首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a need to develop practical methods to reduce nitrate–nitrogen loads from recirculating aquaculture systems to facilitate increased food protein production simultaneously with attainment of water quality goals. The most common wastewater denitrification treatment systems utilize methanol-fueled heterotrophs, but sulfur-based autotrophic denitrification may allow a shift away from potentially expensive carbon sources. The objective of this work was to assess the nitrate-reduction potential of fluidized sulfur-based biofilters for treatment of aquaculture wastewater. Three fluidized biofilters (height 3.9 m, diameter 0.31 m; operational volume 0.206 m3) were filled with sulfur particles (0.30 mm effective particle size; static bed depth approximately 0.9 m) and operated in triplicate mode (Phase I: 37–39% expansion; 3.2–3.3 min hydraulic retention time; 860–888 L/(m2 min) hydraulic loading rate) and independently to achieve a range of hydraulic retention times (Phase II: 42–13% expansion; 3.2–4.8 min hydraulic retention time). During Phase I, despite only removing 1.57 ± 0.15 and 1.82 ± 0.32 mg NO3–N/L each pass through the biofilter, removal rates were the highest reported for sulfur-based denitrification systems (0.71 ± 0.07 and 0.80 ± 0.15 g N removed/(L bioreactor-d)). Lower than expected sulfate production and alkalinity consumption indicated some of the nitrate removal was due to heterotrophic denitrification, and thus denitrification was mixotrophic. Microbial analysis indicated the presence of Thiobacillus denitrificans, a widely known autotrophic denitrifier, in addition to several heterotrophic denitrifiers. Phase II showed that longer retention times tended to result in more nitrate removal and sulfate production, but increasing the retention time through flow rate manipulation may create fluidization challenges for these sulfur particles.  相似文献   

2.
以可生物降解聚合物(Biological degradable polymers,BDPs)为有机碳源进行异养反硝化可以避免多次添加碳源、碳源不足或过量等问题。聚己内酯(Polycaprolactone,PCL)已被证明能够作为水产养殖用水异养反硝化的有机碳源。研究了聚己内酯添加量对水产养殖用水硝酸盐氮去除效率的影响。在进水硝酸盐氮(NO_3~--N)负荷为0.1 g/(L·d)条件下,200 m L水体中分别加入5 g、10 g、15 g、20 g、25 g和30 g的PCL颗粒进行反硝化,各组的NO_3~--N去除效率没有明显差异;出水中溶解有机碳的质量浓度随着PCL添加量的增加而增加;5 g组的PCL利用率明显高于其他组。结果显示:试验条件下,PCL添加量的增加并不会必然增加NO_3~--N的去除效率,反而会造成出水中溶解有机碳的增加;添加5 g PCL为最适添加量。  相似文献   

3.
This study was performed to establish valorization technology for solid wastes from a seawater recirculating aquaculture system (RAS) by using beneficial microorganisms. An efficient microbial agent (KBM-1) was selected based on the degradation activity of the RAS solid wastes (20% slurry) in a lab-scale reactor system considering the removal rates of chemical oxygen demand, solid material, total nitrogen, ammonium-N, and nitrate-N and the production of organic acids as electron donors for denitrification. The microbial consortium KBM-1 was particularly efficient in the removal of ammonium-N and nitrate-N with removal efficiencies of 42% and 50%, respectively, in eight days and in the rapid production of organic acids (230 mg L−1, 3.5 mM, 0.018 kg m−3 d−1) after two days. There was a concomitant removal of NO3--N (41%, 0.005 kg N m−3 d−1) after two days when a significant production of organic acids occurred. Comamonas sp. was a dominant genus after eight days in all treatments. The level of nitrate-N in the treatments with KBM-1 decreased by 50.4% after eight days, as opposed to that of the control sample (27.7%), indicating the potential denitrification activity of Citrobacter freundii and Comamonas sp. The bioaugmented species (Sporolactobacillus inulinus, Lactobacillus mali, Lactobacillus casei, and Clostridium tyrobutyricum), constituting 41% of the total communities, appeared to facilitate the growth of indigenous microbial communities that were involved in the degradation (hence valorization) of solid wastes (mostly remaining fish feed and fish feces) into simple metabolites (organic acids and inorganic materials such as ammonium, nitrite, nitrate, and CO2). The simultaneous generation of organic acids through the valorization of solid wastes and their subsequent reuse in the denitrification of an RAS biofilter system can provide a significant contribution to the eco-friendly management of RASs and provide meaningful economic merit to the solid wastes of RASs.  相似文献   

4.
利用生物滤池模拟装置,以实际养殖废水为处理对象,探讨了4种常见有机碳源(葡萄糖、乙醇、红糖和淀粉)及不同碳氮比对有机物去除、硝化反应和异养反硝化作用等生物滤池主要净化过程的影响.碳源初选结果显示,同种碳源下,当C/N从0升高至6过程中,生物滤池对TAN(总氨氮)的去除率呈先升高后降低趋势;当C/N较小时,各组对NO2--N的去除率差异性不显著(P>0.05),随着C/N继续升高,NO2-N去除率则显著降低(P<0.05);乙醇组除外,其他3组随着C/N升高,CODMn去除率先迅速增大然后趋于稳定;各组NO3-N和TN去除率呈先升高后降低趋势,且变化显著(P<0.05),当C/N=4时,分别达到最高值.碳源复选结果显示,在C/N=4条件下,分别添加有机碳源(乙醇、淀粉、红糖和葡萄糖)的4组对TAN、NO3--N、TN和CODM的去除率显著高于对照组(P<0.05);而对照组NO2--N的去除率最高,达到93.59%;添加乙醇,生物滤池对水体中TAN、NO2-N、NO3-N和TN的去除效果优于其他3种碳源.研究表明,当C/N=4时,乙醇作为外加碳源能很好地提高生物滤池的净化效率.  相似文献   

5.
The effluents of traditional shrimp monoculture cause pollution and promote eutrophication and hypernutrification of the receiving coastal ecosystems. Integrated aquaculture and a recirculating aquaculture system (RAS) have been proposed as an alternative to address these problems. In this study, we developed a dynamic model to simulate the concentration of total ammonia nitrogen (TAN), nitrite, and nitrate in an integrated culture of whiteleg shrimp, Litopenaeus vannamei, and seaweed, Gracilaria vermiculophylla, in a recirculating and zero water exchange system, and the effect of nitrifying and heterotrophic bacteria was also included. The experiments demonstrated that a dynamic model can explain the concentrations of dissolved inorganic nitrogen and variations in these concentrations over time in the integrated culture. The results also suggest that nitrifying and heterotrophic bacteria play an important role in the transformation of dissolved nitrogenous compounds; therefore, these bacteria should be considered within the dynamics of nitrogen in integrated systems with low water exchange.  相似文献   

6.
Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial culture RAS application. Four carbon sources were evaluated including methanol, acetic acid, molasses and Cerelose™, a hydrolyzed starch, to determine their applicability under commercial culture conditions and to determine if any of these carbon sources encouraged the production of two common “off-flavor” compounds, 2-methyisoborneol (MIB) or geosmin. The denitrification design consisted of a 1.89 m3 covered conical bottom polyethylene tank containing 1.0 m3 media through which water up-flowed at a rate of 10 lpm. A commercial aquaculture system housing 6 metric tonnes of Siberian sturgeon was used to generate nitrate through nitrification in a moving bed biological filter. All four carbon sources were able to effectively reduce nitrate to near zero concentrations from influent concentrations ranging from 11 to 57 mg/l NO3–N, and the maximum daily denitrification rate was 670–680 g nitrogen removed/m3 media/day, regardless of the carbon source. Although nitrite production was not a problem once the reactors achieved a constant effluent nitrate, ammonia production was a significant problem for units fed molasses and to a less extent Cerelose™. Maximum measured ammonia concentrations in the reactor effluents for methanol, vinegar, Cerelose™ and molasses were 1.62 ± 0.10, 2.83 ± 0.17, 4.55 ± 0.45 and 5.25 ± 1.26 mg/l NH3–N, respectively. Turbidity production was significantly increased in reactors fed molasses and to a less extent Cerelose™. Concentrations of geosmin and MIB were not significantly increased in any of the denitrification reactors, regardless of carbon source. Because of its very low cost compared to the other sources tested, molasses may be an attractive carbon source for denitrification if issues of ammonia production, turbidity and foaming can be resolved.  相似文献   

7.
利用人工湿地处理海水养殖尾水具有很大的应用前景,其中,脱氮是人工湿地的主要任务之一。基质上栽培的植物和附着的微生物参与的氮循环是人工湿地生物脱氮的主要路径,植物和多种氮代谢菌群在人工湿地内部相互协同与制约,构成了一个复杂的氮代谢网络。海水养殖尾水的高盐度和低碳氮比(C/N)又决定了此类人工湿地独特的处理环境和生物脱氮机制。同时,人工湿地的供氧模式、水力负荷(HRT)、水力停留时间(HLR)等水力条件参数对脱氮效能也有很大影响,对这些指标进行调控和优化,可以提高湿地的整体脱氮性能。本文从海水人工湿地的构建、基质的选取、耐盐植物的筛选、氮循环相关微生物以及运行参数调控四个方面,对近年来海水养殖尾水人工湿地生物脱氮方面的研究进展进行了综述和展望,以期为深入理解海水人工湿地脱氮机制和优化运行方式提供参考。  相似文献   

8.
A laboratory-scale recirculating aquaculture system for fluidised bed biofilter evaluation was engineered. The design included all components found in typical full-scale commercial production systems. The system included two identical units each with oxygenation, UV treatment, cooling, biofiltration and a particulates separation device. Water from the two systems was mixed in a degassing unit. A 1 month test period after biofilter maturation revealed stable concentrations of total ammonia nitrogen (TAN), nitrite and nitrate within the system. Mean nitrification rate was 0.27 and 0.21 g TAN m−2 day−1. Oxygen consumption in the biofilters ranged between 56 and 64% due to nitrifying activity. Mass balances on nitrogen indicated that 48%, added via the feed, was converted to nitrate within the system, with 6% of the added nitrogen being found in the sludge. The remaining 43% was either used during fish growth, left the system, as organic nitrogenous compounds (or unidentified nitrogenous compounds), via the outlet, or was lost to the atmosphere. At least 61% of the nitrate produced was generated by the biofilters. The system proved to be an exceptional set-up for evaluation of the performance of fluidised bed biofilters, allowing both pre- and post-filter measurements of various water quality criteria.  相似文献   

9.
Design and management of conventional fluidized-sand biofilters   总被引:2,自引:0,他引:2  
Fluidized-sand beds are an efficient, relatively compact, and cost-competitive technology for removing dissolved wastes from recirculating aquaculture systems, especially in relatively cool or coldwater applications that require maintaining consistently low levels of ammonia and nitrite. This paper describes several types of flow injection mechanisms used in commercial fluidized-sand biofilters and provides criteria for design of flow distribution mechanisms at the bottom of the fluidized bed. This paper also summarizes the most critical aspects of sand selection, as well as methods for calculating or experimentally measuring fluidization velocities and pressure drop for a given filter sand size distribution. Estimates of nitrification rate, ammonia removal efficiency, carbon dioxide production, and oxygen consumption across fluidized-sand biofilters are also provided for various conditions. Fluidized-sand biofilter operational and management practices are also described.  相似文献   

10.
为进一步提升人工湿地在微污染水源条件下的同步脱氮除磷能力,以硫铁矿作为湿地填料设计构建了人工湿地装置,并采用挂膜法对硫铁矿进行硫自养型反硝化细菌表面负载,在此基础上研究硫铁矿人工湿地对水体中污染物的去除规律和去除机理,并通过高通量基因测序技术分析硫铁矿表面微生物的群落结构。结果显示,从UASB活性污泥中筛选出的硫自养型反硝化菌活性最高,脱氮效果最好;在微污染水源条件下,硫铁矿潜流人工湿地具有较好的同步脱氮除磷能力,在水力停留时间为60 h条件下,其对水体中的化学需氧量(CODCr)、氨氮(NH3-N)、硝态氮(NO3-N)、总氮(TN)、总磷(TP)的平均去除率分别达到53.5%、60.9%、67.2%、49.2%、46.3%;矿石表面发现菌群群落达到13门以上,变形菌门(Proteobacteria)为矿石表面最为优势的功能微生物菌群,相对丰度比例占45%左右,硫杆菌属(Thiobacillus)为自养反硝化脱氮的主要功能菌属。研究表明,采用硫铁矿作为填料可显著提高人工湿地的脱氮除磷效果,对微污染水体有较好的水质净化效果,以硫源作为反硝化过程的电子供体可以提高低碳源条件下系统的反硝化效果。  相似文献   

11.
Photosynthetic suspended-growth systems in aquaculture   总被引:3,自引:0,他引:3  
Standardized evaluation and rating of biofilters for aquaculture should be assessed in the context of the economic efficiency of ecological services (waste assimilation, nutrient recycling, and internal food production) provided by earthen ponds, and the availability and cost of land, water, and electrical energy resources required to support particular classes of production systems. In photosynthetic suspended-growth systems, water quality control is achieved by a combination of natural and mechanical processes. Natural processes include photosynthesis of oxygen, algal nutrient uptake, coupled nitrification–denitrification, and organic matter oxidation; mechanical processes include aeration and water circulation. Ammonia is controlled by a combination of phytoplankton uptake, nitrification, and immobilization by bacteria. Unlike biofilters for recirculating aquaculture systems, unit processes are combined and are an integral part of the culture unit. The important design and operational considerations for photosynthetic suspended-growth systems include temperature effects, aeration and mixing, quantity and quality of loaded organic matter, and fish water quality tolerance limits. The principle advantages of photosynthetic suspended-growth systems are lower capital costs relative to other recirculating aquaculture systems and increased control over stock management relative to conventional static ponds. The main disadvantage is the relatively low degree of control over water quality and phytoplankton density, metabolism, and community composition relative to other recirculating aquaculture systems. Examples of photosynthetic suspended-growth systems include semi-intensive ponds, intensively aerated outdoor lined ponds, combined intensive–extensive ponds, partitioned aquaculture systems, greenwater tanks, greenwater tanks with solids removal, and greenwater recirculating aquaculture systems.  相似文献   

12.
The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification technologies specifically employing organic carbon found in aquaculture system waste offer a unique synergy for treatment of land-based, closed-containment production outflows. For space-efficient fluidized sand biofilters to be used as such denitrification reactors, system parameters (e.g., influent dissolved oxygen and carbon to nitrogen ratios, C:N) must be evaluated to most effectively use an endogenous carbon source. The objectives of this work were to quantify nitrate removal under a range of C:Ns and to explore the biofilter bacterial community using three replicated fluidized sand biofilters (height 3.9 m, diameter 0.31 m; fluidized sand volume plus biofilm volume of 0.206 m3) operated at a hydraulic retention time of 15 min and a hydraulic loading rate of 188 L/min m2 at The Conservation Fund Freshwater Institute in Shepherdstown, West Virginia, USA. Nitrate reduction was consistently observed during the biofilter study period (26.9 ± 0.9% removal efficiency; 402 ± 14 g NO3-N/(m3 biofilter d)) although nitrite-N and total ammonium nitrogen concentrations slightly increased (11 and 13% increases, respectively). Nitrate removal efficiency was correlated with carbonaceous oxygen demand to nitrate ratios (R2 > 0.70). Nitrate removal rates during the study period were moderately negatively correlated with influent dissolved oxygen concentration indicating it may be possible the biofilter hydraulic retention time was too short to provide optimized nitrate removal. It is reasonable to assume that the efficiency of nitrate removal across the fluidized sand biofilters could be substantially increased, as long as organic carbon was not limiting, by increasing biofilter bed depths (to 6–10 m), and thus hydraulic retention time. These findings provide a low-cost yet effective technology to remove nitrate-nitrogen from effluent waters of land-based closed-containment aquaculture systems.  相似文献   

13.
The Biofloc Technology System (BFT) is characterized by stimulating the development of a microbial community that acts mainly in the maintenance of water quality but also promotes other benefits such as increased productivity, biosafety and serves as a supplementary source of food for reared animals. Two main groups of bacteria are involved in nitrogen removal in this system: heterotrophic bacteria and autotrophic nitrifying bacteria, present in the aggregates. Different fertilization techniques can be used for the formation and maintenance of bioflocs, depending on which group of bacteria the predominance is preferred. This study aimed to analyze the effect of different organic fertilization techniques on the bioflocs establishment, amount of water used, the production of suspended solids and the growth performance of Litopenaeus vannamei reared in the BFT System. Shrimp juveniles were stocked in 150-liter tanks at a stocking density of 300 shrimps/m³. Three treatments (in triplicate) were tested using different fertilization techniques: 1) without supplementary organic fertilization; 2) organic fertilization according to nominal ammonia reading (heterotrophic/chemoautotrophic = “mixed” system) and 3) organic fertilization according to estimated ammonia production (heterotrophic). The temperature, salinity, dissolved oxygen, pH, ammonia, nitrite, nitrate, alkalinity and total suspended solids (TSS) of the water were monitored. The water quality parameters were influenced by the treatments with differences found in the concentrations of ammonia, nitrite, nitrate, pH, alkalinity and TSS. Ammonia levels were higher in control treatment since no organic fertilization was performed. Nitrite levels were lower in heterotrophic system since the nitrifying pathway was suppressed due to daily fertilization, also resulting in lower nitrate levels. There were significant differences in the growth performance parameters, with the highest final weight and yield, as well as the lowest FCR, found in the mixed treatment. There were no significant differences among survival. The mixed system treatment used less water during production cycle compared to other treatments while the volume of solids removed was almost four times greater in the heterotrophic treatment compared to the others. These results show that adopting a mixed heterotrophic/chemoautotrophic biofloc system improves shrimp growth performance, optimize water use and decrease solids production.  相似文献   

14.
Nitrate reducing potency of 88 bacterial isolates segregated from marine and brackish water nitrifying bacterial consortia (NBC), generated for activation of nitrifying bioreactors, was confirmed by determining the nitrate reducing capability under aerobic conditions as maintained in nitrifying bioreactors. All the isolates had the potential to be used as bio‐augmentors for activating nitrate dissimilation in recirculating aquaculture system. The existence of nitrate reducers with nitrifiers in NBC and in the reactor configuration negates the requirement of integrating anoxic denitrifying system for effective removal of NO3?‐N. Phylogenetic analyses of representative isolates from each cluster of the dendrograms generated based on phenotypic characterization and amplified ribosomal DNA restriction analysis revealed profound diversity of nitrate reducing bacterial flora in the NBC. They were composed of Streptomyces enissocaesilis, Marinobacter sp., Pseudomonas sp., Microbacterium oxydans, Pelagibacterium halotolerans and Alcanivorax dieselolei from marine NBC and Streptomyces tendae, Nesterenkonia sp., Bacillus cereus, Microbacterium oxydans and Brevibacterium sp. from brackish water NBC. The diversity indices of the consortia were calculated using Mega 5.0, primer 7 and VITCOMIC softwares. Marine NBC exhibited higher Shannon wiener diversity and mean population diversity than brackish water NBC. The study delineated higher species richness and diversity in marine NBC than in its brackish water counterpart, a possible reflection of the higher biodiversity of marine systems, and hence, the former is more promising to be used as start‐up cultures for the activation of nitrifying bioreactors after appropriate acclimatization to the desired salinity.  相似文献   

15.
Nitrogenous wastes are major concerns in shrimp production and as a component of total farm wastes that impact the aquatic environment. This study describes a simulation model of the role of heterotrophic and nitrifying bacteria on nitrogen dynamics in intensive Litopenaeus vannamei (Boone) culture systems using different feeds and feeding strategies. The model represents: (i) use and remineralization by heterotrophic bacteria of nitrogen wastes and ammonia excreted by shrimp; and (ii) nitrification. The model was quantified using published and unpublished information. The model is multivariate, deterministic and uses a compartment model structure based on difference equations. Evaluation of the model consisted of simulating two indoor and one outdoor experiment that examined the effects of different feeds and feeding levels on nitrogen dynamics. In summary, the model is capable of qualitatively following inorganic nitrogen dynamics. Simulations investigating the effect of heterotrophic remineralization on total inorganic nitrogen suggested that this process may contribute up to 97% of the inorganic nitrogen in the system. This indicates that strategies to increase production, such as increases in feed protein levels or feeding rates, should be carefully evaluated before they are implemented. Future studies need to address bacterial community role in these systems and inorganic nitrogen toxicity mechanisms.  相似文献   

16.
In recirculating aquaculture systems (RAS), the crucial step of eliminating toxic N compounds like ammonia and nitrite is mediated via nitrifying microorganisms and takes place in biofilters. In this study, analyses of microorganisms colonizing biocarriers of nine moving-bed biofilters of three different RAS operated with freshwater, brackish or marine process water uncovered site specific communities. Illumina-based amplicon sequencing of the V4-region of the 16S rRNA gene revealed a high microbial diversity with 1000–2500 species-level operational taxonomic units (OTUs) in all biofilters with the highest diversity in the brackish RAS. Proteobacteria, Bacteriodetes, Plantomycetes, Chloroflexi and Nitrospirae represented the most abundant phyla. 76 out of 674 known genera occurred in all nine biofilters and were defined as core-taxa, including nitrifying bacteria (Nitrosomonas and Nitrospira) as well as members of the (heterotrophic) genera Planctomyces, Blastopirellula, Nannocystis and Lewinella. Nitrifying communities composed of different, closely related and so far uncultured members of Nitrosomonas and Nitrospira were identified, strongly indicating that several potentially novel ammonia and nitrite oxidizing species are present in RAS biofilters. Relatives of known comammox Nitrospira were detected in the brackish biofilters, revealing 94–99 % identity of the 16S rRNA gene sequence to Ns. inopinata. Salinity tolerance tests with biocarriers derived from biofilters of the three distinct RAS showed an unexpected broad physiological flexibility with regard to salinity. Nitrification performance of freshwater nitrifiers was drastically reduced with increasing salinity and nearly completely inhibited at 15 PSU, while the brackish and marine nitrifiers showed a high resistance and maintained nitrification activity in a broad range of salt concentrations. This data can help to improve the nitrification process in RAS with changing salinity of the process water.  相似文献   

17.
Monod kinetics are widely used to model nitrifying biofilters. However, these kinetics are incapable of representing the collapse of volumetric TAN conversion rate (VTR) under high organic loadings. Failure to recognize the underlying heterotrophic interference can lead to calibration issues as a single Monod function is applied across contrasting levels of carbon loading. This, plus an historic bias towards the analysis of peak carrying capacities leave modelers poorly prepared to serve the needs of a mariculture industry demanding oligotrophic designs for broodstock maturation and larval/fingerling production. Consequently, data was generated by a Monte Carlo technique under the assumption of heterotrophic inhibition to nitrification. The data was used to compare the accuracy of calibration of the Monod relationship using the traditional Lineweaver–Burke and Eadie–Hofstee calibration methods against direct linear regression for low substrate (mesotrophic/oligotrophic) regimes. The results indicate that a simple linear relationship with a zero intercept, calibrated on data ranging from 0.1 to 0.5 g-TAN m−3, is most suitable for the representation of the mesotrophic/oligotrophic performance of nitrifying biofilters based on a comparison of SSE for both the Monte Carlo and field data analyzed herein. Additionally, the coefficient of variation was found to be between 7 and 8% for the parameter τ, which is the slope of the linear relationship between total ammonia nitrogen (TAN) and VTR while the CV for the Monod parameters ranged between 22 and 143% for VTRmax and between 29 and 137% for the apparent half-saturation constant showing the improved stability of the linear model to that of the Monod model.  相似文献   

18.
厌氧氨氧化和反硝化作用是底泥生物脱氮的主要过程,碳源是调控厌氧氨氧化和反硝化作用的关键因子。本研究以褐煤为对象,对褐煤的静态碳释情况及其对池塘底泥中脱氮作用的影响进行了研究。结果显示,褐煤在室温条件下的碳释放规律符合二级动力学方程,具备作为反硝化碳源的可行性;在脱氮实验中,发现褐煤对底泥上覆水体中的亚硝酸盐氮(NNO2--N)的去除具有促进作用,NNO2--N的去除率随褐煤浓度的增加而升高,当褐煤质量浓度为40 g/L时,N\${\rm{O}}_2^ - $\-N去除率最高达99.61%,此时硝酸盐氮(NO3--N)的浓度也最低;同时发现,水体中氨氮(NH4+-N)氧化的最适褐煤质量浓度为10 g/L,其去除率达99.39%;对底泥中的厌氧氨氧化菌群进行Illumina高通量测序发现,其中浮霉菌门占比最大(39.6%~71.8%),优势菌属为Candidatus Brocadia (13.9%~35.8%)和Desulfovibrio (17.1%~34.8%),添加褐煤组Candidatus Scalindua菌属比例高于未添加组;荧光定量PCR得出,随着褐煤质量浓度升高,底泥中的反硝化菌丰度呈增长趋势,而厌氧氨氧化菌丰度则低于无褐煤添加组,表明添加褐煤对底泥反硝化有促进作用,而对厌氧氨氧化有一定的抑制作用。研究表明,褐煤具备作为反硝化碳源的条件,可用于池塘养殖底泥脱氮作用。  相似文献   

19.
Data on operation and performance of cost-effective solutions for end-of-pipe removal of nitrate from land-based saltwater recirculating aquaculture systems (RAS) are scarce but increasingly requested by the aquaculture industry. This study investigated the performance of a (semi)commercial-scale fixed-bed denitrification unit using single sludge for treating effluent from a commercial, saltwater RAS used for production of Atlantic salmon (Salmo salar). A fixed-bed denitrification reactor was fed continuously with 3-days hydrolyzed sludge from the commercial RAS, and was operated at different hydraulic retention times (HRTs; 1.82, 3.64, 5.46, or 7.28 h) or influent C/N ratios (3, 5, 7, or 10). Twenty-four h pooled samples were collected from the inflowing RAS water and the hydrolyzed sludge as well as from the denitrification reactor outlet, and samples were analyzed for nutrients and organic matter content.Nitrate removal rates increased consistently with decreasing HRT (from 64.3 ± 5.2–162.7 ± 22.0 g NO3-N/m3/d within the HRTs tested) at non-limiting C/N ratios, while nitrate removal efficiencies decreased (from 99.6 ± 0.3–58.2 ± 8.9 %). With increasing influent C/N ratios at constant HRT (3.64 h), nitrate removal rates increased until the removal efficiency was close to 100 % and nitrate concentration in the denitrification reactor became rate-limiting. A maximum nitrate removal rate of 162.7 ± 2.0 g NO3-N/m3/d was achieved at a HRT of 1.82 h and an influent C/N of 6.6 ± 0.5, while the most efficient use of hydrolyzed sludge (0.19 ± 0.02 g NO3-N removed/g sCOD supplied) was obtained with a HRT of 3.64 h and a C/N ratio of 2.9. Removal rates of organic matter significantly and consistently increased with decreasing HRT and increasing C/N ratio. In addition, reducing HRT and increasing C/N ratios significantly improved removal of total phosphorus (TP) and PO4-P.In conclusion, optimal management of the operating parameters (HRT and C/N ratio) in a single-sludge denitrification process can significantly reduce the discharge of nitrogen, organic matter, and phosphorous from land-based saltwater RAS and thus contribute to increased sustainability.  相似文献   

20.
Recirculating aquaculture systems (RAS) are operated as outdoor or indoor systems. Due to the intensive mode of fish production in many of these systems, waste treatment within the recirculating loop as well as in the effluents of these systems is of primary concern. In outdoor RAS, such treatment is often achieved within the recirculating loop. In these systems, extractive organisms, such as phototrophic organisms and detritivores, are cultured in relatively large treatment compartments whereby a considerable part of the waste produced by the primary organisms is converted in biomass. In indoor systems, capture of solid waste and conversion of ammonia to nitrate by nitrification are usually the main treatment steps within the recirculating loop. Waste reduction (as opposed to capture and conversion) is accomplished in some freshwater and marine indoor RAS by incorporation of denitrification and sludge digestion. In many RAS, whether operated as indoor or outdoor systems, effluent is treated before final discharge. Such effluent treatment may comprise devices for sludge thickening, sludge digestion as well as those for inorganic phosphate and nitrogen removal. Whereas waste disposed from freshwater RAS may be treated in regional waste treatment facilities or may be used for agricultural purposes in the form of fertilizer or compost, treatment options for waste disposed from marine RAS are more limited. In the present review, estimations of waste production as well as methods for waste reduction in the recirculating loop and effluents of freshwater and marine RAS are presented. Emphasis is placed on those processes leading to waste reduction rather than those used for waste capture and conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号