at 180 g kg?1 lipid level. PRE increased with dietary lipid level and there was no significant difference in groups from 120 to 210 g kg?1 dietary lipid. ERE increased with increasing dietary lipid level, and groups fed 120, 150 and 180 g kg?1 lipid showed the highest values. In Chinese longsnout catfish, increase in dietary lipid level, resulted in increased carcass dry matter, crude protein, crude lipid and gross energy. In gibel carp, dry matter, crude protein, and crude lipid increased with dietary lipid level. Based on regression between SGR and dietary lipid, dietary lipid requirements for Chinese longsnout catfish and gibel carp were 142.6 and 140.5 g kg?1, respectively.  相似文献   

2.
This study aimed to evaluate the fat deposition pattern and lipid metabolic strategies of grass carp in response to dietary lipid levels. Five isonitrogenous diets (260 g kg?1 crude protein) containing five dietary lipid levels (0, 20, 40, 60, 80 g kg?1) were fed to quadruplicate groups of 15 fish with initial weight 200 g, for 8 weeks. The best growth performance and feed utilization was observed in fish fed with lipid level at 40 g kg?1. MFI and adipose tissue lipid content increased with increasing dietary lipid level up to 40 g kg?1, and higher lipid level in diet made no sense. Fish adapted to high lipid intake through integrated regulating mechanisms in several related tissues to maintain lipid homeostasis. In the present study, grass carp firstly increased PPARγ and CPT1 expressions in adipose tissue to elevate adipocyte differentiation and lipolysis to adapt to high lipid intake above 40 g kg?1. In liver, fish elevated hepatic lipid uptake but depressed biosynthesis of hepatic FAs, resulted in no difference in HSI and liver lipid content among the groups. Only in muscle, fish showed a significant fat deposition when the lipid intake above 40 g kg?1. The excess lipid, derived from enhanced serum TC and TG contents, was more likely to induce deposition in muscle rather than lipid uptake by adipose tissue in grass carp fed with high dietary lipid, indicating the muscle of grass carp might be the main responding organ to high lipid intake.  相似文献   

3.
A 3 × 3 factorial experiment was conducted to determine proper levels of dietary protein, lipid and dextrin for juvenile flounder. Nine experimental diets were formulated to contain three protein levels (410, 460 and 510 g kg?1) and three lipid levels (60, 130 and 190 g kg?1) with corresponding dextrin levels (250, 150 and 50 g kg?1). Triplicate groups of fish (8.9 ± 0.4 g) were hand‐fed the diets to apparent satiation for 7 weeks in flow‐through system. Specific growth rate was the highest in fish fed the 510 g kg?1 protein diet with 60 g kg?1 lipid, and was not significantly different from that of fish fed 460 g kg?1 protein diet with 60 g kg?1 lipid. Feed efficiency ratio tended to increase as dietary protein level increased. The feed efficiency ratio of fish fed the 510 g kg?1 protein diets with 60–190 g kg?1 lipid levels was not significantly different from that of fish fed 460 g kg?1 protein diet with 60 g kg?1 lipid. Daily feed intake tended to decrease with increasing dietary lipid level at each protein level. Daily protein intake increased with increasing dietary protein level at 60 g kg?1 lipid level. Hepatosomatic index and visceralsomatic index increased with increasing dietary lipid level at each protein level. The lipid contents of liver, viscera and whole body, and concentrations of plasma total cholesterol and triglyceride increased with increasing dietary lipid levels; however, no significant difference was observed in the contents of dorsal muscle lipid. The results of this study suggest that the diet containing 460–510 g kg?1 protein with low lipid level (60 g kg?1) is optimal for growth and efficient feed utilization of juvenile flounder.  相似文献   

4.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

5.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

6.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

7.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

8.
Herbivorous grass carp (Ctenopharyngodon idella) has been reported to exhibit low capacity to utilize high dietary lipid, but different lipid sources might affect this limited capacity. In order to compare the effects of different lipid sources with different lipid levels, juvenile grass carp were fed one of nine diets containing three oils [lard, plant oil mixed by maize and linseed oil, and n‐3 high unsaturated fatty acid‐enriched (HUFA‐enriched) fish oil] at three lipid levels (20, 60 and 100 g kg?1 dry diet) for 8 weeks. Decreased feed intake, poor growth performance, hepatic pathology and higher blood lipid peroxidation were found in 60 and 100 g kg?1 fish oil groups. Conversely, in lard and plant oil groups, even at 100 g kg?1 dietary lipid level, feed intake and growth performance did not decrease, despite histological observation revealed hepatic pathology in these groups. Plasma triglyceride and cholesterol contents increased significantly in all 100 g kg?1 dietary lipid groups. In the comparison of hepatic FA β‐oxidation among three oil groups at 60 g kg?1 dietary lipid level, impaired mitochondrial and peroxisomal FA oxidation capacity was observed in fish oil group. The results confirmed the relatively low capacity of grass carp to utilize high dietary lipid, and furthermore excess HUFA intake will result in more serious adverse effects than other FA.  相似文献   

9.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

10.
Two 8‐week feeding trials were conducted to evaluate dietary carbohydrate utilization by omnivorous gibel carp (Carassius auratus gibelio) (2.4 ± 0.1 g) and herbivorous grass carp (Ctenopharyngodon idellus) (6.5 ± 0.1 g). Five isonitrogenous (370 g kg?1) and isolipid (70 g kg?1) diets were formulated with increasing corn starch levels (60, 140, 220, 300 and 380 g kg?1). Results showed that specific growth rate (SGR), feed efficiency (FE) and protein retention efficiency (PRE) of gibel carp significantly increased from dietary starch of 60 to 300 g kg?1 and then decreased from 300 to 380 g kg?1, but those of grass carp showed no significant differences between treatments. Independent of dietary starch levels, grass carp gained significantly higher FE and PRE than gibel carp. Feeding rate (FR) of gibel carp was significantly higher than that of grass carp. In two fish species, high dietary starch (300 and 380 g kg?1) tended to obtain higher hepatosomatic index (HSI), serum triglyceride, hepatic lipid and body lipid contents. Serum glucose concentration of grass carp was not affected, while that of gibel carp fed the starch of 300 g kg?1 diet was significantly lower than those of the fish fed other four diets (60, 140, 220 and 380 g kg?1). Grass carp showed high tolerance to dietary starch while dietary corn starch should be no more than 300 g kg?1 for gibel carp. High starch contents may cause lipid accumulation in the liver and body.  相似文献   

11.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

12.
In this study, two growth trials were conducted to evaluate the effect of dietary protein and lipid levels on growth and feed utilization of white sea bream (Diplodus sargus) juveniles. For the first trial, five diets were formulated to contain 120 g kg?1 lipid and increasing levels of protein, ranging from 400 to 600 g kg?1. Two additional diets were formulated with 400 and 600 g kg?1 protein and 180 g kg?1 lipids. The diets were fed to apparent visual satiety to duplicate groups of fish with a mean weight of 1.5 g for 10 weeks. For the second growth trial, four diets were formulated to contain 120 g kg?1 lipid and 380–520 g kg?1 protein. Two additional diets were formulated with 380 and 520 g kg?1 protein and 180 g kg?1 lipids. The diets were fed to apparent visual satiety to triplicate groups of fish with a mean weight of 41 g for 12 weeks. At the end of both trials, there were no growth differences among groups independent of the dietary protein content. In the first trial, growth was negatively correlated to dietary lipid levels. No significant differences of feed intake were detected among groups in both trials, but a direct correlation between feed efficiency and dietary protein level was observed. Protein efficiency ratio and nitrogen (N) retention (% N intake) significantly decreased with the increase of dietary protein levels. In both trials, energy retention (% energy intake) was highest in groups fed on diets with the highest protein‐to‐energy (P/E) ratio. At the end of both trials, no significant differences in whole‐body composition were observed among groups. Specific activity of enzymes involved in amino acid catabolism [aspartate aminotransferase (AST), alanine aminotransferase (ALT) and glutamate dehydrogenase (GDH)] showed no significant differences with dietary protein level in both trials. Nevertheless, in the first trial, a significantly lower GDH activity was observed in fish fed with higher dietary lipid levels. No differences were found for specific activity of the lipogenic enzymes, fatty aid synthetase and glucose‐6‐phosphate dehydrogenase, in the second trial. Results of this study indicate that a diet with a protein level of 380–420 g kg?1 and a P/E ratio of 20 g protein MJ?1 satisfies the growth requirements of D. sargus juveniles. Also, within the range tested, no evidence of protein sparing by dietary lipids seems to occur.  相似文献   

13.
Two feeding trials were conducted to determine the minimum dietary protein level producing maximum growth, and the optimum protein to energy ratio in diets for red porgy (Pagrus pagrus) fingerlings, respectively. In the first trial, six isoenergetic diets were formulated with protein levels ranging from 400 to 650 g kg?1 in increments of 50 g kg?1, and fed for 11 weeks to 2.8 g average initial weight fish. Weight gain, specific growth rate and feed efficiency were significantly higher with diets containing higher protein levels, when compared with dietary levels below 500 g kg?1. The highest protein efficiency ratios were obtained in fish fed 500 g kg?1 dietary protein. The minimum dietary protein level producing maximum fish growth was found to be 500 g kg?1. In the second trial, 15 g average initial weight fish were fed for 12 weeks, six diets containing three different lipid levels (100, 150 and 200 g kg?1) combined with two protein levels (450 and 500 g kg?1). Weight gain values increased when dietary lipids increased from 100 to 150 g kg?1, with a further decrease for 200 g kg?1 lipids in diets; the lowest fish growth being supported by 200 g kg?1 dietary lipids. Fish growth was significantly higher when dietary protein increased from 450 to 500 g kg?1. There was no evidence of a protein‐sparing effect of dietary lipids. Liver protein and lipid contents were low when compared with other fish species. All diet assayed produced high liver glycogen accumulation. The recommended protein and lipid levels in diets for red porgy fingerlings were 500 and 150 g kg?1, respectively.  相似文献   

14.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

15.
This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.  相似文献   

16.
Dietary protein requirement for young turbot (Scophthalmus maximus L.)   总被引:2,自引:0,他引:2  
This study was conducted to determine the optimum dietary protein level for young (an initial weight of 89 g) turbot, Scophthalmus maximus L. Duplicate groups of the fish were fed the five isoenergetic diets containing the various protein levels ranging from 290 to 570 g kg?1 diet for 45 days. Survival was not affected by dietary protein level. Weight gain and feed efficiency were improved with dietary protein level up to 490 g kg?1 diet. Dietary protein requirement of young turbot using the broken‐line model was estimated to be 494 g kg?1 diet based on weight gain response. Protein efficiency ratio was not influenced by dietary protein level. The highest protein retention was obtained from the fish fed the 490 g protein kg?1 diet. Proximate composition of the fish was not significantly affected by dietary protein level. In considering these results, it was concluded that the 494 g protein kg?1 diet with 100 g lipid kg?1 diet (15 MJ kg?1 diet) provided optimal growth of young turbot under these experimental conditions.  相似文献   

17.
A 10‐week feeding experiment was conducted to evaluate the effect of different protein to energy ratios on growth and body composition of juvenile Litopenaeus vannamei (initial average weight of 0.09 ± 0.002 g, mean ± SE). Twelve practical test diets were formulated to contain four protein levels (300, 340, 380 and 420 g kg?1) and three lipid levels (50, 75 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The water temperature was 28.5 ± 2 °C and the salinity was 28 ± 1 g L?1 during the experimental period. The results showed that the growth was significantly (P < 0.05) affected by dietary treatments. Shrimps fed the diets containing 300 g kg?1 protein showed the poorest growth. However, shrimp fed the 75 g kg?1 lipid diets had only slightly higher growth than that fed 50 g kg?1 lipid diets at the same dietary protein level, and even a little decline in growth with the further increase of dietary lipid to 100 g kg?1. Shrimp fed the diet with 420 g kg?1protein and 75 g kg?1 lipid had the highest specific growth rate. However, shrimp fed the diet with 340 g kg?1 protein and 75 g kg?1 lipid showed comparable growth, and had the highest protein efficiency ratio, energy retention and feed efficiency ratio among dietary treatments. Triglycerides and total cholesterol in the serum of shrimp increased with increasing dietary lipid level at the same dietary protein level. Body lipid and energy increased with increasing dietary lipid level irrespective of dietary protein. Results of the present study showed that the diet containing 340 g kg?1 protein and 75 g kg?1 lipid with digestible protein/digestible energy of 21.1 mg kJ?1 is optimum for L. vannamei, and the increase of dietary lipid level has not efficient protein‐sparing effect.  相似文献   

18.
A growth experiment was conducted to investigate effect of dietary protein to energy ratios on growth and body composition of juvenile Myxocyprinus asiaticus (initial mean weight: 10.04 ± 0.53 g, mean ± SD). Nine practical diets were formulated to contain three protein levels (340, 390 and 440 g kg?1), each with three lipid levels (60, 100 and 140 g kg?1), in order to produce a range of P/E ratios (from 22.4 to 32.8 mg protein kJ?1). Each diet was randomly assigned to triplicate groups of 20 fish in 400‐L indoors flow‐through circular fibre glass tanks provided with sand‐filtered aerated freshwater. The results showed that the growth was significantly affected by dietary P/E ratio (P < 0.05). Fish fed the diets with 440 g kg?1 protein (100 and 140 g kg?1 lipid, P/E ratio of 31.43 and 29.22 mg protein kJ?1) had the highest specific growth rates (SGR) (2.16 and 2.27% day?1, respectively). However, fish fed the diet with 390 g kg?1 protein and 140 g kg?1 lipid showed comparable growth (2.01% day?1), and had higher protein efficiency ratio (PER), protein productive value (PPV) and energy retention (ER) than other groups (P < 0.05). No significant differences in survival were found among dietary treatments. Carcass lipid content was positively correlated with dietary lipid level, but irrespective of protein level and inversely correlated with carcass moisture content. Carcass protein contents increased with increasing dietary lipid at each protein level. The white muscle and liver composition showed that lipid increased with increasing dietary lipid level (P < 0.05). Dietary protein concentrations had significant effect on condition factor (CF), hepatosomatic index (HSI) and viscerosomatic index (VSI) (P < 0.05). However, dietary lipid concentrations had no significant effect on CF, HSI (P > 0.05). Based on these observations, 440 g kg?1 protein with lipid from 100 to 140 g kg?1 (P/E ratio of 29.22 to 31.43 mg protein kJ?1) seemed to meet minimum requirement for optimal growth and feed utilization, and lipid could cause protein‐sparing effect in diets for juvenile Chinese sucker.  相似文献   

19.
Effect of dietary protein and lipid levels on growth and body composition of juvenile turbot was determined at optimum salinity and temperature conditions of 17 g L?1 and 19.2 °C, respectively, by using 3 × 2 (protein levels: 550, 600 and 650 g kg?1; lipid levels: 69 and 168 g kg?1) factorial design with three replications of each. Fish were hand‐fed to satiety twice daily throughout the feeding trial. Weight gain and specific growth rate of fish were significantly (P < 0.05) increased with increased dietary lipid level, but not by dietary protein level. Daily feed intake was significantly (P < 0.05) affected by both dietary protein and lipid levels. Feed efficiency ratio and protein efficiency ratio were significantly (P < 0.05) affected by dietary lipid level, but not by dietary protein level. Moisture content of whole body was significantly (P < 0.05) affected by dietary lipid level, but not by dietary protein level. Crude lipid content of whole body was significantly (P < 0.05) affected by dietary lipid level, but not by dietary protein level. Significantly higher 20:5n?3, 22:6n?3 and n?3 highly unsaturated fatty acids were observed in turbot fed the low lipid diet than fish fed the high lipid diet in all protein levels, but significantly lower 18:2n?6 was observed in fish fed the former compared with the latter. In considering results of growth, specific growth rate and efficiency of feed, optimum dietary protein and lipid levels for juvenile turbot seemed to be 550 and 168 g kg?1 of the diet, respectively, under optimum salinity and temperature conditions.  相似文献   

20.
A total of 1400 juvenile Jian carp (Cyprinus carpio var. Jian) (7.72 ± 0.02 g) were fed seven purified diets containing 0.010 (basal diet), 0.028, 0.054, 0.151, 0.330, 1.540 and 2.680 mg biotin kg?1 for 63 days to investigate the effects of biotin on growth, body composition, intestinal enzyme activities and microbiota. Specific growth rate (SGR), feed intake, feed efficiency and protein retention value were the highest when dietary biotin level was 0.151 mg kg?1 diet. Crude protein, lipid and ash content of fish carcass improved with increasing dietary biotin levels up to 0.054, 0.151 and 0.028 mg kg?1 diet, respectively (P < 0.05). Intestinal folds height, trypsin, chymotrypsin, lipase, amylase, alkaline phosphatase, Na+, K+‐ATPase, γ‐glutamyl transpeptidase and creatinekinase activities increased with dietary biotin levels up to 0.151–0.330 mg kg?1 diet (P < 0.05). Intestinal Aeromonas and Escherichia coli significantly decreased with increasing dietary biotin up to 0.151 mg kg?1 diet, while Lactobacillus and Bacillus significantly increased with dietary biotin levels up to 0.054 and 0.151 mg kg?1 diet, respectively. In conclusion, biotin could improve digestive and absorptive ability of fish, and the dietary biotin requirement for SGR of juvenile Jian carp (7.72–32.67 g) was 0.15 mg kg?1 diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号