首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Netrins stimulate and orient axon growth through a mechanism requiring receptors of the DCC family. It has been unclear, however, whether DCC proteins are involved directly in signaling or are mere accessory proteins in a receptor complex. Further, although netrins bind cells expressing DCC, direct binding to DCC has not been demonstrated. Here we show that netrin-1 binds DCC and that the DCC cytoplasmic domain fused to a heterologous receptor ectodomain can mediate guidance through a mechanism involving derepression of cytoplasmic domain multimerization. Activation of the adenosine A2B receptor, proposed to contribute to netrin effects on axons, is not required for rat commissural axon outgrowth or Xenopus spinal axon attraction to netrin-1. Thus, DCC plays a central role in netrin signaling of axon growth and guidance independent of A2B receptor activation.  相似文献   

2.
Regenerating sensory axons in the dorsal roots of adult mammals are stopped at the junction between the root and spinal cord by reactive astrocytes. Do these cells stop axonal elongation by activating the physiological mechanisms that normally operate to stop axons during development, or do they physically obstruct the elongating axons? In order to distinguish these possibilities, the cytology of the axon tips of regenerating axons that were stopped by astrocytes was compared with the axon tips that were physically obstructed at a cul-de-sac produced by ligating a peripheral nerve. The terminals of the physically obstructed axon tips were distended with neurofilaments and other axonally transported structures that had accumulated when the axons stopped elongating. By contrast, neurofilaments did not accumulate in the tips of regenerating axons that were stopped by spinal cord astrocytes at the dorsal root transitional zone. These axo-glial terminals resembled the terminals that axons make on target neurons during normal development. On the basis of these observations, astrocytes appear to stop axons from regenerating in the mammalian spinal cord by activating the physiological stop pathway that is built into the axon and that normally operates when axons form stable terminals on target cells.  相似文献   

3.
Axonal proteins of presynaptic neurons during synaptogenesis   总被引:5,自引:0,他引:5  
Changes occur in the synthesis and axonal transport of neuronal proteins in dorsal-root ganglia axons as a result of contact with cells from the spinal cord during synapse formation. Dorsal-root ganglia cells were cultured in a compartmental cel culture system that allows separate access to neuronal cell bodies and their axons. When cells from the ventral spinal cord were cultured with the dorsal-root ganglia axons, synapses were established within a few days. Metabolic labeling and two-dimensional electrophoresis revealed that four of more than 300 axonal proteins had changed in their expression by the time synapses were established. The highly selective nature of these changes suggests that the proteins involved may be important in the processes of axon growth and synapse formation and their regulation by the regional environment.  相似文献   

4.
During axon guidance, the ventral guidance of the Caenorhabditis elegans anterior ventral microtubule axon is controlled by two cues, the UNC-6/netrin attractant recognized by the UNC-40/DCC receptor and the SLT-1/slit repellent recognized by the SAX-3/robo receptor. We show here that loss-of-function mutations in clr-1 enhance netrin-dependent attraction, suppressing ventral guidance defects in slt-1 mutants. clr-1 encodes a transmembrane receptor protein tyrosine phosphatase (RPTP) that functions in AVM to inhibit signaling through the DCC family receptor UNC-40 and its effector, UNC-34/enabled. The known effects of other RPTPs in axon guidance could result from modulation of guidance receptors like UNC-40/DCC.  相似文献   

5.
Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-β signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.  相似文献   

6.
Regulated cleavage of a contact-mediated axon repellent   总被引:2,自引:0,他引:2  
Contact-mediated axon repulsion by ephrins raises an unresolved question: these cell surface ligands form a high-affinity multivalent complex with their receptors present on axons, yet rather than being bound, axons can be rapidly repelled. We show here that ephrin-A2 forms a stable complex with the metalloprotease Kuzbanian, involving interactions outside the cleavage region and the protease domain. Eph receptor binding triggered ephrin-A2 cleavage in a localized reaction specific to the cognate ligand. A cleavage-inhibiting mutation in ephrin-A2 delayed axon withdrawal. These studies reveal mechanisms for protease recognition and control of cell surface proteins, and, for ephrin-A2, they may provide a means for efficient axon detachment and termination of signaling.  相似文献   

7.
DNA topoisomerase IIbeta is shown to have an unsuspected and critical role in neural development. Neurogenesis was normal in IIbeta mutant mice, but motor axons failed to contact skeletal muscles, and sensory axons failed to enter the spinal cord. Despite an absence of innervation, clusters of acetylcholine receptors were concentrated in the central region of skeletal muscles, thereby revealing patterning mechanisms that are autonomous to skeletal muscle. The defects in motor axon growth in IIbeta mutant mice resulted in a breathing impairment and death of the pups shortly after birth.  相似文献   

8.
Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes alpha2-chimaerin, a Rac guanosine triphosphatase-activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase alpha2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance alpha2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant alpha2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that alpha2-chimaerin has a critical developmental function in ocular motor axon pathfinding.  相似文献   

9.
Commissural neurons in the mammalian dorsal spinal cord send axons ventrally toward the floor plate, where they cross the midline and turn anteriorly toward the brain; a gradient of chemoattractant(s) inside the spinal cord controls this turning. In rodents, several Wnt proteins stimulate the extension of commissural axons after midline crossing (postcrossing). We found that Wnt4 messenger RNA is expressed in a decreasing anterior-to-posterior gradient in the floor plate, and that a directed source of Wnt4 protein attracted postcrossing commissural axons. Commissural axons in mice lacking the Wnt receptor Frizzled3 displayed anterior-posterior guidance defects after midline crossing. Thus, Wnt-Frizzled signaling guides commissural axons along the anterior-posterior axis of the spinal cord.  相似文献   

10.
Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3 pyramidal neurons ex vivo. The waveforms of axonal APs increased in width in response to the local application of glutamate and an adenosine A(1) receptor antagonist to the axon shafts, but not to other unrelated axon branches. Uncaging of calcium in periaxonal astrocytes caused AP broadening through ionotropic glutamate receptor activation. The broadened APs triggered larger calcium elevations in presynaptic boutons and facilitated synaptic transmission to postsynaptic neurons. This local AP modification may enable axonal computation through the geometry of axon wiring.  相似文献   

11.
As growing retinotectal axons navigate from the eye to the tectum, they sense guidance molecules distributed along the optic pathway. Mutations in the zebrafish astray gene severely disrupt retinal axon guidance, causing anterior-posterior pathfinding defects, excessive midline crossing, and defasciculation of the retinal projection. Eye transplantation experiments show that astray function is required in the eye. We identify astray as zebrafish robo2, a member of the Roundabout family of axon guidance receptors. Retinal ganglion cells express robo2 as they extend axons. Thus, robo2 is required for multiple axon guidance decisions during establishment of the vertebrate visual projection.  相似文献   

12.
Basement membranes can help determine pathways of migrating axons. Although members of the nidogen (entactin) protein family are structural components of basement membranes, we find that nidogen is not required for basement membrane assembly in the nematode Caenorhabditis elegans. Nidogen is localized to body wall basement membranes and is required to direct longitudinal nerves dorsoventrally and to direct axons at the midlines. By examining migration of a single axon in vivo, we show that nidogen is required for the axon to switch from circumferential to longitudinal migration. Specialized basement membranes may thus regulate nerve position.  相似文献   

13.
Growth cones are specialized structures that form the distal tips of growing axons. During both normal development of the nervous system and regeneration of injured nerves, growth cones are essential for elongation and guidance of growing axons. Developmental and regenerative axon growth is frequently accompanied by elevated synthesis of a protein designated GAP-43. GAP-43 has now been found to be a major component of growth-cone membranes in developing rat brains. Relative to total protein, GAP-43 is approximately 12 times as abundant in growth-cone membranes as in synaptic membranes from adult brains. Immunohistochemical localization of GAP-43 in frozen sections of developing brain indicates that the protein is specifically associated with neuropil areas containing growth cones and immature synaptic terminals. The results support the proposal that GAP-43 plays a role in axon growth.  相似文献   

14.
Axonal growth cones that cross the nervous system midline change their responsiveness to midline guidance cues: They become repelled by the repellent Slit and simultaneously lose responsiveness to the attractant netrin. These mutually reinforcing changes help to expel growth cones from the midline by making a once-attractive environment appear repulsive. Here, we provide evidence that these two changes are causally linked: In the growth cones of embryonic Xenopus spinal axons, activation of the Slit receptor Roundabout (Robo) silences the attractive effect of netrin-1, but not its growth-stimulatory effect, through direct binding of the cytoplasmic domain of Robo to that of the netrin receptor DCC. Biologically, this hierarchical silencing mechanism helps to prevent a tug-of-war between attractive and repulsive signals in the growth cone that might cause confusion. Molecularly, silencing is enabled by a modular and interlocking design of the cytoplasmic domains of these potentially antagonistic receptors that predetermines the outcome of their simultaneous activation.  相似文献   

15.
Axons from eyes transplanted to the tail in Xenopus larvae enter the caudal spinal cord and follow two adjacent tracts rostrally to the level of the cerebellum. When eyes are transplanted to the ear area, optic axons enter the hindbrain and follow the same tracts rostrally and caudally. These sensory pathways normally contain the embryonic sensory system of the Rohon-Beard axons and the descending and ascending tracts of nerve V. We propose that the transplanted optic axons have followed a continuous substrate sensory pathway normally shared by a number of different sensory tracts.  相似文献   

16.
Axon guidance and the patterning of neuronal projections in vertebrates   总被引:30,自引:0,他引:30  
Over the past decade, new insights have been obtained into the cellular strategies and molecular mechanisms that guide axons to their targets in the developing vertebrate nervous system. Axons select pathways by recognizing specific cues in their environment. These cues include cell surface and extracellular matrix molecules that mediate cell and substrate adhesion and axon fasciculation, molecules with contact-dependent inhibitory properties, and diffusible tropic factors. Several guidance cues may operate in a coordinated way to generate the distinct axonal trajectories of individual neurons.  相似文献   

17.
Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.  相似文献   

18.
Nodes of Ranvier are regularly placed, nonmyelinated axon segments along myelinated nerves. Here we show that nodal membranes isolated from the central nervous system (CNS) of mammals restricted neurite outgrowth of cultured neurons. Proteomic analysis of these membranes revealed several inhibitors of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp). In rat spinal cord, OMgp was not localized to compact myelin, as previously thought, but to oligodendroglia-like cells, whose processes converge to form a ring that completely encircles the nodes. In OMgp-null mice, CNS nodes were abnormally wide and collateral sprouting was observed. Nodal ensheathment in the CNS may stabilize the node and prevent axonal sprouting.  相似文献   

19.
Vogel G 《Science (New York, N.Y.)》2000,290(5500):2243-2244
Two newly discovered receptors, Slit and Roundabout (Robo), help determine how far axons in developing fruit flies travel after they cross the line between the fly's left and right sides. In a pair of papers in the December issue of Neuron, two independent teams report that flies have two proteins very similar to Robo, called Robo2 and Robo3. In two more papers in this week's issue of Cell, both teams describe how the Robo proteins on an axon's cell membrane not only keep the axon from recrossing the midline but also help determine the particular path an axon takes.  相似文献   

20.
A major barrier to regenerating axons after injury in the mammalian central nervous system is an unfavorable milieu. Three proteins found in myelin--Nogo, MAG, and OMgp--inhibit axon regeneration in vitro and bind to the glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, genetic deletion of NgR has only a modest disinhibitory effect, suggesting that other binding receptors for these molecules probably exist. With the use of expression cloning, we have found that paired immunoglobulin-like receptor B (PirB), which has been implicated in nervous system plasticity, is a high-affinity receptor for Nogo, MAG, and OMgp. Interfering with PirB activity, either with antibodies or genetically, partially rescues neurite inhibition by Nogo66, MAG, OMgp, and myelin in cultured neurons. Blocking both PirB and NgR activities leads to near-complete release from myelin inhibition. Our results implicate PirB in mediating regeneration block, identify PirB as a potential target for axon regeneration therapies, and provide an explanation for the similar enhancements of visual system plasticity in PirB and NgR knockout mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号