首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Afforestation of sandy arable soils in northern Europe is likely to lead to an increase in the soil's acidity and changes in the behaviour of the organic matter, and this might affect the ability of the soil to retain heavy metals. It is important to assess the impact of such a change in the land use on the solubility of the heavy metals and to assess the risk of leaching to surface‐ and groundwater and the possible entrapment of heavy metals in the tree canopy. The impact of afforestation was assessed by excavating soil profiles in adjacent 34‐year‐old Norway spruce stands and arable plots at four different sites. We found that after 34 years the pH had decreased and cations were depleted in the topsoil under forest. The aqua regia‐extractable heavy metals were determined, and the heavy metal binding within the soil was assessed using a modified version of the BCR (Community Bureau of Reference) sequential extraction procedure. Higher contents of heavy metal were found in the arable plots in the loamy sand soils. Cadmium was found only in the most mobile fractions. The content of Pb in the subsoil was strongly correlated with the clay content, but not in the topsoil, which suggested that Pb had been added to the topsoil. We found strong correlations between the clay content and the Cu, Ni and Zn in the residual fraction, leading us to conclude that much of the Cu, Ni and Zn is of geological origin. No significant differences in the heavy metal fractionation between forest and arable soil were found, presumably because 34 years of different land use is not long enough to produce such differences.  相似文献   

2.
Case studies are necessary to assess the effects of changes to tree species on the physicochemical and chemical properties of soils. To achieve this, the fine earth under five tree species was investigated. This study was performed in the Breuil-Chenue experimental forest site located in the Morvan Mountains (France). This site contains two adjacent blocks with replicated stands. The native forest (old beech and oak coppice with standards) was partially clear-felled and replaced in 1976 with mono-specific plantations of European beech, Norway spruce, Laricio pine and Douglas fir. The same changes in soil properties were revealed in both blocks, thus confirming the tree species effect. The percentage of exchangeable acidity on the cation exchange capacity (CEC) was greater under spruce, Douglas fir and pine than under the other species. Spruce stands, and to a lesser extent those of Douglas fir and pine, had a less acidic soil pH than hardwood stands (which was unusual in view of the data in the literature) and smaller CEC values. The small quantities of carbon added to the soil under these tree species provide an explanation for these effects through a partial control of both CEC and pH. This case study thus demonstrated that the tree species effect was not unequivocal and different criteria are necessary for its interpretation. Tree species significantly influenced certain aspects of the chemical properties of topsoil and have the potential to have an impact on current soil fertility.  相似文献   

3.
Abstract

Sewage‐sludge‐amended soils generally contain elevated levels of organic matter and heavy metals compared to control soils. Because organic matter is known to complex with heavy metals, the solubility behavior of the organic matter in such soils may exert a significant influence on the solubility of the metals. Little is known about such a process. Using batch experiments in which the solubility of organic matter in a heavily sludge‐amended soil was artificially manipulated, we show that the solubilities of the heavy metals copper (Cu), nickel (Ni), and lead (Pb) show a strong positive relationship to the solubility of organic matter, particularly at high pH. The results suggest that under field conditions, spatiotemporal variations in the solid–solution partitioning of organic matter may have a bearing on the environmental significance (mobility and bioavailability) of these heavy metals.  相似文献   

4.
Effect of natural organic soil solutes on weathering rates of soil minerals   总被引:6,自引:0,他引:6  
The rate at which minerals in the soil weather is affected by pH and concentration of organic solutes (DOC). The rates of release of Al, Ca, Fe, K, Mg, Na, P and Si from a mineral soil sample to solutions of natural organic solutes and HCI (control) were determined at pH 3 and 4 for up to 17 weeks. Soil solutions were collected by centrifuging materials of O horizons from various soil types under four tree species (spruce, birch, oak, beech) and passed through a cation-exchange resin to yield H+-saturated organic solutes. The acceleration of the elements' release by the organic solutes was shown directly by the relative ligand effect (RLE), that is, the release rate in the organic solute solution divided by the release rate in the HCI solution (control) at the same pH. The RLE was greater at pH 4 than at pH 3, and it decreased for the elements in the order Fe > Ca > Mg > Al ≈ Si > K ≈ Na. This indicates that natural organic solutes are more important weathering agents at higher than lower pH and for weathering of mafic minerals rich in Ca, Fe and Mg than of felsic minerals such as K- and Na-feldspars. For all elements and at both pHs, RLE was strongly correlated with the concentration of DOC, which was also closely correlated with titratable acidity of the organic solutes. The important effect of soil type and tree species in producing weathering-promoting organic solutes therefore seems to be expressed through the concentration and not the composition of the organic soil solutes.  相似文献   

5.
Flux balances and current rates of change of heavy metal stores in forest ecosystems of the Soiling The inventory of the heavy metals Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb is calculated for a beech and a spruce forest ecosystem in the Soiling mountains on the basis of measured concentrations in the vegetation and soil compartments and their dry mass per hectare. The inventory is compared with measured heavy metal fluxes coupled with precipitation above and below the canopy, with seepage water fluxes below the rooting zone (50 cm depth), with litterfall, and with the current increment to biomass. The ratios between heavy metal stores in the forest floor layers (table 3) and the annual flux with litterfall (table 4) show decreasing tendency for liberation of the elements by decomposition of organic matter (OM) in the following order: Mn>OM>Ni>Cd>Cu>Cr ≈? Zn>Co ≈? Fe ≈? Pb Manganese is set free faster than total organic matter. The flux balances for the total ecosystems (table 4) show input > output in the case of Cr, Fe, Cu, Cd, and Pb; input ≈? output for Ni and Zn; input < output for Mn and Co. Heavy metal stores in mineral soil are decreasing by percolation losses and increment to biomass (mainly wood) in the case of all elements investigated, except Zn (under beech), Cd and Pb (table 4). The concentrations of Cu and Pb in the forest floor layers have reached levels at which deleterious effects on microorganisms and litter decomposition are to be expected.  相似文献   

6.
Local variability in the heavy metal concentrations of precipitation and seepage water from forest sites in the Solling Concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in precipitation and seepage water have been measured continuously with local replicates during a 6-months period at a beech and a spruce forest site. Variation coefficients of the avarage concentrations were, in most cases, well below 30 %, being mainly caused by local differences. Comparison of means showed a significant increase of heavy metal concentration in the canopy drip of beech (Mn, Fe, Pb) and spruce (Cr, Mn, Fe, Ni, Zn, Pb) compared to bulk precipitation measured in the open field. Concentration of Mn, Co, Ni, Zn and Cd in the seepage water is significantly higher under spruce compared to beech. These results point at higher filter efficiency of the spruce canopy, compared with beech, for air pollutants, but a smaller retention capacity of the soil under spruce for heavy metals.  相似文献   

7.
污染水稻土中重金属的形态分布及其影响因素   总被引:8,自引:2,他引:6  
陈守莉  孙波  王平祖  宗良纲 《土壤》2007,39(3):375-380
通过BCR3步提取法研究了江西省贵溪铜冶炼厂污染区水稻土中重金属的形态分布。研究表明,废渣场渗滤液污染区域(渣场区)的污染较污水灌溉污染区(污灌区)严重,渣场区土壤中Cu、Pb、Cd的含量高于污灌区,而污灌区土壤Ni含量较高。在表层(0~20cm)水稻土中,Cu以可氧化态为主,Pb以可还原态和可氧化态为主,Cd以酸溶态为主,Ni以残渣态为主,不同重金属元素的有效态所占总量百分比大小顺序是Cd>Cu>Pb>Ni。土壤重金属不同形态之间也呈现一定的相关性,说明Cu与Pb、Cd、Ni之间具有同源性。土壤pH主要影响了污灌区中Cu的形态分布,以及渣场区土壤酸溶态Ni的分布。土壤有机质含量对各重金属形态分布的影响不明显。  相似文献   

8.
The mobility and bioavailability of heavy metals in soils contaminated by irrigation with wastewater increase with increasing mineralization of accumulated organic substance and decreasing pH. In laboratory experiments addition of biochar reduced heavy metal availability to plants and enhanced plant growth. However, literature from field trials is scarce. Therefore, we conducted a 2‐year field experiment with orchard grass (Dactylis glomerata L.) to study the effects of miscanthus‐derived biochar applied to sewage field soil on biomass production and concentrations of zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb) and various nutrients in plants and in the soil solution. Biochar was mixed into the contaminated topsoil (30 cm) with addition rates of 0, 1, 2.5 and 5% on a dry‐mass basis (g 100 g?1). The soil solution was collected with suction plates installed at a depth of 30 cm. Addition of biochar increased biomass production and reduced Zn and Cd concentrations in the soil solution. Zinc concentrations were also reduced in plants. This effect seems to be attributable to an increase in pH caused by biochar addition. In contrast, Pb and Cu concentrations in the soil solution generally increased and were related to the concentrations of dissolved organic carbon (DOC). Copper concentrations also increased in the plants; however, only at the beginning of the measurement period. Our data indicate that increased concentrations of DOC, Cu and Pb in the soil solution might be a transient effect. Therefore, further research is needed to determine the long‐term effect of biochar amendment on element immobilization and leaching into groundwater.  相似文献   

9.
The aim of this study was to compare the effects of silver birch (Betula pendula Roth) and Norway spruce (Picea abies (L.) Karst.) on soil C and N transformations and on the characteristics of organic matter. Soil samples were taken from the humus layer of a replicated 35-year-old birch-spruce field experiment growing on Vaccinium myrtillus site type in middle-eastern Finland. The soil was a podzol and humus type mor. Soil pH was higher under birch (4.7) than under spruce (4.1). The C-to-N ratio was lower under birch (17) than under spruce (23). Per unit organic matter, microbial biomass C and N, net N mineralization and net nitrification were all higher in birch soil than in spruce soil. The rate of C mineralization (CO2 production) was, however, the same regardless of tree species. Water-extracts were analyzed for the concentrations of dissolved organic C (DOC) and N (DON) and characterized according to molecular size distribution by ultrafiltration and according to chemical composition using a resin fractionation technique. The concentration of DON, in particular, was higher in birch soil than in spruce soil. The distribution of DOC and DON into different fractions based on molecular size or chemical composition was rather similar in both soils. The concentration of total phenolics, expressed as tannic acid equivalents, was higher in the humus layer under birch than in the humus layer under spruce, because the birch humus layer contained significantly more low-molecular weight (about <0.5 kD) phenolics than the spruce humus layer did. The concentration of proanthocyanidins (condensed tannins) was higher in spruce soil than in birch soil. The concentrations of the five most abundant phenolic acids showed that ferulic and p-coumaric acids were more abundant in spruce soil. Birch soil tended to contain slightly more nonvolatile sesquiterpenes than the spruce soil. The concentration of diterpenes was similar in both soils; but birch soil contained significantly more triterpenes, mainly sterols, than spruce soil did.  相似文献   

10.
A successive fractionation of heavy metals — Cd, Co, Cr, Cu, Ni and Pb — as water soluble, 0.01 N NH4Cl-exchangeable and 0.01 N NaOH-extratable was carried out, in order to determine their chemical forms in soils. Ionic activities of the heavy-metal compounds expected in equilibrium soil solutions were calculated and are presented in a solubility diagram as a function of pH.The ionic activities in soil solutions show an undersaturation with respect to heavy metal-oxide, -carbonate, -sulfate, -chloride and -phosphate compounds. The ionic activities of the elements studied are pH dependent; the correlation coefficient for pH vs pCd reaches a value 0.66 (significant at the 1 % level). Significant correlations between ionic activities and NH4-Cl-exchangeable fractions were found for Cd, Co, Ni and Pb with correlation coefficient values of 0.88, 0.89, 0.97 and 0.79, respectively. It can therefore be assumed that desorption and adsorption phenomena are responsible for the regulation of heavy-metal behaviour in soils. The NaOH-extractable fraction of the heavy metals studied does not show any relationship to the organic matter in the soils.  相似文献   

11.
Background values for heavy metals are necessary for the assessment of metal pollution of soils and plants. Samples of cultivated and uncultivated soils, oat grain, and seed heads of orchard grass (Dáctylis glomeráta) were collected from central, southeastern, and southwestern Norway. Total and easily extractable concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were determined in soil samples and total concentrations in plant samples. Element distributions have been correlated with petrology of soil parent material, type of mineral deposit, soil depth, geographic area, and land use. Concentrations of heavy metals are generally within the lower part of the normal global range. The petrology of the soil parent material has the greatest influence on aqua regia extracted metal concentrations among the factors studied. DTPA extracted metals show less dependence on rock types. Presence of alum shale results in particularly high values for Cd in both soil extracts and in oat grain. Soil cultivation seems to influence the relative concentration of metals in the topsoil. The ratios of easily extractable to total concentrations of metals are primarily related to the organic matter content. Metal concentrations in oat grain can best be predicted by concentrations in DTPA extracts and soil pH among the factors studied. Seed heads of orchard grass are less affected by concentrations in the soil and appear therefore to be a poor indicator of heavy metals in soils.  相似文献   

12.
Concentrations of chemical elements in tree roots including heavy metals from air pollution Total concentrations of P, S, Na, K, Mg, Ca, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb were measured in roots from beech, spruce, ash, maple and a forest herb (Mercurialis perennis). The root samples were taken from a site with an acid soil type (Saure Braunerde) and from a site with calcareous soil (Rendzina). All elements except Mn, Zn and Pb (on acid soils) and Ca (on calcareous soils) showed higher concentrations in finest roots (<1 mm diameter) compared to fine roots (1–2 mm). In the case of the toxic heavy metals, this is interpreted as a consequence of reduced root uptake due to physiological processes or to organic complexing, followed by an accumulation at the root surface. Compared with aboveground plant parts, roots show accumulation of Al, Pb, Cd and Zn, indicating reduced translocation from roots to shoots. Roots from acid soil show higher concentrations of P, Mn, and Pb than in calcareous soil. The concentrations of Al and heavy metals in the roots are considered to be a consequence of the contamination of the investigated forest sites by long-range transported air pollutants, i.e. acid precipitation and deposition of heavy metals.  相似文献   

13.
The study quantifies the amount of metals (Na, K, Mg, Ca, Al, Fe, Mn, Ni, Cr, V, Cu, Zn, Cd, Pb) leached from the A-horizon of a podzolic spruce forest soil in southern Sweden during 2.5 yr, and offers statistical evidence of environmental conditions of importance to metal release. Considerable losses of Pb, Cr, Ni and V may occur from the A-horizon of forest soils under conditions favoring leaching of organic matter, Fe, and Al, i.e. during periods of comparably high soil temperature and moisture. Metals with a larger fraction present in exchangeable form (Na, Mg, Ca, Zn, Cd) are more susceptible to minor pH changes. An accelerated deposition or internal production of acidic matter therefore will reduce the retention times of these elements particularly.  相似文献   

14.
Changes in the soil chemical environment can be expected to increase the leaching of trace metals bound in soils. In this study the mobility of trace metals was monitored in a column experiment for two contaminated urban soils. Four different treatments were used (i.e. rain, acid rain, salt and bark). Leachates were analysed for pH, dissolved organic carbon (DOC) and for seven trace metals (cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)). The salt treatment produced the lowest pH values (between 5 and 6) in the effluent whereas the DOC concentration was largest in the bark treatment (40–140 mg L?1) and smallest in the salt and acid treatments (7–40 mg L?1). Cadmium, Ni and Zn were mainly mobilised in the salt treatment, whereas the bark treatments produced the highest concentrations of Cu and Pb. The concentrations of Cu, Cr, and Hg were strongly correlated with DOC (r 2?=?0.90, 0.91 and 0.96, respectively). A multi-surface geochemical model (SHM-DLM) produced values for metal dissolution that were usually of the correct magnitude. For Pb, however, the model was not successful indicating that the retention of this metal was stronger than assumed in the model. For all metals, the SHM-DLM model predicted that soil organic matter was the most important sorbent, although for Pb and Cr(III) ferrihydrite was also important and accounted for between 15 and 50% of the binding. The results confirm the central role of DOC for the mobilization of Cu, Cr, Hg and Pb in contaminated soils.  相似文献   

15.
In a small‐plot trial different doses of sewage sludge (equivalent 82‐330 tons of dry matter per hectare) were incorporated in 0—25 cm depth (1982—1985). The aim of the investigations was to study the fate of the heavy metals Zn, Cd, Cu, Ni, Pb, and Cr, to determine their concentration in different soil fractions using a sequential extraction method and to ascertain their uptake by Zea mays L. plants. Eleven years after the last application the metals supplied with the sludge had moved as far as 50 cm in depth. The concentrations of Zn, Cd, Cu, Ni, and Cr in the saturation extract of the sampled soil layers were closely correlated with the concentrations of dissolved organic carbon (DOC). This result suggests that the heavy metal displacement was partly connected with the DOC movement in the soil. Considerable amounts of Zn and Cd coming from sewage sludge were found in the mobile fractions of the soil. Cu, Ni, and Pb were located especially in organic particles, and Cr was obviously bound by Fe‐oxides. Nine years after the last application the binding species of heavy metals were still different compared with those in the untreated soil. The whole withdrawal of heavy metals by plants yielded <1 % of the applied amounts. In the case of Zn the uptake from the sludge amended soil decreased during the experimental period. No similar tendency was observed for the other elements. In any case their annual variations of uptake exceeded the effect of sludge application.  相似文献   

16.
The purpose of this research was to compare soil chemistry, microbially mediated carbon (C) and nitrogen (N) transformations and microbial biomass in forest floors under European beech (Fagus sylvatica L.), sessile oak (Quercus petraea (Mattuschka) Lieblein), Norway spruce (Picea abies (L.) Karst) and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) at four study sites. We measured soil chemical characteristics, net N mineralization, potential and relative nitrification, basal respiration, microbial and metabolic quotient and microbial biomass C and N under monoculture stands at all sites (one mixed stand). Tree species affected soil chemistry, microbial activities and biomass, but these effects varied between sites. Our results indicated that the effect of tree species on net N mineralization was likely to be mediated through their effect on soil microbial biomass, reflecting their influence on organic matter content and carbon availability. Differences in potential nitrification and relative nitrification might be related to the presence of ground vegetation through its influence on soil NH4 and labile C availability. Our findings highlight the need to study the effects of tree species on microbial activities at several sites to elucidate complex N cycle interactions between tree species, ground vegetation, soil characteristics and microbial processes.  相似文献   

17.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

18.
The effects of soil processes, related to the oxidation of sulphide sediments, on heavy metal concentrations in the soil and soil solution were investigated in a Norway spruce stand on a fine-textured, acidic soil rich in sulphates located on the isostatic land-uplift western coast of Finland. The age of the soil is ca. 300–400 years, and the soil texture is silt and till. The chemical properties of the soil and soil solution clearly reflected the formation of acid sulphate (AS) soil. Compared to background reference values for podzolic coniferous forest soil, the pH of the soil solution in the mineral soil (20–40 cm depth) was very low, and the Al, Fe and S concentrations extremely high. The Zn and Ni concentrations in the soil solution were also strongly elevated, and similar to the concentrations reported close to anthropogenic heavy-metal emission sources. The concentrations of Cd and Cu were also frequently elevated. In contrast, the acidity and metal concentrations of the soil solution sampled in the organic layer were not elevated. Similarly, exchangeable Zn and Ni concentrations were also elevated in the mineral soil, but not in the organic layer. Because Norway spruce has a very superficial rooting system and the zone with exceptionally high metal concentrations did not extend up to the topmost soil layers, sulphide-oxidation derived soil acidification is not likely to pose a serious threat to forest ecosystems growing on this type of site. Despite the elevated concentrations of protons and many metals in the mineral soil and soil solution (20–40 cm), the nutrient status of the spruce stand was satisfactory and the general health of the stand has been reported to be relatively good.  相似文献   

19.
We studied the fate of Cu in contaminated semiarid soils from two areas with different mining activities in central Chile. Several regression models were evaluated to use soil physicochemical characteristics to predict solubility, partitioning, and activity of Cu. Furthermore, we hypothesize that the type of Cu mining compound (smelter dust versus tailing sand) can be another important variable determining the bioavailability of Cu. In the studied neutral to alkaline soils, soil organic matter (SOM) enhanced Cu solubility most probably through the formation of organic complexes with dissolved organic C (DOC). As a consequence, Cu solubility and partitioning were better explained by DOC concentration than by SOM content. On the other hand, Cu activity was mainly related to soil pH and was not affected by DOC. Although we found differences between the two study areas, Cu solubility and partitioning might not be as dependent upon the origin of the Cu mining compound as upon other physiochemical characteristics that influence the concentration and characteristics of DOC. Total Cu, pH, and DOC would be the most important variables to consider on Cu solubility, however, data about the nature of SOM may certainly improve the prediction models. Thus, multiple binding site models between Cu and DOC should be studied to improve predictions of Cu solubility.  相似文献   

20.
The aim of study was to estimate how the deadwood of different tree species in various stages of decomposition releases dissolved organic carbon (DOC) and total nitrogen concentration. The deadwood of seven species (Common alder, Common aspen, Common ash, Silver fir, Norway spruce, Common hornbeam, and Silver birch) were selected. Three logs from each species in the third, fourth, and fifth decay classes were chosen for analysis. The investigation was carried out in Czarna Rózga Reserve in Central Poland. The leachate from deadwood was collected in lysimeters. Concentrations of total carbon (TC), inorganic carbon (IC), total organic carbon (TOC), and total nitrogen (TN) were determined. In our investigations, the concentration of TOC measure in filtered water samples was equal to DOC. Additionally, pH and electrical conductivity (EC) values were determined in water samples. The results confirmed the importance of the wood species and the stage of decomposition on the concentration of DOC and TN. Significant differences in the concentration of DOC and TN in leachates released between coniferous and deciduous species were noted. Most DOC and TN were released from decomposing hornbeam and aspen wood, the least DOC, and TN were released into the soil from coniferous species, especially the spruce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号