首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Durum wheat is the most important tetraploid wheat mainly used for semolina and pasta production, but is notorious for its high susceptibility to Fusarium head blight (FHB). Our objectives were to identify and characterize quantitative trait loci (QTL) in winter durum and to evaluate the potential of genomic approaches for the improvement of FHB resistance. Here, we employed an international panel of 170 winter and 14 spring durum lines, phenotyped for Fusarium culmorum resistance at five environments. Heading date, plant height and mean FHB severity showed significant genotypic variation with high heritabilities and FHB resistance was negatively correlated with both heading date and plant height. The dwarfing gene Rht‐B1 significantly affected FHB resistance and the genome‐wide association scan identified eight additional QTL affecting FHB resistance, explaining between 1% and 14% of the genotypic variation. A genome‐wide prediction approach yielded only a slightly improved predictive ability compared to marker‐assisted selection based on the four strongest QTL. In conclusion, FHB resistance in durum wheat is a highly quantitative trait and in breeding programmes may best be tackled by classical high‐throughput recurrent phenotypic selection that can be assisted by genomic prediction if marker profiles are available.  相似文献   

2.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   

3.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

4.
Reciprocal crosses were made between resistant hexaploid spring wheat cultivars/lines Sumai 3, Ning8331, and 93FHB21, and susceptible tetraploids Stewart 63 and DT486 to generate 35 chromosome pentaploids. Four heads from each of five F1 pentaploid plants from each cross were screened with Fusarium graminearum for fusarium head blight (FHB) reaction. No pentaploid was as resistant to FHB as the resistant parents. Pentaploids derived from several crosses were more resistant than the susceptible parents, a few were more susceptible, and all plants from crosses with 93FHB21 failed to survive. Most viable seeds were obtained from the cross Sumai 3 × DT486. From this cross four of the five F1 pentaploid parents were fertile and 354F2 seeds derived from these four pentaploids were sown and evaluated for their FHB reaction. The majority of F2 plants from pentaploids 1 and 3had the visual appearance and level of resistance of Sumai 3, whereas progeny from pentaploids 4 and 5 were more varied morphologically and generally more susceptible. Forty-three of the screened F2 plants were tested for the presence of specific D chromosomes by wheat microsatellite analysis. There was no relationship between presence/absence of D chromosomes and FHB reaction. Twenty-four lines had all D chromosomes present of which 10 were intermediate-susceptible and 14 were resistant to FHB. Three lines, one resistant and two intermediate, had no D chromosomes. The remainder had between 1 and 6 of the D chromosomes present and ranged from resistant to susceptible in FHB reaction. It appears that FHB resistance is not conferred by the D genome of Sumai 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Fusarium head blight (FHB), one of the most destructive diseases of wheat in many parts of the world, can reduce the grain quality due to mycotoxin contamination up to rejection for usage as food or feed. Objective of this study was to map quantitative trait loci (QTL) associated with FHB resistance in the winter wheat population ‘G16‐92’ (resistant)/‘Hussar’. In all, 136 recombinant inbred lines were evaluated in field trials in 2001 and 2002 after spray inoculation with a Fusarium culmorum suspension. The area under disease progress curve was calculated based on the visually scored FHB symptoms. For means across all environments two FHB resistance QTL located on chromosomes 1A, and 2BL were identified. The individual QTL explained 9.7% and 14.1% of the phenotypic variance and together 26.7% of the genetic variance. The resistance QTL on 1A coincided with a QTL for plant height in contrast to the resistance QTL on 2BL that appeared to be independently inherited from morphological characteristics like plant height and ear compactness. Therefore, especially the QTL on 2BL could be of great interest for breeding towards FHB resistance.  相似文献   

6.
Fusarium head blight (FHB), primarily caused by Fusarium graminearum in North America can result in significant losses in the yield and quality of wheat (Triticum aestivum L). Resistance sources have been largely limited to Chinese germplasm and, in particular, Sumai 3 or its derivatives. In recent years, resistance has been identified in Europe. Previous studies using the wheat line ‘Bizel’, developed in France, have shown that it has resistance to Fusarium head blight. Pedigree information shows that one of its progenitors is rye. This experiment was conducted to determine if ‘Bizel’ has rye chromatin, with the goal of developing a strategy for mapping FHB resistance genes. Two methods based on repetitive DNA sequences specific to rye were implemented. With both approaches, it was demonstrated that ‘Bizel’ does not contain rye chromatin. Consequently, wheat SSRs can be used to map ‘Bizel’ resistance genes for FHB.  相似文献   

7.
Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat   总被引:10,自引:0,他引:10  
Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (telomorph =Gibberella zeae (Schw.)), is an important wheat disease world‐wide. Production of deoxynivalenol (DON) by F. graminearum in infected wheat grain is detrimental to livestock and is also a safety concern in human foods. An international collection of 116 wheat lines was evaluated for FHB resistance and concentration of DON in grain. Plants were inoculated with mixed isolates of F. graminearum in the greenhouse by injecting conidia into a single spikelet of each spike and in the field by scattering F. graminearum‐infected wheat kernels on the soil surface. FHB symptoms were evaluated by visual inspection in both the greenhouse and field, and DON was analysed by HPLC. Significant differences in FHB ratings and DON levels were observed among cultivars. In the greenhouse test, visual symptoms varied from no spread of FHB from the inoculated spikelet to spread throughout the spike, and DON levels ranged from trace levels to 283 mg/kg. In the field test, DON ranged from 2.8 to 52 mg/kg. The greenhouse test identified 16 wheat lines from various origins that accumulated less than 2 mg/kg DON. These lines may be useful as sources for breeding wheat cultivars with lower DON levels. Correlation coefficients were significant between FHB symptom ratings, seed quality traits, and DON levels. Thus, the percentage of scabbed spikelets and kernels can be generally used to predict DON levels in harvested wheat grain. In breeding programmes, selection for plants having few scabbed spikelets and scabbed kernels is most likely to result in low DON levels.  相似文献   

8.
The objectives of this study were to investigate (i) the correlations between Fusarium head blight (FHB) index, deoxynivalenol (DON) accumulation and percentage of Fusarium‐damaged kernels (FDK) with agronomic and quality traits and (ii) the effect associated with the presence of single QTLs for FHB resistance on agronomic and quality traits in winter wheat. The population was derived from the cross between ‘RCATL33' (FHB resistance derived from ‘Sumai 3’ and ‘Frontana’) and ‘RC Strategy’. Parental lines and recombinant inbred lines (RILs) were genotyped with SSR markers associated with the 3B, 5A and 3A QTLs. The population was planted in FHB‐inoculated nurseries and in agronomy trials. Lines in the 3B QTL class had the lowest FHB index, DON content and FDK level and did not have a significantly lower yield, thousand kernel weight or protein content compared with the lines grouped in other QTL classes (including no QTL class). Marker‐assisted selection of the 3B QTL for FHB resistance into high‐yielding FHB‐susceptible winter wheat is the recommended approach for the development of lines with increased FHB resistance without significant yield and quality penalties.  相似文献   

9.
W. Bourdoncle  H. W. Ohm 《Euphytica》2003,131(1):131-136
Fusarium head blight (FHB), primarily caused by Fusarium graminearum in North America, often results in significant losses in yield and grain quality of wheat (Triticum aestivum L.). Evaluation of FHB resistance is laborious and can be affected by environmental conditions. The development of DNA markers associated with FHB quantitative trait loci (QTL) and their use in breeding programs could greatly enhance selection. The objective of this study was to identify the location and effect of QTLs for FHB resistance using simple sequence repeat (SSR) markers. A population of wheat recombinant inbred lines derived from the cross ‘Huapei57-2’/‘Patterson’ was characterized for type II resistance in one field experiment and two tests under controlled conditions in the greenhouse. Bulked segregant analysis followed by QTL mapping was used to identify the major segregating QTLs. Results indicate that ‘Huapei 57-2’ may have the same resistance allele as ‘Sumai3’ at a QTL located on the short arm of chromosome 3B. Other QTLs of lower effect size were identified on the long arm of 3Band on chromosomes 3A and 5B. Our findings along with results from other studies demonstrate that the effect of the QTL on3BS is large and consistent across a wide range of genetic backgrounds and environments. Pyramiding this QTL with other FHB QTLs using marker-assisted selection should be effective in improving FHB resistance in a wheat breeding program. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in Australia and elsewhere. In order to identify molecular markers associated with partial seedling resistance to this disease, bulked segregant analysis and quantitative trait loci (QTL) mapping approaches were undertaken using a population of 145 doubled haploid lines constructed from ‘2‐49’ (partially resistant) × ‘Janz’ (susceptible) parents. Phenotypic data indicated that the trait is quantitatively inherited. The largest QTLs were located on chromosomes 1D and 1A, and explained 21% and 9% of the phenotypic variance, respectively. Using the best markers associated with five QTLs identified by composite interval mapping, the combined effect of the QTLs explained 40.6% of the phenotypic variance. All resistance alleles were inherited from ‘2‐49’ with the exception of a QTL on 2B, which was inherited from ‘Janz’. A minor QTL on 4B was loosely linked (19.8 cM) to the Rht1 locus in repulsion. None of the QTLs identified in this study were located in the same region as resistance QTLs identified in other populations segregating for Fusarium head blight, caused by Fusarium graminearum.  相似文献   

11.
Triticum turgidum ssp. durum (tetraploid durum) germplasm is very susceptible to crown rot, caused by the fungus Fusarium pseudograminearum. Screening activities to date have failed to identify even moderately susceptible lines. In contrast partial resistance to this disease has been identified in a number of Triticum aestivum (hexaploid wheat) lines, including 2-49 and Sunco. This study describes the successful introgression of partial crown rot resistance from each of these two hexaploid wheat lines into a durum wheat background. Durum backcross populations were produced from two 2-49/durum F6 lines which did not contain any D-genome chromosomes and which had crown rot scores similar to 2-49. F2 progeny of these backcross populations included lines with field based resistance to crown rot superior to that of the parent hexaploid wheat.  相似文献   

12.
Fusarium head blight (FHB) is a devastating disease that reduces the yield, quality and economic value of wheat. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3:5 lines, derived from a ‘Wangshuibai’ (resistant)/‘Seri82’(susceptible) cross, were spray inoculated during 2001 and 2002, respectively. Artificial inoculation was carried out under field conditions. Of 420 markers, 258 amplified fragment length polymorphism and 39 simple sequence repeat (SSR) markers were mapped and yielded 44 linkage groups covering a total genetic distance of 2554 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve. The analyses revealed a QTL in the map interval Xgwm533‐Xs18/m12 on chromosome 3BS accounting for up to 17% of the phenotypic variation. In addition, a QTL was detected in the map interval Xgwm539‐Xs15/m24 on chromosome 2DL explaining up to 11% of the phenotypic variation. The QTL alleles originated from ‘Wangshuibai’ and were tagged with SSR markers. Using these SSR markers would facilitate marker‐assisted selection to improve FHB resistance in wheat.  相似文献   

13.
K. Matsui    M. Yoshida    T. Ban    T. Komatsuda  N. Kawada 《Plant Breeding》2002,121(3):237-240
Two types of male‐sterile cytoplasm, designated msm1 and msm2, in barley were investigated to determine whether these cytoplasms confer resistance to barley yellow mosaic virus (Ba YMV) and Fusarium head blight (FHB). Alloplasmic lines and isogenic lines of two cultivars showed the same reaction to each Ba YMV as that of their euplasmic lines. This demonstrates that the barley male‐sterile cytoplasms msm1 and msm2 have no effect on resistance to BaYMV. No significant difference in reactions to FHB was recognized among fertile alloplasmic lines of ‘Adorra’, but the difference in reactions to FHB between fertile and sterile isogenic lines of ‘Adorra’ was significant. The damage caused by FHB in the male‐sterile lines that produced sterile pollen was significantly greater than the damage in a sterile line that did not produce pollen. These results suggest that pollen or anthers are important factors in infection with or spread of FHB. For production of hybrid seeds, male‐sterile lines with no pollen production, such as those with msm1 male‐sterile cytoplasm, would reduce FHB infestation.  相似文献   

14.
Pre-harvest sprouting (PHS) causes significant yield loss and degrade the end-use quality of wheat, especially in regions with prolonged wet weather during the harvesting season. Unfortunately, the gene pool of Triticum durum (tetraploid durum wheat) has narrow genetic base for PHS resistance. Therefore, finding out new genetic resources from other wheat species to develop PHS resistance in durum wheat is of importance. A major PHS resistance QTL, Qphs.sicau-3B.1, was mapped on chromosome 3BL in a recombinant inbred line population derived from ‘CSCR6’ (Triticum spelta), a PHS resistant hexaploid wheat and ‘Lang’, a PHS susceptible Australian hexaploid wheat cultivar. This QTL, Qphs.sicau-3B.1, is positioned between DArT marker wPt-3107 and wPt-6785. Two SCAR markers (Ph3B.1 and Ph3B.2) were developed to track this major QTL and were used to assay a BC2F8 tetraploid population derived from a cross between the durum wheat ‘Bellaroi’ (PHS susceptible) and ‘CSCR6’ (PHS resistant). Phenotypic assay and marker-assisted selection revealed five stable tetraploid lines were highly PHS resistant. This study has successfully established that PHS-resistance QTL from hexaploid wheat could be efficiently introgressed into tetraploid durum wheat. This tetraploid wheat germplasm could be useful in developing PHS resistant durum cultivars with higher yield and good end-use quality.  相似文献   

15.
Small-grain winter cereal crops can be infected with Fusarium head blight (FHB) leading to mycotoxin contamination and reduction in grain weight and quality. Although a number of studies have investigated the genetic variation of genotypes within each small-grain cereal, a systematic comparison of the winter crops rye, triticale, durum and bread wheat for their FHB resistance, Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) contamination across species is still missing. We have therefore evaluated twelve genotypes each of four crops widely varying in their FHB resistance under artificial infection with one DON-producing F. culmorum isolate at constant spore concentrations and additionally at crop-specific concentrations in two environments. Rye and triticale were the most resistant crops to FHB followed by bread and durum wheat at constant and crop-specific spore concentrations. On average, rye accumulated the lowest amount of DON (10.08 mg/kg) in the grains, followed by triticale (15.18 mg/kg) and bread wheat (16.59 mg/kg), while durum wheat had the highest amount (30.68 mg/kg). Genotypic variances within crops were significant (p ≤ .001) in most instances. These results underline the differing importance of breeding for FHB resistance in the different crops.  相似文献   

16.
Z. P. Yang    X. Y. Yang  D. C. Huang 《Plant Breeding》1999,118(4):289-292
The objectives of this study were to compare efficiency of evaluation for resistance to Fusarium head blight (FHB) under two inoculation methods in a recurrent selection programme. Fifty selected homozygous F5 fertile lines, from each of five cycles (C0, C1, C2, C3 and C4) of recurrent selection, and two control cultivars were evaluated in a split-plot design in 1995 and 1996 under the soil-surface inoculation with Fusarium graminearum-colonized kernels and the single-floret inoculation with ascospore suspension. Comparison of the two inoculation methods using means, ranges, coefficients of variation, heritabilities and correlations among infected spikelet rate (ISR), reaction index (RI) and disease index (DI) indicated that FHB resistance could be evaluated with similar accuracy and precision using either of the two inoculation methods. Regressions of disease scores in the soil-surface inoculation on disease scores in the single-surface inoculation were positive and highly significant, showing a strong relationship between both inoculation methods for FHB resistance. The percentage of lines with similar performance for FHB disease scores in both inoculation methods was high. The soil-surface inoculation and single-floret inoculation appear to be useful techniques for evaluating numerous individuals of segregating population and screening advanced homozygous lines for FHB resistance in a recurrent selection programme in wheat, respectively.  相似文献   

17.
Yield and quality reductions caused by Fusarium head blight (FHB) have spurred spring wheat (Triticum aestivum L.) breeders to identify and develop new sources of host plant resistance. Four wheat synthetic hexaploids (×Aegilotriticum sp.) were developed, each having a quantitative trait locus (QTL), Qfhs.ndsu‐3AS, providing FHB resistance from Triticum turgidum L. var. dicoccoides chromosome 3A. Synthetics were produced by hybridizing a ‘Langdon’‐T. dicoccoides‐ recombinant chromosome 3A substitution line (2n = 4x = 28, AABB with two accessions of T. tauschii (2n= 2x = 14, DD). Synthetics were inoculated and evaluated for FHB resistance in two separate greenhouse seasons. One synthetic, 01NDSWG‐5, exhibited FHB severity ratings of 36% and 32% in the separate seasons, compared with ratings of 9% and 30% for ‘Alsen’, a FHB‐resistant spring cultivar, and ratings of 70% and 96% for ‘McNeal’, a susceptible spring cultivar, respectively. Synthetic × Alsen backcross‐derived lines were produced to initiate combining different sources of FHB resistance.  相似文献   

18.
T. Miedaner    F. Wilde    V. Korzun    E. Ebmeyer 《Plant Breeding》2008,127(3):217-221
Fusarium head blight (FHB) has become an important disease of wheat. We introgressed three resistance quantitative trait loci (QTL) alleles on chromosomes 3B, 5A (from CM82036) and 3A (from ‘Frontana’) into European elite spring wheat and performed phenotypic selection among double‐cross (DC) derived progeny in generations DCF2 and DCF3. After recombination and selfing, we analysed 135 phenotypically selected progeny by simple sequence repeat (SSR) markers linked to the QTL. In a second experiment, we forwarded the best 20 progeny for a further two generations by pedigree selection. Progeny were inoculated at two to four locations with Fusarium culmorum and the percentage of infected spikelets per plot was estimated. Both experiments show that phenotypic selection was highly effective. One‐hundred out of 135 phenotypically selected DCF1:3 progeny had the combination of donor‐QTL alleles (3B + 5A + 3A, 3B + 5A) with the highest effects on FHB resistance. In the subsequent generations, sufficient genotypic variance was detected. The best F5:7 bulks had similar resistance to the donor CM82036. The FHB rating was reduced in total by 45% points compared to the parental mean. QTL with high effects can be detected solely by phenotypic selection after targeted introgression.  相似文献   

19.
G.-L. Jiang    R. W. Ward 《Plant Breeding》2006,125(5):417-423
Fusarium head blight (FHB or scab) caused by Fusarium graminearum is a worldwide serious disease in wheat. Exploitation and genetic studies of elite resistance sources can speed up the development of resistant cultivars. To characterize the inheritance of host plant resistance in two new lines, ‘CJ 9306’ and ‘CJ 9403’, developed from a recurrent selection programme in China, six generations P1, P2, F1, F2, B1 and B2 of four crosses and 137 F6 : 7 recombinant inbred lines (RILs) from one cross were evaluated in the greenhouse for scab resistance using single‐floret inoculation. The data of area under disease progress curve (AUDPC) in F2, backcross (BC) and RIL populations exhibited mono‐modal distributions without clear‐cut demarcations and skewing towards resistance. An additive–dominance model was well‐fitted, additive effects played a predominating role, and dominance effects were also significant. Continuous distributions with two major peaks and one minor peak for the number or percentage of scabby spikelets (NSS or PSS) in segregating populations implied the existence of major genes or quantitative trait loci (QTL) for resistance. The estimates of broad‐sense and narrow‐sense heritabilities based on the six‐generation experiment were 56–76% and 26–67% respectively. The estimates of broad‐sense heritabilities based on anova with RILs were 89–90%. These two improved lines with excellent scab resistance and good agronomic traits are of interest for wheat breeding and production.  相似文献   

20.
Compared with hexaploid wheat, tetraploid durum is more susceptible to Fusarium crown rot (FCR) infection. The feasibility of enhancing FCR resistance in durum wheat by introgressing chromosome segments of hexaploid wheat was investigated by generating and analysing a backcross population derived from a susceptible durum wheat variety ??Bellaroi?? (recurrent parent) and a resistant hexaploid genotype ??CSCR6?? (donor parent). Together with a few scattered segments on various chromosomes, segments of a large section of the donor chromosome 6B showed a significant effect in enhancing FCR resistance in the durum background. However, a known major locus on the donor 3BL conferring high level of resistance to FCR in hexaploid wheat failed to provide any improvement in resistance than that of the genome average once it was introduced into the durum wheat. A small proportion of the backcross population gave similar resistance to the bread wheat variety ??Kennedy??, a level of FCR resistance acceptable to durum growers. These lines share a 4B segment from the hexaploid donor, although the segment was not among those with the largest individual effect across the whole population. These results show that it is feasible to improve FCR resistance of durum wheat by exploiting hexaploid chromosome segments, although resistance loci of the hexaploid wheat may not function properly in durum backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号