首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the central highlands of Mexico, mesquite (Prosopis laevigata) and huisache (Acacia schaffneri), N2-fixing trees or shrubs, dominate the vegetation and are currently used in a reforestation program to prevent erosion. We investigated how natural vegetation or cultivation of soil affected oxidation of CH4, and production of N2O. Soil was sampled under the canopy of mesquite (MES treatment) and huisache trees (HUI treatment), outside their canopy (OUT treatment) and from fields cultivated with maize (ARA treatment) at three different sites while production of CO2, and dynamics of CH4, N2O and inorganic N (NH4+, and NO3) were monitored in an aerobic incubation. The production of CO2 was 2.3 times higher and significantly greater in the OUT treatment, 3.0 times higher in the MES treatment and 4.0 times higher in the HUI treatment compared to the ARA treatment. There was no significant difference in oxidation of CH4 between the treatments, which ranged from 0.019 g CH4–C kg–1 day–1 for the HUI treatment to 0.033 CH4–C kg–1 day–1 for the MES treatment. The production of N2O was 30 g N2O–N kg–1 day–1 in the MES treatment and >8 times higher compared to the other treatments. The average concentration of NO3 was 2 times higher and significantly greater in the MES treatment than in the HUI treatment, 3 times greater than in the OUT treatment and 10 times greater than in the ARA treatment. It was found that cultivation of soil decreased soil organic matter content, C and N mineralization, but not oxidation of CH4 or production of N2O.  相似文献   

2.
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O.  相似文献   

3.
Plant species exert strong effects on ecosystem functions and one of the emerging, and difficult to test hypotheses, is that plants alter soil functions through changing the community structure of soil microorganisms. We tested the hypothesis for atmospheric CH4 oxidation by using soil samples from a Siberian afforestation experiment and exposing them to 13C-CH4. We determined the activity of the soil methanotrophs under different tree species at three levels of initial CH4 concentration (30, 200 and 1000 ppm) thus distinguishing the activities of low- and high-affinity methanotrophs. Half of the samples were incubated with 13C-enriched CH4 (99.9%) and half with 12C-CH4. This allowed an estimation of the amount of 13C incorporated into individual PLFAs and determination of PLFAs of methanotrophs involved in CH4 oxidation at the different CH4 concentrations. Tree species strongly altered the activity of atmospheric CH4 oxidation without appearing to change the composition of high-affinity methanotrophs as evidenced by PLFA 13C labeling. The low diversity of atmospheric CH4 oxidizers, presumably belonging to the UCSα group, may explain the lack of tree species effects on the composition of soil methanotrophs. We submit that the observed tree species effects on atmospheric CH4 oxidation indicate an effect on biomass or cell-specific activities rather than by a community change and this may be related to the impact of the tree species on soil N cycling.  相似文献   

4.
We describe experiments to better understand how CH4 oxidation rates by different methanotroph communities respond to changing CH4 concentrations. We used a novel system of automatically monitored chambers to investigate the response of CH4 oxidation rates in a New Zealand pasture and adjacent pine forest soil exposed to varying atmospheric CH4 concentrations.Type II methanotrophs that dominate CH4 oxidation in the forest soil became progressively saturated as CH4 concentrations rose from ambient (1.8 ppmv) to 570 ppmv, as shown by a decrease in uptake efficiency from 20% to 2% removal. By contrast, CH4 oxidation in the pasture soil where Type I methanotrophs dominate increased in proportion to the increase in CH4 inlet concentration, oxidising about 2% of the inlet CH4 flux throughout. Modelling based on Michaelis-Menten kinetics revealed that low-affinity (Type I) methanotrophs were solely responsible for CH4 oxidation in pasture soils, whereas high affinity (Type II) methanotrophs only contributed about 10% of the CH4 oxidation in the forest soil. Increased aeration status using a soil–perlite (1:1) mixture doubled CH4 oxidation rates at both ambient (1.8 ppmv) and 40 ppmv atmospheric CH4. A similar volcanic soil previously exposed for 8 y to high CH4 fluxes from a landfill had removal efficiencies consistently above 95% for atmospheric CH4 concentrations up to 7500 ppmv when the CH4 oxidation rate was7000 μg CH4 kg−1soil h−1.  相似文献   

5.
Short-term effects of nitrogen on methane oxidation in soils   总被引:6,自引:0,他引:6  
 The short-term effects of N addition on CH4 oxidation were studied in two soils. Both sites are unfertilized, one has been under long-term arable rotation, the other is a grassland that has been cut for hay for the past 125 years. The sites showed clear differences in their capacity to oxidise CH4, the arable soil oxidised CH4 at a rate of 0.013 μg CH4 kg–1 h–1 and the grassland soil approximately an order of magnitude quicker. In both sites the addition of (NH4)2SO4 caused an immediate reduction in the rate of atmospheric CH4 oxidation approximately in inverse proportion to the amount of NH4 + added. The addition of KNO3 caused no change in the rate of CH4 oxidation in the arable soil, but in the grassland soil after 9 days the rate of CH4 oxidation had decreased from 0.22 μg CH4 kg–1 h–1 to 0.13 μg CH4 kg–1 h–1 in soil treated with the equivalent of 192 kg N ha–1. A 15N isotopic dilution technique was used to investigate the role of nitrifiers in regulating CH4 oxidation. The arable soil showed a low rate of gross N mineralisation (0.67 mg N kg–1 day–1), but a relatively high proportion of the mineralised N was nitrified. The grassland soil had a high rate of gross N mineralisation (18.28 mg N kg–1 day–1), but negligible nitrification activity. It is hypothesised that since there was virtually no nitrification in the grassland soil then CH4 oxidation at this site must be methanotroph mediated. Received: 31 October 1997  相似文献   

6.
The short-term effect of NaNO3 or (NH4)2SO4 application on CH4 oxidation was measured under laboratory conditions with sieved soils collected from the top layer (0–12 cm) of a loamy and a sandy soil. The soils were incubated in sealed flasks and the CH4 and CO2 concentrations in headspace were measured periodically. On each gas sampling date the soils were analysed for inorganic N, electro-ultrafiltration organic N, and pH. NH 4 + application to the loamy soil inhibited CH4 oxidation entirely whereas in the untreated control soils CH4 concentration decreased linearly with a rate of-41 nl CH4 l-1 h-1; NO 3 sup- application to this soil caused a small but significant reduction in CH4 uptake. The CH4-oxidizing ability of the sandy soil was low, even in the control. This was mainly a result of the disturbed soil structure after sieving. Both NH 4 + and NO 3 sup- treatments completely inhibited CH4 uptake in this ligh-textured soil. The adverse impact of NH 4 + persisted during the entire incubation, although in the loamy soil only 17% of the NH 4 + added was recovered after 168 h. The negative effect of NO 3 sup- was probably caused by an increase in osmotic potential. Immediate inhibition of CH4 oxidation after inorganic N addition was demonstrated in two arable soils, although the effect was directly related only in part to soil N transformations.  相似文献   

7.
The CO2 efflux from loamy Haplic Luvisol and heavy metal (HM) uptake by Zea mays L. were studied under increased HM contamination: Cd, Cu, and Ni up to 20, 1000, and 2500 mg kg−1 soil, respectively. Split-root system with contrasting HM concentrations in both soil halves was used to investigate root-mediated HM translocation in uncontaminated soil zones. To separate root-derived and soil organic matter (SOM)-derived CO2 efflux from soil, 14CO2 pulse labeling of 15-, 25-, and 35-days-old plants was applied. The CO2 evolution from the bare soil was 10.6 μg C–CO2 d−1 g−1 (32 kg C–CO2 d−1 ha−1) and was not affected by HM (except 2500 mg Ni kg−1). The average CO2 efflux from the soil with maize was about two times higher and amounted for about 22.0 μg C–CO2 d−1 g−1. Portion of assimilates respired in the rhizosphere decreased with plant development from 6.0 to 7.0% of assimilated C for 25-days-old Zea mays to 0.4–2.0% for 45-days-old maize. The effect of the HM on root-derived 14CO2 efflux increased with rising HM content in the following order: Cd < Cu < Ni. In Cu and Ni contaminated soils, shoot and root dry matter decreased to 70% and to 50% of the uncontaminated control, respectively. Plants contained much more HM in the roots than in the shoots. A split-root system with contrasting HM concentrations allowed to trace transport of mobile forms of HM by roots from contaminated soil half into the uncontaminated soil half. The portion of mobile HM forms in the soil (1 M NH4NO3 extract) increased with contamination and amounted to 9–16%, 2–6% and 1.5–3.5% for Cd, Cu, and Ni, respectively. Corresponding values for the easily available HM (1 M NH4OAc extract) were 22–52%, 1–20% and 5–8.5%. Heavy metal availability for plants decreased in the following order: Cd > Cu ≥ Ni. No increase of HM availability in the soil was found after maize cultivation.  相似文献   

8.
Methane oxidation in forest soils removes atmospheric CH4. Many studies have determined methane uptake rates and their controlling variables, yet the microorganisms involved have rarely been assessed simultaneously over the longer term. We measured methane uptake rates and the community structure of methanotrophic bacteria in temperate forest soil (sandy clay loam) on a monthly basis for two years in South Korea. Methane uptake rates at the field site did not show any seasonal patterns, and net uptake occurred throughout both years. In situ uptake rates and uptake potentials determined in the laboratory were 2.92 ± 4.07 mg CH4 m−2 day−1 and 51.6 ± 45.8 ng CH4 g−1 soil day−1, respectively. Contrary to results from other studies, in situ oxidation rates were positively correlated with soil nitrate concentrations. Short-term experimental nitrate addition (0.20-1.95 μg N g−1 soil) significantly stimulated oxidation rates under low methane concentrations (1.7-2.0 ppmv CH4), but significantly inhibited oxidation under high methane concentrations (300 ppmv CH4). We analyzed the community structures of methanotrophic bacteria using a DNA-based fingerprinting method (T-RFLP). Type II methanotrophs dominated under low methane concentrations while Type I methanotrophs dominated under high methane concentrations. Nitrogen addition selectively inhibited Type I methanotrophic bacteria. Overall, the results of this study indicate that the effects of inorganic N on methane uptake depend on methane concentrations and that such a response is related to the dissimilar activation or inhibition of different types of methanotrophic bacteria.  相似文献   

9.
The aim of this study was to investigate temporal and spatial patterns of denitrification enzyme activity (DEA) and nitrous oxide (N2O) fluxes in three adjacent riparian sites (mixed vegetation, forest and grass). The highest DEA was found in the surface (0–30 cm) soil and varied between 0.7±0.1 mg N kg–1 day–1 at 5°C and 5.9±0.4 mg N kg–1 day–1 at 15°C. There was no significant difference (P >0.05) between the DEA in the uppermost (0–30 cm and 60–90 cm) soil depths under different vegetation covers. In the two deepest (120–150 cm and 180–210 cm) soil depths the DEA varied between 0.0±0.0 mg N kg–1 day–1 at 5°C and 4.4±0.9 mg N kg–1 day–1 at 15°C and was clearly associated with the accumulation of buried organic carbon (OC). Two threshold values of OC were observed before DEA started to increase significantly, namely 5 and 25 g OC kg–1 soil at 10–15°C and 5°C, respectively. In the three riparian sites N2O fluxes varied between a net N2O uptake of –0.6±0.4 mg N2O-N m–2 day–1 and a net N2O emission of 2.5±0.3 mg N2O-N m–2 day–1. The observed N2O emission did not lead to an important pollution swapping (from water pollution to greenhouse gas emission). Especially in the mixed vegetation and forest riparian site highest N2O fluxes were observed upslope of the riparian site. The N2O fluxes showed no clear temporal trend.  相似文献   

10.
Abstract

Methane flux was measured monthly from August 2002 to July 2003 at an oil palm plantation on tropical peatland in Sarawak, Malaysia, using a closed chamber technique. Urea was applied twice, once in November 2002 and once in May 2003. The monthly CH4 flux ranged from ?32.78 to 4.17 µg C m?2 h?1. Urea applications increased CH4 emissions in the month of application and emissions remained slightly higher a month later before the effect disappeared in the third month after application (i.e. back to CH4 uptake). This effect was the result of increased soil NH+ 4 content that was not immediately absorbed by the oil palm following urea application, which reduced the oxidation of CH4, resulting in its enhanced emission. By using the Cate–Nelson linear-plateau model, the critical soil NH+ 4 content causing CH4 emissions in the oil palm ecosystem was 42.75 mg kg?1 soil. However, the inhibitory effect of NH+ 4 on the oxidation of CH4 was mitigated by low rainfall and the pyrophosphate solubility index (PSI), where the former might increase oxidation of CH4 and the latter was a reflection of the low soluble substrate for methane production. Thus, the splitting and timing of urea applications are important not only to optimize oil palm yield, but also to reduce soil NH+ 4 content to minimize CH4 emissions and, therefore, its potential negative impact on the environment.  相似文献   

11.
Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm−3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g−1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate of CH4 oxidation and that summer droughts may increase the soil CH4 sink of temperate forest soils.  相似文献   

12.
The effect of urea and urea mixed with different doses of two nitrification inhibitors, dicyandiamide (DCD) and karanjin [a furanoflavonoid, extracted from seeds of the karanja (Pongamia glabra Vent.) tree], on methane (CH4) consumption was examined in a Typic Ustochrept (alluvial inceptisol) soil, collected from a field under rice-wheat rotation. The soil, fertilized with urea (100 mg N kg-1 soil) and urea combined with different doses of the two inhibitors, DCD and karanjin (each added at 5%, 10%, 15%, 20% and 25% of applied N), was incubated at 25°C, at field capacity moisture content for 35 days. The methane consumption rate ranged between 0.2 and 1.7 µg CH4 kg-1 soil day-1 with little temporal variation (CV =10–31%). It was significantly higher in the control (no fertilizer-N) than other treatments except for a few cases, while total CH4 consumption in the incubation period was significantly higher in the control than other treatments. Methane consumption rate was found to be negatively and positively correlated with soil NH4 + and NO2 - + NO3 - content, respectively. Mean CH4 consumption rate, as well as total CH4 consumption, was lower on the addition of karanjin due to slower nitrification and higher conservation of NH4 + released from applied urea. Addition of urea led to a 17% reduction of total CH4 consumption while urea combined with karanjin and DCD had 50–64% and 19–34% reduction, respectively. Karanjin was a more effective nitrification inhibitor than DCD during the incubation period.  相似文献   

13.
Summary The influence of the partial pressure of oxygen on denitrification and aerobic respiration was investigated at defined P02 values in a mull rendzina soil. The highest denitrification and respiration rates obtained in remoistened, glucose- and nitrate-amended soil were 43 1 N20 h–1g–1 soil and 130 1 O2 h–1g–1 soil, respectively. At -55 kPa matric water potential, corresponding to 40% water saturation, N20 was produced only below P02 40 hPa. The K m, for O2 was 3.0 x 106 M. Formation of N2O and consumption of O2 occurred simultaneously with half maximum rates at P02 6.7–13.3 hPa. Nitrite accumulated in soil below 40 hPa and increased with decreasing pO2. The upper threshold for N20 formation in amended soil was P02 33–40 hPa (39-47 M O2).  相似文献   

14.
To compare the CH4 oxidation potential among diferent land uses and seasons,and to observe its response to monsoon precipitation pattern and carbon and nitrogen parameters,a one-year study was conducted for diferent land uses (vegetable field,tilled and non-tilled orchard,upland crops and pine forest) in central subtropical China.Results showed significant diferences in CH4 oxidation potential among diferent land uses(ranging from 3.08 to 0.36 kg CH4 ha-1 year-1).Upland with corn-peanut-sweet potato rotation showed the highest CH4 emission,while pine forest showed the highest CH4 oxidation potential among all land uses.Non-tilled citrus orchard (0.72±0.08 kg CH4 ha-1 year-1)absorbed two times more CH4 than tilled citrus orchard(0.38±0.06kg CH4 ha-1 year-1).Irrespective of diferent vegetation,inorganic N fertilizer application significantly influenced CH4 fluxes across the sites (R2=0.86,P=0.002).Water-filled pore space,soil microbial biomass carbon,and dissolved nitrogen showed significant efects across diferent land uses (31% to 38% of variability)in one linear regression model.However,their cumulative interaction was significant for pine forest only,which might be attributed to undisturbed microbial communities legitimately responding to other variables,leading to net CH4 oxidation in the soil.These results suggested that i)natural soil condition tended to create win-win situation for CH4 oxidation,and agricultural activities could disrupt the oxidation potentials of the soils;and ii)specific management practices including but not limiting to efficient fertilizer application and utilization,water use efciency,and less soil disruption might be required to increase the CH4 uptake from the soil.  相似文献   

15.
Methane (CH4) oxidation potential of soils decreases with cultivation, but limited information is available regarding the restoration of that capacity with implementation of reduced tillage practices. A study was conducted to assess the impact of tillage intensity on CH4 oxidation and several C-cycling indices including total and active microbial biomass C (t-MBC, a-MBC), mineralizable C (Cmin) and N (Nmin), and aggregate-protected C. Intact cores and disturbed soil samples (0–5 and 5–15 cm) were collected from a corn (Zea mays L.)–soybean (Glycine max L. Merr.) rotation under moldboard-plow (MP), chisel-plow (CP) and no-till (NT) for 8 years. An adjacent pasture (<25 years) and secondary growth forest (>60 years) soils were also sampled as references. At all sites, soil was a Kokomo silty clay loam (mesic Typic Argiaquolls). Significant tillage effects on t-MBC and protected C were found in the 0–5 cm depth. Protected C, a measure of C retained within macro-aggregates and defined as the difference in Cmin (CO2 evolved in a 56 days incubation) between intact and sieved (<2 mm) soil samples, amounted to 516, 162 and 121 mg C kg−1 soil in the 0–5 cm layer of the forest, pasture and NT soils, respectively. Protected C was negligible in the CP and MP soils. Methane uptake rate (μg CH4-C kg−1 soil per day, under ambient CH4) was higher in forest (2.70) than in pasture (1.22) and cropland (0.61) soils. No significant tillage effect on CH4 oxidation rate was detected (MP: 0.82; CP: 0.41; NT: 0.61). These results underscore the slow recovery of the CH4 uptake capacity of soils and suggest that, to have an impact, tillage reduction may need to be implemented for several decades.  相似文献   

16.
Methane oxidising activity and community structure of 11, specifically targeted, methanotrophic species have been examined in an arable soil. Soils were sampled from three different field plots, receiving no fertilisation (C), compost (G) and mineral fertiliser (M), respectively. Incubation experiments were carried out with and without pre-incubation at elevated CH4 mixing ratios (100 ml CH4 l−1) and with and without ammonium (100 mg N kg−1) pre-incubation. Four months after fertilisation, plots C, G and M did not show significant differences in physicochemical properties and CH4 oxidising activity. The total number of methanotrophs (determined as the sum the 11 specifically targeted methanotrophs) in the fresh soils was 17.0×106, 13.7×106 and 15.5×106 cells g−1 for treatment C, G and M, respectively. This corresponded to 0.11 to 0.32% of the total bacterial number. The CH4 oxidising activity increased 105-fold (20–26 mg CH4 g−1 h−1), the total number of methanotrophs doubled (28–76×106 cells g−1) and the methanotrophic diversity markedly increased in treatments with a pre-incubation at elevated CH4 concentrations. In all soils and treatments, type II methanotrophs (62–91%) outnumbered type I methanotrophs (9–38%). Methylocystis and Methylosinus species were always most abundant. After pre-incubation with ammonium, CH4 oxidation was completely inhibited; however, no change in the methanotrophic community structure could be detected.  相似文献   

17.
We evaluated the effect of 1 N NH4OAc and sodium-citrate dithionite extractable forms of soil Fe, Al, and Mn on P-sorption of a flooded acid sulfate soil (Sulfic Tropaquepts) and a non-acid sulfate soil (Typic Tropaquepts) under different soil oxidation-reduction and pH conditions. We used Maha-Phot soil (Sulfic Tropaquepts) and Bangkok soil (Typic Tropaquepts) from the Bangkok Plain, Thailand, and incubated them with 0.2% rice straw under aerobic (O2 atmosphere) and anaerobic (N2 atmosphere) conditions at three different levels of pH (4.0, 5.0, and 6.0) for 6 weeks in stirred soil suspensions with a soil to 0.01 M CaCl2 solution ratio of 1:7. After the incubation period, the soil suspensions in the first treatment (control) were not washed or pretreated with any extractants. For the second treatment (II), the soil suspensions were treated with 1 N NH4OAc (buffered to pH 4.0) to remove Fe, Al, and Mn in exchangeable form. In the third treatment (III), the soils suspensions were treated with sodium citrate dithionite solution (20%) to remove Fe, Al, and Mn in the form of free oxides. The soil residues were then equilibrated with KH2PO4 ranging from 0 to 500 mg P kg-1 soil. Sorption isotherms were described by the classical Langmuir equation. The P-sorption parameters under study were standard P requirement (SPR), Langmuir maximum sorption capacity (X m), Langmuir sorption constant (k), and buffering index (BI). Treating soils with 1 N NH4OAc reduced X m by 32–55%, SPR by 68–84%, and also decreased the differences in P-sorption due to the effects of pH and oxidation-reduction conditions. Significant correlations between the P-sorption parameters and the amount of free iron oxides indicated the primary role of iron oxides in P-sorption of acid sulfate soils. Aluminium oxides seemed to play a secondary role in P-sorption of these soils. Manganese also showed an important effect on P-sorption, but the mechanism is ambiguous.This is a contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511  相似文献   

18.
Awareness of global warming has stimulated research on environmental controls of soil methane (CH4) consumption and the effects of increasing atmospheric carbon dioxide (CO2) on the terrestrial CH4 sink. In this study, factors impacting soil CH4 consumption were investigated using laboratory incubations of soils collected at the Free Air Carbon Transfer and Storage I site in the Duke Forest, NC, where plots have been exposed to ambient (370 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. Over 1 year, nearly 90% of the 360 incubations showed net CH4 consumption, confirming that CH4-oxidizing (methanotrophic) bacteria were active. Soil moisture was significantly (p < 0.01) higher in the 25–30 cm layer of elevated CO2 soils over the length of the study, but soil moisture was equal between CO2 treatments in shallower soils. The increased soil moisture corresponded to decreased net CH4 oxidation, as elevated CO2 soils also oxidized 70% less CH4 at the 25–30 cm depth compared to ambient CO2 soils, while CH4 consumption was equal between treatments in shallower soils. Soil moisture content predicted (p < 0.05) CH4 consumption in upper layers of ambient CO2 soils, but this relationship was not significant in elevated CO2 soils at any depth, suggesting that environmental factors in addition to moisture were influencing net CH4 oxidation under elevated CO2. More than 6% of the activity assays showed net CH4 production, and of these, 80% contained soils from elevated CO2 plots. In addition, more than 50% of the CH4-producing flasks from elevated CO2 sites contained deeper (25–30 cm) soils. These results indicate that subsurface (25 cm+) CH4 production contributes to decreased net CH4 consumption under elevated CO2 in otherwise aerobic soils.  相似文献   

19.
Decomposition rates of the [2-14C]-glucose and [2-14C]-glycine in four different soils of the long-term field trial of Moscow were investigated in a 3-months laboratory experiment in which 14CO2 respiration was measured. A model with three decomposition components and two distribution parameters was developed and validated with the data of the experiment. The decay rate constants of free [2-14C]-glucose (4–32 day-1) were slower than those of [2-14C]-glycine (16–44 day-1). The calculated use efficiency for microbial biosynthesis of the second carbon atom was 47% for glucose and 31% for glycine. The potential half-life of labelled carbon in the microbial soil biomass ranged from 0.6 to 4.4 days, depending on the soil type and the initial amount of added substrate. The calculated total utilisation of carbon by the soil biomass from glycine was about 2–5 times lower than that of glucose.The modelled 14C incorporation into the microbial soil biomass reached its maximum on the first day of the incubation experiment and did not exceed 22% of the 14C input. Both of the investigated substances decomposed most rapidly in the soil samples from sites that have not being fertilised with organic or mineral fertilisers during an 81-years period.  相似文献   

20.
Summary Lumbricus terrestris L. juveniles confined in nylon mesh bags grew at mean rates of 6–12 mg ind–1 day–1 in reclaimed peat grassland soil, while the growth rates of Aporrectodea caliginosa (Sav.) juveniles were 1.5–2.1 mg ind–1 day–1. Earthworm population densities exceeding 700 m2 had become established within 1 year adjacent to sods transplanted from an old pasture, while microplots enclosed in nylon mesh cages had mean population densities of 318–408 earthworms m–2 and biomass of 89–111 g m–2 3–4 1/2 years after inoculation. Herbage yields were 25% greater in the 2nd year and 49% greater in the 3rd year in earthworm-inoculated microplots which received an annual application of cattle slurry compared with similarly fertilized, non-inoculated cages.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号