首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
草覆盖影响了沙地土壤的水文物理学参数和水流的异质性   总被引:2,自引:0,他引:2  
Vegetation cover has a major effect on water flow in soils.Two sites,separated by distance of about 50 m,were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water flow in a sandy soil emerging during a heavy rain following a long hot,dry period.A control soil(pure sand)with limited impact of vegetation or organic matter was obtained by sampling at 50 cm depth beneath a glade area,and a grassland soil was covered in a 10 cm thick humic layer and colonised by grasses.The persistence of water repellency was measured using the water drop penetration time test,sorptivity and unsaturated hydraulic conductivity using a mini disk infiltrometer, and saturated hydraulic conductivity using a double-ring infiltrometer.Dye tracer experiments were used to assess the heterogeneity of water flow,and both the modified method for estimating effective cross section and an original method for assessing the degree of preferential flow were used to quantify this heterogeneity from the images of dyed soil profiles.Most hydrophysical parameters were substantially different between the two surfaces.The grassland soil had an index of water repellency about 10 times that of pure sand and the persistence of water repellency almost 350 times that of pure sand. Water and ethanol sorptivities in the grassland soil were 7% and 43%,respectively,of those of the pure sand.Hydraulic conductivity and saturated hydraulic conductivities in the grassland soil were 5% and 16%of those of the pure sand, respectively.Dye tracer experiments revealed a stable flow with"air-draining"condition in pure sand and well-developed preferential flow in grassland soil,corresponding to individual grass tussocks and small micro-depressions.The grassland soil was substantially more water repellent and had 3 times the degree of preferential flow compared to pure sand.The results of this study reinforce our view that the consequences of any change in climate,which will ultimately influence hydrology,will be markedly different between grasslands and bare soils.  相似文献   

2.
油菜光合生产模拟模型   总被引:2,自引:0,他引:2  
Photosynthetic production is a major determinant of final yield in crop plants. A simulation model was developed for canopy photosynthesis and dry matter accumulation in oilseed rape (Brassica napus L.) based on the ecophysiological processes and using a three-layer radiation balance scheme for calculating the radiation interception and absorption by the layers of flowers, pods, and leaves within the canopy. Gaussian integration method was used to calculate photosynthesis of the pod and leaf layers, and the daily total canopy photosynthesis was determined by the sum of photosynthesis from the two layers of green organs. The effects of physiological age, temperature, nitrogen, and water deficit on maximum photosynthetic rate were quantified. Maintenance and growth respiration were estimated to determine net photosynthetic production. Partition index of the shoot in relation to physiological development time was used to calculate shoot dry matter from plant biomass and shoot biomass loss because of freezing was quantified by temperature effectiveness. Testing of the model for dynamic dry matter accumulation through field experiments of different genotypes, sowing dates, and nitrogen levels showed good fit between the observed and simulated data, with an average root mean square error of 10.9% for shoot dry matter. Thus, the present model appears to be reliable for the prediction of photosynthetic production in oilseed rape.  相似文献   

3.
《土壤圈》2016,(2)
Annual wormwood(Artemisia annua L.) is the only viable source of artemisinin,an antimalarial drug.There is a pressing need to optimize production per cultivated area of this important medicinal plant;however,the effect of increasing atmospheric carbon dioxide(CO_2) concentration on its growth is still unclear.Therefore,a pot experiment was conducted in a free-air CO2 enrichment(FACE) facility in Yangzhou City,China.Two A.annua varieties,one wild and one cultivated,were grown under ambient(374μmol mol~(-1)) and elevated(577 μmol mol~(-1)) CO_2 levels to determine the dry matter accumulation and macronutrient uptake of aerial parts.The results showed that stem and leaf yields of both A.annua varieties increased significantly under elevated CO_2 due to the enhanced photosynthesis rate.Although nitrogen(N),phosphorus(P),and potassium(K) concentrations in leaves and stems of both varieties decreased under elevated CO_2,total shoot N,P,and K uptake of the two varieties were enhanced and the ratios among the concentrations of these nutrients(N:P,N:K,and P:K) were not affected by elevated CO_2.Overall,our results provided the evidence that elevated CO_2 increased biomass and shoot macronutrient uptake of two A.annua varieties.  相似文献   

4.
Effect of intermittent irrigation on the production of paddy rice was studied in a well-puddled paddy field with four treatments and 2 replicates:continuou flooding irrigation(CFI),and intermittent irrigation Ⅱ-0,Ⅱ-1 and Ⅱ-2,in which plants were re-irrigated when the soil water potential fell below 0,-10,and -20 to about -10 or -20 kPa did not significantly affect the number of grains and the percentage of ripened grains .While,a lower crop growth rate(CGR) resulted from a decrease in the net assimilation rate (NAR) during intermittent irrigation Ⅱ-1 and Ⅱ-2,and there was also a reduction in the leaf area index (LAI) durin indtermittent irrigation Ⅱ-2.Senescence of lower leaves on stems was promoted in treatments Ⅱ-1 and Ⅱ-2 at the ripening stage .Early senescence at ripening stage and water stress around midday decreased the rate of photosynthesis in leaves,causing the lower NAR,These physiological responses of the plants were responsible for the reduction in the dry matter production and grain yield in the intermmittent irrigation treatments.  相似文献   

5.
Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil nutrient composition and microbial communities with exposure to various drying intensities during an experimental drying-rewetting event, using a silt loam from a grassland of northern China, where the semi-arid climate exposes soils to a wide range of moisture conditions, and grasslands account for over 40% of the nation's land area. We also conducted a sterilization experiment to examine the contribution of soil microbes to nutrient pulses. Soil drying-rewetting decreased carbon(C) mineralization by 9%–27%. Both monosaccharide and mineral nitrogen(N) contents increased with higher drying intensities(drying to ≤ 10% gravimetric water content), with the increases being 204% and 110% with the highest drying intensity(drying to 2% gravimetric water content), respectively, whereas labile phosphorus(P)only increased(by 105%) with the highest drying intensity. Moreover, levels of microbial biomass C and N and dissolved organic N decreased with increasing drying intensity and were correlated with increases in dissolved organic C and mineral N, respectively,whereas the increases in labile P were not consistent with reductions in microbial biomass P. The sterilization experiment results indicated that microbes were primarily responsible for the C and N pulses, whereas non-microbial factors were the main contributors to the labile P pulses. Phospholipid fatty acid analysis indicated that soil microbes were highly resistant to drying-rewetting events and that drought-resistant groups were probably responsible for nutrient transformation. Therefore, the present study demonstrated that moderate soil drying during drying-rewetting events could improve the mineralization of N, but not P, and that different mechanisms were responsible for the C, N, and P pulses observed during drying-rewetting events.  相似文献   

6.
F. PEREGRINA 《土壤圈》2016,26(4):499-509
In semiarid regions of the Mediterranean basin, a rainfall event can induce a respiratory pulse that releases a large amount of soil carbon dioxide(CO_2) into the atmosphere; this pulse can significantly contribute to the annual ecosystem carbon(C) balance.The impacts of conventional tillage and two different cover crops, resident vegetation and Bromus catharticus L., on soil CO_2 efflux were evaluated in a Vitis vinifera L. vineyard in La Rioja, Spain. Soil CO_2 efflux, gravimetric water content, and temperature were monitored at a depth of 0–5 cm after rainfall precipitation events approximately every 10 d in the period from May 17 to July 27, 2012,during which the cover crops had withered. Additionally, on June 10, 2012, soil organic C, microbial biomass C, and β-glucosidase activity were determined at soil depths of 0–2.5, 2.5–5, 5–15, and 15–25 cm. The results show that pulses of soil CO_2 were related to the increase in soil water content following precipitation events. Compared to the conventional tillage treatment, both cover crop treatments had higher soil CO_2 efflux after precipitation events. Both cover crop treatments had higher soil organic C, microbial biomass C, and β-glucosidase activity at the soil surface(0–2.5 cm) than the conventional tillage treatment. Each pulse of CO_2 was related to the surface soil properties. Thus, this study suggests that the enhancement of soil organic C and microbiological properties at the soil surface under cover crops may increase soil CO_2 efflux relative to conventional tillage immediately after precipitation events during the dry season.  相似文献   

7.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

8.
印度热带森林干旱扰动土壤的微生物碳, 氮, 磷的研究   总被引:1,自引:0,他引:1  
Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22 to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g ?1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period (summer season) and the minimum in wet period (rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant (P 0.001) among sites and seasons.The MB-C (P 0.0001),MB-N (P 0.001) and MB-P (P 0.0001) were positively correlated with organic C,while the relationship between soil moisture and MB-C,MB-N and MB-P (P 0.001,P 0.01 and P 0.0001,respectively) was negative.The decreasing order of MB-C,MB-N and MB-P along study ecosystems was natural forest mixed deciduous forest savanna grassland.The results suggested that deforestation and land use practices (conversion of forest into savanna and grassland) caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites (grassland and savanna) compared to undisturbed forest ecosystems.  相似文献   

9.
Earthworms,one of the most important macroinvertebrates in terrestrial ecosystems of temperate zones,exert important influences on soil functions.A laboratory microcosm study was conducted to evaluate the influence of the earthworm Eisenia fetida on wheat straw decomposition and nutrient cycling in an agricultural soil in a reclaimed salinity area of the North China Plain.Each microcosm was simulated by thoroughly mixing wheat straw into the soil and incubated for 120 d with earthworms added at 3 different densities as treatments:control with no earthworms,regular density(RD)with two earthworms,and increased density(ID)with six earthworms.The results showed that there was no depletion of carbon and nitrogen pools in the presence of the earthworms.Basal soil respiration rates and metabolic quotient increased with the increase in earthworm density during the initial and middle part of the incubation period.In contrast,concentrations of microbial biomass carbon and microbial biomass quotient decreased in the presence of earthworms.Earthworm activity stimulated the transfer of microbial biomass carbon to dissolved organic carbon and could lead to a smaller,but more metabolically active microbial biomass.Concentrations of inorganic nitrogen and NO3--N increased significantly with the increase in earthworm density at the end of the incubation(P<0.05),resulting in a large pool of inorganic nitrogen available for plant uptake.Cumulative net nitrogen mineralization rates were three times higher in the ID treatment than the RD treatment.  相似文献   

10.
线虫区系对科尔沁沙地草地退化的响应   总被引:1,自引:0,他引:1  
The responses of soil nematode communities to grassland degradation were studied under undegraded grassland (UG), degraded grassland (DG), and improved grassland (IG), in Horqin Sandy Land, Inner Mongolia, Northeast China. Soil samples were collected at depths of 0-10, 10-20, and 20-30 cm. Total organic carbon (TOC) and total nitrogen (TN) exhibited positive effects on the total number of nematodes and trophic groups. Significant treatment effects were found in the total number of nematodes, plant parasites, and omnivores-predators. Measures taken in the improved grassland could improve the number of omnivorepredators, especially in the deeper soil layers. Nematode richness was lower in the DG treatment than in the IG and UG treatments. The food web structure index (SI) was significantly higher in the UG and IG treatments than in the DG treatment. A higher SI suggested a food web with more trophic linkages and relatively healthy ecosystems.  相似文献   

11.
Nitrogen (N) addition enhances primary productivity of terrestrial ecosystems. However, the effects of N fertilization and/or deposition on net ecosystem CO2 exchange (NEE) are not fully understood. The effects of N on NEE were investigated in two experimental cheatgrass ecosystems in Ecologically Controlled Enclosed Lysimeter Laboratories (EcoCELLs), Reno, Nevada. In this experiment, no N fertilization was added to the two EcoCELLs in the first year and two different N fertilization regimes were applied in the second year. N fertilizer was applied once to one EcoCELL (pulse fertilization, PF), and the same total amount of N in biweekly increments to the other EcoCell (gradual fertilization, GF). NEE, photosynthetically active radiation (PAR) and canopy green leaf area index (LAI) were continuously measured in the two EcoCELLs during the pretreatment and N-fertilized years. Plant N content and biomass were measured at the end of the growing season in each year. Radiation-use efficiency (RUECO2) was calculated as the ratio of gross ecosystem photosynthesis (GEP) to the intercepted photosynthetically active radiation (IPAR). The responses of NEE to IPAR were used to estimate the maximum ecosystem photosynthetic capacity (Fmax). N fertilization stimulated canopy LAI, plant N content, Fmax, RUECO2, NEE and biomass in both methods of N supply applications. PF led to higher LAI, Fmax and NEE than GF, but both had a similar RUECO2 during the early growing season. GF maintained higher LAI, Fmax, RUECO2 and NEE than PF during the late growing season. At the ecosystem level, N fertilization stimulated daily NEE directly by increasing canopy LAI, plant N content, shoot/root ratio and the maximum ecosystem photosynthetic capacity, and increased the seasonally accumulated NEE indirectly by extending the growing season. PF differed significantly from GF in its effects on NEE and RUECO2, possibly due to differential rates and timing of N availability. Our study suggested that these changes in the canopy RUECO2 and growing season under N fertilization or N deposition regimes should be considered in modeling studies of ecosystem C sequestration.  相似文献   

12.
Eddy-covariance measurements of net ecosystem exchange of CO2 (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (RE) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall. In the first (drier) year the annual NEE, GEP and RE were lower than the sums in the second (normal) year, and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year.Although the net primary production (NPP) in the first year was 23% lower than that of the second year, the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first, dry year than in the second, normal year. The time variations in NEE were followed by NPP, because in these young Eucalyptus plantations NEE is very largely dominated by NPP, and heterotrophic respiration plays only a relatively minor role.During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation, and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0.8 kPa. Nighttime fluxes of CO2 during calm conditions when the friction velocity (u*) was below the threshold (0.25 m s−1) were estimated based on a Q10 temperature-dependence relationship adjusted separately for different classes of soil moisture content, which regulated the temperature sensitivity of ecosystem respiration.  相似文献   

13.
As a weather element, clouds can affect CO2 exchange between terrestrial ecosystems and the atmosphere by altering environmental conditions, such as solar radiation received on the ground surface, temperature, and moisture. Based on the flux data measured at five typical ecosystems of China during mid-growing season (June-August) from 2003 to 2006, we analyzed the responses of net ecosystem exchange of carbon dioxide (NEE), light use efficiency (LUE, defined as Gross ecosystem photosynthesis (GEP)/Photosynthetically active radiation (PAR)), and water use efficiency (WUE, defined as GEP/Evapotranspiration (ET)) to the changes in cloudiness. The five ecological sites included Changbaishan temperate mixed forest (CBS), Dinghushan subtropical evergreen broad-leaved forest (DHS), Xishuangbanna tropical rainforest (XSBN), Inner Mongolia semi-arid Leymus chinensis steppe (NMG), and Haibei alpine frigid Potentilla fruticosa shrub (HB). Our analyses show that cloudy sky conditions with cloud index (kt) values between 0.4 and 0.6 increased NEE, LUE, and WUE of the ecosystems at CBS, DHS, NMG and HB from June to August. The LUE of tropical rainforest at XSBN was higher under cloudy than under clear sky conditions, but NEE and WUE did not decrease significantly under clear sky conditions from June to August. The increase in GEP with increasing diffuse radiation received by ecosystems under cloudy skies was the main reason that caused the increases in LUE and net carbon uptake in forest ecosystem at CBS, DHS, and alpine shrub ecosystem at HB, compared with clear skies. Moreover, for the ecosystem at CBS, DHS, and HB, when sky condition became from clear to cloudy, GEP increased and ET decreased with decreasing VPD, leading to the increase in WUE and NEE under cloudy sky conditions. The decrease in Re with decreasing temperature and increase in GEP with decreasing VPD under cloudy skies led to the increase in LUE, WUE, and net carbon uptake of semi-arid steppe at NMG, compared to clear skies. These different responses among the five ecosystems are attributable to the differences in canopy characteristics and water conditions. From June to August, the peaks of the kt frequency distribution in temperate ecosystems (e.g., CBS, NMG, and HB) were larger than 0.5, but they were smaller than 0.4 in subtropical/tropical forest ecosystems (e.g., DHS and XSBN). These results suggest that the pattern of cloudiness during the years from 2003 to 2006 in the five ecosystems was not the best condition for their net carbon uptake. This study highlights the importance of cloudiness factor in the prediction of net carbon absorption in the Asia monsoon region under climate change.  相似文献   

14.
Northern wetlands are critically important to global change because of their role in modulating atmospheric concentrations of greenhouse gases, especially CO2 and CH4. At present, continuous observations for CO2 and CH4 fluxes from northern wetlands in Asia are still very limited. In this paper, two growing season measurements for CO2 flux by eddy covariance technique and CH4 flux by static chamber technique were conducted in 2004 and 2005, at a permanently inundated marsh in the Sanjiang Plain, northeastern China. The seasonal variations of CO2 exchange and CH4 flux and the environmental controls on them were investigated. During the growing seasons, large variations in net ecosystem CO2 exchange (NEE) and gross ecosystem productivity (GEP) were observed with the range of −4.0 to 2.2 (where negative exchange is a gain of carbon from the atmosphere) and 0-7.6 g C m−2 d−1, respectively. Ecosystem respiration (RE) displayed relatively smooth seasonal pattern with the range of 0.8-4.2 g C m−2 d−1. More than 70% of the total GEP was consumed by respiration, which resulted in a net CO2 uptake of 143 ± 9.8 and 100 ± 9.2 g C m−2 for the marsh over the growing seasons of 2004 and 2005, respectively. A significant portion of the accumulated NEE-C was lost by CH4 emission during the growing seasons, indicating the great potential of CH4 emission from the inundated marsh. Air temperature and leaf area index jointly affected the seasonal variation of GEP and the seasonal dynamic of RE was mainly controlled by soil temperature and leaf area index. Soil temperature also exerted the dominant influence over variation of CH4 flux while no significant relationship was found between CH4 emission and water table level. The close relationships between carbon fluxes and temperature can provide insights into the response of marsh carbon exchange to a changing climate. Future long term flux measurements over the freshwater marsh ecosystems are undoubtedly necessary.  相似文献   

15.
Prescribed burning is a common land management technique in many areas of the UK uplands. However, concern has been expressed at the impact of this management practice on carbon stocks and fluxes found in the carbon‐rich peat soils that underlie many of these areas. This study measured both carbon stocks and carbon fluxes from a chronosequence of prescribed burn sites in northern England. A range of carbon parameters were measured including above ground biomass and carbon stocks; net ecosystem exchange (NEE), net ecosystem respiration (Reco) and photosynthesis (Pg) from closed chamber methods; and particulate organic carbon (POC). Analysis of the CO2 data showed that burning was a significant factor in measured CO2 readings but that other factors such as month of sampling explained a greater proportion of the variation in the data. Carbon budget results showed that whereas all the plots were net sources of carbon, the most recent burn scars were smaller sources of carbon compared with the older burn scars, suggesting that burning of Calluna‐dominated landscapes leads to an ‘avoided loss’ of carbon. However, this management intervention did not lead to a transition to a carbon sink and that for carbon purposes, active peat‐forming conditions are desirable.  相似文献   

16.
Modeling how the role of forests in the carbon cycle will respond to predicted changes in water availability hinges on an understanding of the processes controlling water use in ecosystems. Recent studies in forest ecosystem modeling have employed data-assimilation techniques to generate parameter sets that conform to observations, and predict net ecosystem CO2 exchange (NEE) and its component processes. Since the carbon and water cycles are linked, there should be additional process information available from ecosystem H2O exchange. We coupled SIPNET (Simple Photosynthesis EvapoTranspiration), a simplified model of ecosystem function, with a data-assimilation system to estimate parameters leading to model predictions most closely matching the net CO2 and H2O fluxes measured by eddy covariance in a high-elevation, subalpine forest ecosystem. When optimized using measurements of CO2 exchange, the model matched observed NEE (RMSE = 0.49 g C m−2) but underestimated transpiration calculated independently from sap flow measurements by a factor of 4. Consequently, the carbon-only optimization was insensitive to imposed changes in water availability. Including eddy flux data from both CO2 and H2O exchange to the optimization reduced the model fit to the observed NEE fluxes only slightly (RME = 0.53 g C m−2), however this parameterization also reproduced transpiration calculated from independent sap flow measurements (r2 = 0.67, slope = 0.6). A significant amount of information can be extracted from simultaneous analysis of CO2 and H2O exchange, which improved the accuracy of transpiration estimates from measured evapotranspiration. Conversely, failure to include both CO2 and H2O data streams can generate results that mask the responses of ecosystem carbon cycling to variation in the precipitation. In applying the model conditioned on both CO2 and H2O fluxes to the subalpine forest at the Niwot Ridge AmeriFlux site, we observed that the onset of transpiration is coincident with warm soil temperatures. However, after snow has covered the ground in the fall, we observed significant inter-annual variability in the fraction of evapotranspiration composed of transpiration; evapotranspiration was dominated by transpiration in years when late fall air temperatures were high enough to maintain photosynthesis, but by sublimation from the surface of the snowpack in years when late fall air temperatures were colder and forest photosynthetic activity had ceased. Data-assimilation techniques and simultaneous measurements of carbon and water exchange can be used to quantify the response of net carbon uptake to changes in water availability by using an ecosystem model where the carbon and water cycles are linked.  相似文献   

17.
草地和大气间碳通量的观测有助于理解草原生态系统的碳循环及其控制机理。利用涡度相关技术观测了克氏针茅草原生态系统与大气之间的净生态系统碳交换(NEE)、生态系统初级生产力(GEP)、生态系统呼吸(Rec)o的变化,探讨了2008年生长季内土壤温度和水分对克氏针茅草原生态系统NEE、GEP和Reco的影响。结果表明,2008年生长季内,克氏针茅草原日尺度上NEE和GEP都出现了3个峰,二者之间有极显著的相关性,Reco则呈现倒"U"型变化规律。克氏针茅草原土壤温度与NEE、GEP呈二次曲线的关系,而与Reco呈指数关系,土壤水分的增加会提高克氏针茅草原生态系统的固碳能力、初级生产力及呼吸作用。土壤温度和水分是影响克氏针茅草原生态系统碳收支的重要因子。  相似文献   

18.
草地生态系统碳通量的驱动机制研究是碳循环研究的重要方面。利用涡度相关技术观测了克氏针茅草原生态系统的净生态系统碳交换(NEE)、生态系统初级生产力(GEP)、生态系统呼吸(Reco)的变化,探讨了2010年生长季内温度对该系统NEE、GEP和Reco的影响。结果表明,2010年生长季内,克氏针茅草原日尺度上NEE和GEP只出现了1个明显的吸收峰,Reco则呈现倒"U"型变化规律。克氏针茅草原空气温度与NEE、GEP和Reco呈极显著相关关系,气温日较差对该系统碳通量的影响程度较小;土壤温度与NEE、GEP和Reco之间也呈极显著相关关系,土壤温度的增加会同时提高克氏针茅草原生态系统的固碳能力、初级生产力及呼吸作用。空气温度和土壤温度都是影响克氏针茅草原生态系统碳收支的重要驱动因子。  相似文献   

19.
Eddy covariance measurements and estimates of biomass net primary production (NPP) in combination with soil carbon turnover modelled by the Roth-C model were used to assess the ecosystem carbon balance of an agricultural ecosystem in Thuringia, Germany, growing winter wheat in 2001. The eddy CO2 flux measurements indicate an annual net ecosystem exchange (NEE) uptake in the range from −185 to −245 g C m−2 per year. Main data analysis uncertainty in the annual NEE arises from night-time u1 screening, other effects (e.g. coordinate rotation scheme) have only a small influence on the annual NEE estimate. In agricultural ecosystems the fate of the carbon removed during harvest plays a role in the net biome production (NBP) of the ecosystem, where NBP is given by net ecosystem production (NEP=−NEE) minus non-respiratory losses of the ecosystem (e.g. harvest). Taking account of the carbon removed by the wheat harvest (290 g C m−2), the agricultural field becomes a source of carbon with a NBP in the order of −45 to −105 g C m−2 per year. Annual carbon balance modelled with the Roth-C model also indicated that the ecosystem was a source for carbon (NBP −25 to −55 g C m−2 per year). Based on the modelling most of carbon respired resulted from changes in the litter and fast soil organic matter pool. Also, the crop and management history, particularly the C input to soil in the previous year, significantly affect next year’s CO2 exchange.  相似文献   

20.

Purpose

Carbon (C) dynamics in grassland ecosystem contributes to regional and global fluxes in carbon dioxide (CO2) concentrations. Grazing is one of the main structuring factors in grassland, but the impact of grazing on the C budget is still under debate. In this study, in situ net ecosystem CO2 exchange (NEE) observations by the eddy covariance technique were integrated with a modified process-oriented biogeochemistry model (denitrification–decomposition) to investigate the impacts of grazing on the long-term C budget of semiarid grasslands.

Materials and methods

NEE measurements were conducted in two adjacent grassland sites, non-grazing (NG) and moderate grazing (MG), during 2006–2007. We then used daily weather data for 1978–2007 in conjunction with soil properties and grazing scenarios as model inputs to simulate grassland productivity and C dynamics. The observed and simulated CO2 fluxes under moderate grazing intensity were compared with those without grazing.

Results and discussion

NEE data from 2-year observations showed that moderate grazing significantly decreased grassland ecosystem CO2 release and shifted the ecosystem from a negative CO2 balance (releasing 34.00 g C?m?2) at the NG site to a positive CO2 balance (absorbing ?43.02 g C?m?2) at the MG site. Supporting our experimental findings, the 30-year simulation also showed that moderate grazing significantly enhances the CO2 uptake potential of the targeted grassland, shifting the ecosystem from a negative CO2 balance (57.08?±?16.45 g C?m?2?year?1) without grazing to a positive CO2 balance (?28.58?±?14.60 g C?m?2?year?1) under moderate grazing. The positive effects of grazing on CO2 balance could primarily be attributed to an increase in productivity combined with a significant decrease of soil heterotrophic respiration and total ecosystem respiration.

Conclusions

We conclude that moderate grazing prevails over no-management practices in maintaining CO2 balance in semiarid grasslands, moderating and mitigating the negative effects of global climate change on the CO2 balance in grassland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号