首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Real-time, nondestructive estimation of crop nitrogen (N) status is highly important for precision N management in winter wheat production. Developing a new N indicator based on the direct link between spectral index and chlorophyll content is important for crop N diagnosis. In this study, we investigated the quantitative relationships between leaf N concentration (LNC) and ground-based multi-angular remote sensing hyperspectral reflectance in winter wheat (Triticum aestivum L.). Field experiments were conducted from 2011 to 2014 across different sites, cultivars, growth stages, N rates, and planting densities, and a novel Multi-angular vegetation index (MAVISR) was developed to improve the prediction accuracy and stability of LNC measurement. The optimum vegetation indices (VIs) obtained from 40 traditional indices reported in the literature, as well as normalized difference spectral indices (ND) and Simple Ratio Indices (SR), were tested for their stability in estimating LNC at 13 viewing zenith angles (VZAs). Overall, the coefficient of determination (r2) of spectral reflectance and traditional VIs with LNC decreased with increasing VZA in both the forward and backward scattering directions and reached maximum values at a viewing angle of −20°. Ratio index (RI-1 dB) exhibited the best linear relationship to LNC (r2 of 0.837) at the −20° viewing angle, but Enhanced vegetation index (EVI-1) showed the highest r2 (0.819) with LNC at the nadir direction. The relationships between the LNC and two-band combinations indicate that there are three sensitive regions with high r2, which vary with VZA, usually comprising combinations of blue–red wavelengths, green–red edge wavelengths, and between-red edge wavelengths. To further analyze the relationship between the combination of the three sensitive regions and the sensitive VZAs with LNC, the MAVISR index in the form of MAVISR = (R538/R768)−20  (R478/R634)+10 was calculated and found to be highly correlated with LNC (r2 = 0.897). When independent data were fit to the derived equations, the average relative error (RE) values were 15.5%, 14.3%, and 12.6% between measured and estimated LNC using EVI-1, RI-1 dB−20°, and MAVISR, respectively. These results suggest that the models can accurately estimate LNC in wheat, and the novel MAVISR is more effective for estimating LNC than previously reported VIs, independent of years, sites, and growth periods. The results also indicate the importance of taking into account angle effects when analyzing VIs.  相似文献   

2.
Pericarp colour of litchi fruit is an important quality attribute that determines its market value and consumer acceptance. Plant growth regulators (PGR) such as abscisic acid (ABA) and ethephon are known to play important roles in peel colour development during maturation and ripening of non-climacteric fruits (e.g. grape and litchi). Our aim was to investigate the effects of preharvest application of ABA, ethephon and their combination on pericarp colour and fruit quality of litchi (cv. Calcuttia) and also to assess the potential effects on postharvest performance of fruit. Exogenous application of ABA (150 or 300 mg L−1) at the colour-break stage significantly increased the concentration of total anthocyanins and cyanidin-3-O-rutinoside, the major anthocyanin contributing ∼71–96% of the total anthocyanins, in litchi pericarp compared to ethephon (500 μL L−1). Among different anthocyanins quantified, the relative contribution of cyanidin-3,5-diglucoside to the total anthocyanins was significantly higher in all PGR-treated fruit compared to the control, but the concentration of cyanidin-3-O-glucoside was specifically enhanced by ABA. No significant effect on the concentrations of epicatechin, and quercetin-3-O-rutinoside was observed in response to PGR treatments. Ethephon (500 μL L−1) treatment did not significantly increase the anthocyanin levels in pericarp, but it caused more degradation of chlorophyll pigments than control. Aril quality with regard to firmness, soluble solids and acidity was not significantly affected by PGR treatments, except that ethephon-treated fruit showed significant softening and lower acidity. Postharvest changes in fruit quality attributes including pericarp browning during cold storage at 5 °C for 14 d were mainly related to the storage duration effect, rather than PGR treatment. In conclusion, ABA treatment (150 or 300 mg L−1) at the colour-break stage enhanced anthocyanins accumulation in litchi pericarp without adversely affecting postharvest quality and storage stability for 14 d.  相似文献   

3.
Previously we reported that postproduction quality of pot ‘Seadov’ tulip (Tulipa gesneriana) was significantly increased by GA4+7 plus BA in a manner dependent on the concentration and stage of flower development at application. In these experiments, we extended the survey to 20 tulip cultivars to further evaluate the effects of GA4+7 plus BA sprays for enhancing postproduction flower and leaf quality. The senescence symptom of the cultivars fell into three categories: wilting, wilting-abscission (abscission shortly after tepal wilting) and abscission (abscission without wilting), with the majority of the cultivars belonging to the wilting and wilting-abscission categories. Pots bearing six plants were sprayed with a range of GA4+7 plus BA concentrations at marketable stage and placed in a simulated consumer environment (SCE). GA4+7 plus BA significantly enhanced individual flower and postproduction longevity, but the effect was dependent upon the senescence category of the cultivar. In general, GA4+7 plus BA increased individual flower and postproduction longevity of wilting-type cultivars at concentrations above 10 mg L?1, while longevity of wilting-abscission-type cultivars was only enhanced by 50 mg L?1. Abscission-type cultivars were not affected by any concentrations of GA4+7 plus BA. Regardless of floral senescence category, leaf yellowing was significantly reduced by GA4+7 plus BA sprays in those cultivars showing postproduction leaf yellowing. GA4+7 plus BA did not induce leaf and stem elongation in most cultivars. Only ‘Yellow Baby’, the shortest cultivar, showed elongation of stem and leaf by GA4+7 plus BA at concentrations above 25 mg L?1. Spray applications of GA4+7 plus BA can be useful to enhance flower and leaf quality in pot tulips.  相似文献   

4.
Yield modelling based on visible and near infrared spectral information is extensively used in proximal and remote sensing for yield prediction of crops. Distance and thermal information contain independent information on canopy growth, plant structure and the physiological status. In a four-years′ study hyperspectral, distance and thermal high-throughput measurements were obtained from different sets of drought stressed spring barley cultivars. All possible binary, normalized spectral indices as well as thirteen spectral indices found by others to be related to biomass, tissue chlorophyll content, water status or chlorophyll fluorescence were calculated from hyperspectral data and tested for their correlation with grain yield. Data were analysed by multiple linear regression and partial least square regression models, that were calibrated and cross-validated for yield prediction. Overall partial least square models improved yield prediction (R2 = 0.57; RMSEC = 0.63) compared to multiple linear regression models (R2 = 0.46; RMSEC = 0.74) in the model calibration. In cross-validation, both methods yielded similar results (PLSR: R2 = 0.41, RMSEV = 0.74; MLR: R2 = 0.40, RMSEV = 0.78). The spectral indices R780/R550, R760/R730, R780/R700, the spectral water index R900/R970 and laser and ultrasonic distance parameters contributed favourably to grain yield prediction, whereas the thermal based crop water stress index and the red edge inflection point contributed little to the improvement of yield models. Using only more uniform modern cultivars decreased the model performance compared to calibrations done with a set of more diverse cultivars. The partial least square models based on data fusion improved yield prediction (R2 = 0.62; RMSEC = 0.59) compared to the partial least square models based only on hyperspectral data (R2 = 0.48; RMSEC = 0.69) in the model calibration. This improvement was confirmed by cross-validation (data fusion: R2 = 0.39, RMSEV = 0.76; hyperspectral data only: R2 = 0.32, RMSEV = 0.79). Thus, a combination of spectral multiband and distance sensing improved the performance in yield prediction compared to using only hyperspectral sensing.  相似文献   

5.
Maize breeding during the past 50 years has been associated with a delay of leaf senescence, but it is not clear whether this trait is likewise associated with higher grain yield in modern hybrids. Post-silking growth, leaf area dynamics, photosynthetic parameters and yield were compared in modern maize hybrids differing in canopy senescence rate. In the first two experiments, four hybrids were grown in the field at Balcarce, Argentina (37°45′ S, 58°18 W). In spite of differences in chlorophyll retention and photosynthesis of the ear leaf, post-silking growth and grain yield were very similar in all four hybrids while kernel N concentration was lower in the later-senescing hybrids. In a third experiment, a later-senescing (NK870) and an earlier-senescing (DK682) hybrid were grown to analyze the potential photosynthetic contribution of delayed leaf senescence. Leaf area and chlorophyll content were larger in NK870, especially at the lower canopy level (0.75 m above the ground). However, hybrids did not differ for canopy light interception. Because photosynthetic photon flux density below 1 m above the ground was less than 10% of incident radiation and photosynthesis quantum yield did not change during senescence, the potential photosynthetic output of lower leaves below 1 m was very low. Lower leaves of NK870 had N concentrations higher than those needed to sustain photosynthesis at the light conditions below 1 m. Therefore, we show that delayed senescence does not necessarily improve post-silking C accumulation because: (i) canopy light interception is not reduced by senescence except at very late stages of grain filling; (ii) contrasting hybrids show more pronounced senescence differences at canopy levels receiving less than 10% of incident radiation; (iii) delayed senescing hybrids present lower kernel N concentrations while extra N is retained in leaves exposed to a light limiting micro-environment. Delayed senescence at lower canopy levels may be unproductive, at least under non-stressing conditions.  相似文献   

6.
Leaf appearance rate and time to canopy expansion of four annual clover species (arrowleaf, balansa, gland and Persian) were quantified in field and controlled environment studies. Crops sown in autumn, which experienced shortening daylengths at emergence, had a slower rate of leaf production and consequently took a longer time to initiate branching, than spring-sown crops. When autumn-sown ‘Bolta’ balansa clover emerged on the shortest day in winter (21 June), the rate of leaf appearance was lengthened by 4 °C d/leaf/h. When the same species emerged after the shortest day, into an increasing photoperiod, the phyllochron was shortened by 5 °C d/leaf/h. This influence of photoperiod on the phyllochron consequently altered the time to axillary leaf production (branching). Throughout all sowing dates, phyllochron was the fastest for ‘Prima’ gland (33–91 °C d/leaf) and slowest for ‘Cefalu’ arrowleaf (53–116 °C d/leaf) clovers. ‘Bolta’ balansa was 44–82 °C d/leaf and ‘Mihi’ Persian 61–93 °C d/leaf. The response of phyllochron to photoperiod suggests these annual clovers should be sown in late summer or early autumn to initiate axillary leaf production as soon as possible to ensure maximize dry matter for early spring.  相似文献   

7.
Leaf senescence during grain filling can reduce crop yield. We studied, under field conditions and during grain-filling, the association between leaf cytokinin levels and the onset of leaf senescence in sunflower hybrids of contrasting canopy senescence patterns (Paraiso75, stay-green [SG] and Paraiso65, fast dry down [FDD]). At crop level, dynamics of live root length density (LRLD) and green leaf area index (GLAI) were followed, while at leaf level dynamics of total chlorophyll content, trans-Zeatin content, net photosynthesis and PSII quantum yield, were followed in leaf positions 17, 20, 22 and 24. Responses of these leaf variables to exogenous cytokinin applications to leaves at position 17 were also followed. SG exhibited greater (p < 0.05) LRLD and GLAI values at anthesis. In both hybrids, LRLD began to fall before GLAI. All variables decreased earlier (p < 0.05) in FDD. Initial leaf levels of trans-Zeatin were three times higher (p < 0.05) in SG. Exogenous cytokinin applications maintained leaf-level variables. These are the first results showing associations between LRLD dynamics with the dynamics of leaf cytokinin levels and changes in indicators of leaf functionality. Also, this is the first study in which estimates are made of cytokinin thresholds below which leaf senescence begins in two hybrids of contrasting canopy senescence patterns. These advances in the understanding, at both crop and leaf levels, of the controls and consequences of SG during grain filling, a trait known to improve crop water uptake under drought and increase biomass accumulation during grain filling, provide support for breeding efforts aimed at profiting from this trait to increase crop yields.  相似文献   

8.
Chrysanthemum (White, Yellow, and Daisy), carnation (Master and Barbara), rose (Carola, Black magic, Diana, Champagne, and Avalanche), and Chinese rose (Golden Medallion, Diplomat, Marina, and Athena) are the main Chinese cut flower species produced for exportation. Cut flowers infested with quarantine pests need methyl bromide (MB) fumigation to satisfy phytosanitary requirements of importing countries. Phosphine (PH3) is a potential alternative to methyl bromide. Development of phosphine as a phytosanitary treatment requires information regarding its phytotoxicity to cut flowers. Therefore phosphine fumigation at 24 °C and 2 °C was investigated to evaluate its effects on the postharvest quality of cut flowers. Phosphine fumigation for 6 h with dosages as high as 12.2 mg L−1 at 24 °C produced no adverse effects on flower color, diameter, vase life, and other damage indices (DI) for all cultivars. However, different adverse effects on some cultivars were observed after 12 d fumigation at 2 °C. There were significant changes for color values of Carola, Black magic, Diana, Champagne, Avalanche, and Diplomat; significant decrease in flower diameter and vase life of Diana, Champagne, and Avalanche at 3.04 mg L−1, white Chrysanthemum and Diploma at 1.52 and 3.04 mg L−1; significant increase in DI of Champagne and Avalanche at 3.04 mg L−1, and White chrysanthemum, Diana, and Diploma at 1.52 and 3.04 mg L−1. In combination with information on phosphine toxicity to insect pests at ambient and low temperatures in the literature, it is suggested that phosphine fumigation could be a viable replacement of MB fumigation for quarantine treatment of these four cut flower species.  相似文献   

9.
Three-year field trials were set up on eutric brown soil in northwestern Croatia (Zagreb) with the objective to determine the effect of plant density and nitrogen rates on the formation and size of leaf area of seed sugar beet, and on the yield and seed quality in seed production without transplanting. Investigations should also reveal how much the yield and quality of sugar beet seed depend on the leaf area index (LAI). Four plant densities of seed sugar beet were investigated after crop wintering (40 000, 80 000, 120 000, and 160 000 plants/ha) as well as three nitrogen rates (60, 120, and 180 kg/ha) applied in two identical topdressings: at the beginning of the spring growing period and immediately before shooting of inflorescence stalks. Leaf area formation was strongly influenced by weather conditions. An increase of plant density from 40 000 to 160 000 plants/ha led to a decrease of leaf area per plant. Raised nitrogen rates in topdressing caused an increase of leaf area, depending on the precipitation and soil fertility. Maximum LAI, achieved in the flowering stage, grew almost linearly with increasing plant density (LAI: 1.77–4.85 m2/m2), but was statistically significant only up to 120 000 plants/ha. Raised nitrogen rates in topdressing led to a significant increase of the LAI in the stage of inflorescence stalk shooting, though not in full flowering. On the basis of this research, seed yield and germination of seed sugar beet could not be predicted regarding LAI in the flowering stage.  相似文献   

10.
The critical nitrogen (Nc), defined as the minimum N concentration required for maximum growth, is proposed for diagnosis of the in-season N status in crop plants. It has been established for several crops including rice on whole-plant dry matter (DM) basis but has not been determined for canopy leaf basis. This research was undertaken to develop a new Nc dilution curve based on leaf dry matter (LDM) and to assess its applicability to estimate the level of N nutrition for Japonica rice in east China. Three field experiments were conducted with varied N rates (0–360 kg N ha−1) and three Japonica rice (Oryza sativa L.) hybrids, Lingxiangyou-18 (LXY-18), Wuxiangjing-14 (WXJ-14) and Wuyunjing (WYJ) in Jiangsu province of east China. Five hills from each plot were sampled from active tillering to heading for growth analysis and leaf N determination. The Nc dilution curve on leaf N concentration was described by the equation Nc = 3.76W−0.218, when LDM ranged from 0.67 to 4.25 t ha−1. However, for LDM < 0.67 t ha−1, the constant critical value Nc = 4.09%LDM was applied. This Nc dilution curve on LDM basis was slightly higher than the curves on plant DM basis in Japonica rice, yet both lower than the reference curve of high yielding Indica rice in tropics. The N nutrition index (NNI) and accumulated N deficit (Nand) of leaves ranged from 0.65 to 1.06 and 79.62 to −6.39 kg ha−1, respectively, during main growth stages under varied N rates in 2010 and 2011. The results indicate that the present Nc dilution curve and derived NNI and Nand adequately identified the situations of N-limiting and non-N-limiting nutrition in two rice varieties and could be used as reliable indicators of N status during growth of Japonica rice in east China.  相似文献   

11.
Tomato (Lycopersicon esculentum L.) fruit are an important source of antioxidant (mainly pigment) compounds, as well as lycopene, β-carotene, ascorbic acid and polyphenols. Differentiation of the final product in the market requires an accurate evaluation of these value-adding compounds. Because of this, we have undertaken a comparison of the spectral characterisation of the tomato fruit surface pigments from the immature to over-ripe stage, using spectroscopy techniques based on visible fluorescence emission upon excitation in the same or ultraviolet spectral regions. The aim was to verify the spectral band for optimal conditions for fruit harvesting using non-destructive techniques. The pattern of pigment composition changed markedly during ripening and showed progressive disappearance of chlorophyll with a concomitant increase in carotenoids until the fully ripe stage. The main fluorescence spectral features belonging to anthocyanins, flavonoids, carotenoids and chlorophyll a after excitation of skin tomato pigments at different laser wavelengths was identified. In comparing, the fluorescence spectral ratios at the excitation wavelength λexc = 266 nm, significant differences were obtained for the spectral ratios of chlorophyll/flavonoids and carotenoids/chlorophyll. Positive correlation coefficients were found for the carotenoids/flavonoids (0.780) ratios and negative ones for the carotenoids/chlorophyll ratios (−0.513).Analysis of fluorescence resulted in determination of the most useful laser radiation for remote non-invasive measurements with laser-induced fluoresence (LIF): for the ripening stage, λexc = 266 nm was the optimal laser wavelength, since the induced fluorescence spectra obtained appeared to differ with the physiological stage of the fruit.  相似文献   

12.
This study was conducted to investigate the effects of preharvest canopy position and bagging treatments on rind physiological and biochemical properties of ‘Nules Clementine’ mandarin (Citrus reticulata Blanco) fruit. Before storage, the respiration rate of unbagged outside fruit was significantly higher (21.6 mL CO2 kg−1 h−1) than of bagged inside fruit (16.3 mL CO2 kg−1 h−1). Unbagged fruit outside the canopy had 1.4-fold higher carbohydrates, and 1.1-fold higher dry matter (DM) content than bagged inside fruit. Bagged fruit inside the canopy had higher (24%) weight loss than outside sun-exposed fruit (14%). This corresponded with a higher rind breakdown (RBD) index for bagged inside fruit, compared to sun-exposed fruit which did not develop the disorder. During postharvest storage, rind fructose levels of bagged fruit inside the canopy increased from 62.4 mg/g DM at harvest to 81.3 mg/g DM after 8 weeks, while those of unbagged outside fruit increased from 97.9 to 108.4 mg/g DM. Concomitant with the increase in fructose, sucrose in rind tissue of bagged inside fruit decreased from 42.6 to 27.7 mg/g DM and from 49.3 to 33.4 mg/g DM for unbagged outside fruit. Rind glucose of unbagged inside fruit decreased from 90.6 to 76.2 mg/g DM. Ascorbic acid concentrations remained almost constant during storage, with levels between 3.3 and 6.7 mg/g DM for inside bagged and unbagged outside fruit, respectively. Hesperidin was the major flavanone detected, with concentrations between 35 and 45 mg/g DM followed by narirutin (1.1–2.8 mg/g DM). At harvest, rind of fruit harvested from outside the canopy had lower hesperidin concentration (38.1 mg/g DM) compared to shaded fruit (44.2 mg/g DM). Overall, the results suggest that variations in microclimatic conditions inside the tree canopy during the growing season affect the biochemical profile of the fruit rind, which in turn influences fruit response to postharvest stresses associated with senescence and susceptibility to RBD.  相似文献   

13.
Irrigated crops of ‘Grasslands Kaituna’ lucerne were grown for 5 years in a temperate climate at Lincoln University, Canterbury, New Zealand (43°38′S, 172°28′E). From these the response of the components of leaf area index (LAI) to environmental factors was determined. A broken stick temperature threshold with a base temperature (Tb) of 1 °C at air temperatures (Ta) <15 °C and a Tb = 5 °C for Ta  15 was required to accumulate thermal time (Tt). Using this, the appearance of nodes on the main-stem (phyllochron) was constant in Tt within a re-growth cycle (30–42 days). The phyllochron was 37 ± 7 °Cd but declined from 60 to 37 °Cd as photoperiod decreased from 15.7 to 11.4 h. Branching began at the appearance of the fifth main-stem node with 2.5 secondary nodes produced per main-stem node in spring re-growth cycles but only 1.7 produced in summer. Leaf senescence increased from 0.3 to 1.08 leaves per main-stem node after the appearance of the ninth node. Spring re-growth cycles had a mean individual leaf area of 170 mm2 compared with 400 mm2 for summer re-growth cycles. These results demonstrate systematic variation in LAI components and suggest they need to be considered separately in response to environmental factors to provide a quantitative framework for crop simulation analyses of lucerne canopy development.  相似文献   

14.
Bulb brassicas are used as supplementary feed in intensive pastures systems. However, there is a lack of quantitative data to define their growth and development. This has limited the creation and use of prediction models and decision support systems. Thus a field experiment measured growth and development of ‘Barkant’ and ‘Green Globe’ turnips sown on five dates from November 2008 to March 2009. In a second field experiment ‘Green Globe’ turnips were sown on four dates from December 2009 to March 2010, under two ground cover treatments that changed mean soil temperature by ∼2 °C. Bulb initiation was defined botanically as when the hypocotyl was 10 mm thick, at 360 °Cd (±13.0) for ‘Barkant’ and 420 °Cd (±13.7) (Tb = 3.6 °C) for ‘Green Globe’. However, the bulb participation in dry matter production occurs after an 18 mm hypocotyl thickness, which occurred at ∼500 °Cd for both turnip cultivars. A single base parameter of 0.995 described the exponential decline of the leaf:bulb ratio. Relationships also described how leaf production and total leaf area expansion changed up until bulb initiation. Radiation use efficiency (RUE) ranged from 1.13 to 1.33 g DM/MJ total. A constant rate of total leaf area expansion (0.015 m2/m2/°Cd) was obtained up to LAIc for ‘Green Globe’ turnips. A third pot experiment confirmed the thermal time requirement to bulb initiation based on direct assessment of the hypocotyl thickening of ‘Barkant’ and ‘Green Globe’ turnips. Temperature was shown as the main driver of bulb development and growth. The relationships provided could be used to improve the performance of prediction models.  相似文献   

15.
Freshly harvested leeks (Allium ampeloprasum L. var. porrum) were trimmed (leaf tips, roots), had the decayed leaves removed, washed with tap water, cut at 50 cm length and subjected to heat treatment at 55 °C for 0 and 17.5 min. They were then trimmed at the root base and leaves to produce stalks 22 cm in length with or without removal of a 2 cm portion of the base. Minimally processed leeks were tray-packaged, wrapped with 16 μm stretch film and stored at 10 °C for 7 days to determine the effects of base removal and heat treatment on visual (leaf growth, fresh weight loss and discoloration) and nutritional quality after storage. CO2 and ethylene concentrations of packages containing minimally processed leeks showed a wound-induced pattern typical of other fresh cut vegetable tissues. Base removal did not significantly affect respiration but increased ethylene production, while heat treatment increased respiration rate and suppressed ethylene production. Storage of minimally processed leeks at 10 °C for 7 days resulted in a slight decrease of chroma and hue angle of base cross section as well as a decrease of chroma of the upper cross section. Heat treatment prevented the decrease of chroma of the base and upper cross section. Base removal reduced, but did not totally control leaf growth of stored minimally processed leeks. Moreover, it resulted in a decrease of dry matter, soluble solids, total soluble phenols, antioxidant capacity and total thiosulfinates at the end of the storage. A combination of base removal and heat treatment efficiently controlled leaf growth, but these treatments resulted in increased fresh weight and total thiosulfinate loss.  相似文献   

16.
In order to take into account firstly the specificities of Mediterranean weather conditions on grass growth and secondly the effect of irrigation management on hay, we adapted an already published model of grassland growth. From literature new equations were added to account for water balance, botanical composition and the effect of wind. The modified model was parameterised based on new experimental data. An automatic and rigorous parameter estimation procedure was developed based on a criterion that combines the goodness-of-fit for dry matter (DM), leaf area index (LAI) and fraction of total transpirable soil water (FTSW). Mean squared error of prediction (MSEP) was estimated using cross-validation.Adding the three equations for water balance, botanical composition and wind effect improved the goodness-of-fit of the model. A sensitivity analysis showed that the model results were mainly sensitive to the parameter that controls the increase of leaf area index and to the radiation use efficiency coefficient. Both absolute values and dynamics of DM, LAI and FTSW were well simulated and satisfactory for future use of the model in a decision support tool. Estimated MSEP values for DM, LAI and FTSW were 0.145 T ha−1, 0.092 m2 m−2 and 0.0155% respectively.  相似文献   

17.
The objective of this work was to preserve the postharvest quality of litchi cv Brewster by the application of Lactobacillus plantarum. A suspension of 1 × 109 CFU/mL of the bacteria was sprayed on ripe litchis and then stored at 10 °C with 75% of relative humidity. Treated fruit exhibited a significantly higher Gram positive bacteria growth on the rind (4–5 log CFU/g) than that detected in control fruit (2.5–3.75 log CFU/g). This result was corroborated by observing a high population of lactobacilli in scanning electron micrographs and by measurement of the content of lactic acid produced. Treated fruit displayed significantly (α  0.05) reduced color losses as indicated by the higher L* and C* values in comparison with the untreated ones. Additionally, cyanidin-3-rutinoside and total anthocyanin contents supported the measured color retention, since the pericarp of fruit treated with Lb. plantarum showed a significantly higher concentration of pigments than those used as control. In addition, a high concentration of phenolic compounds was found in the rind of treated fruit.  相似文献   

18.
Net photosynthetic rate was measured from the youngest fully expanded leaves of field grown cocksfoot (Dactylis glomerata L.) in open pastures and under trees in the Lincoln University silvopastoral experiment (New Zealand). The photosynthetic efficiency (α) and convexity (θ) of the light-response curve were derived from 209 fitted non-rectangular hyperbola functions. There was no relationship between θ and any of the environmental or management variables with a stable mean value of 0.96. For α, individual functions were required for temperature (10–31 °C), nitrogen (N) concentration (1.5–5.9% N), water status (expressed as pre-dawn leaf water potential, ψlp) (−0.01 to −1.6 MPa), regrowth duration (20–60 days), and different times (up to 180 min) under moderate (850–950 μmol m−2 s−1 photon irradiance) and severe (85–95 μmol m−2 s−1 photon irradiance) shade. The highest α of 0.036 μmol CO2/μmol photon irradiance was found in non-limiting conditions and defined as the standardised maximum (αs=1). Values of αs=1 were measured in optimum ranges of 10–24 °C, 4.0–5.9% N, −0.01 to −1.0 MPa and 20 days regrowth. In addition, values of αs reached a steady-state asymptote of 0.74 after 60 min of severe shade and 0.92 after 40 min of moderate shade. Individual functions of α could not be integrated into a simple multiplicative model but a ‘law of the minimum factor’ model was appropriate. Predicted results from this model were then validated with 46 independent data points collected when at least two factors were outside their optimum range. The model accounted for 88% of the variation in observed α values. This research has derived functional relationships for α that can be used to assist predictions of leaf photosynthesis and ultimately pasture growth by their inclusion in canopy photosynthesis models.  相似文献   

19.
According to climate change projections, winter cereal production will likely be exposed to increasing air temperatures and prolonged summer droughts. During the 2009/10 and 2010/11 growing seasons at Braunschweig, Germany, four cultivars each of barley (Hordeum vulgare L.), rye (Secale cereale L.), triticale (Triticosecale Wittmack), and wheat (Triticum aestivum L.) were grown in a mobile rain-out shelter with a nearby irrigated control to determine the maximal impact of water shortage on phenology, physiology, and yield. The rain-out shelter plots were subjected to severe drought stress by withholding rain during tillering to harvest. Permanent prevention of water supply caused an average 2 day earlier heading and flowering and a 19 day earlier loss of green leaves. Midday thermal images revealed consistently higher canopy temperatures under drought stress than under well-watered conditions. The drought related temperature increase was 3.7 K across crops and years. Contrary to canopy temperature, the spectral moisture stress index and the normalized difference water index did not clearly separate the dry from the wet environment. The drought-induced yield loss averaged 5.9 t ha−1 (63%) for grain dry matter and 9.2 t ha−1 (51%) for above-ground dry matter. Among the four cereal species, rye produced the highest grain and above-ground dry matter under both dry and wet conditions, and also had the coolest canopy. Based on the results of the present study, it is expected that rye will cope best, and barley second-best with the drier conditions of the changing climate.  相似文献   

20.
Apples can be stored for long time under controlled temperature and atmosphere conditions, and therefore, non-destructive and rapid tools are required to assess fruit quality and to monitor changes during the postharvest period. The aim of this study was to evaluate the feasibility of NIR spectroscopy to optimize postharvest apple management and to follow changes in fruit quality during storage. An FT-NIR system operating in diffuse reflectance in the range 12,500–3600 cm−1 was used to evaluate the physico-chemical (dry matter, soluble solids, colour and firmness) and some nutraceutical characteristics (total phenolics, total flavonoids and antioxidant activity) of ‘Golden Delicious’ apples, which were stored for about six months at 1 °C in controlled atmosphere, over two subsequent years. Spectral data were elaborated by PLS regression and LDA classification techniques. Good correlation models between spectral data and chemical and physical parameters were obtained for soluble solids, a* colour coordinate and firmness (0.81 < R2 < 0.90 in calibration and 0.79 < R2 < 0.89 in cross validation). Even higher correlation values (0.89 < R2 < 0.95 in calibration and 0.86 < R2 < 0.92 in cross validation) were obtained for indexes correlated to the antioxidant capacity of apples. The classification technique Linear Discriminant Analysis was applied to spectral data, in order to discriminate apples on the basis of storage time. Average correct classification was higher than 93% in validation and close to 100% in calibration, indicating high potential of NIR spectroscopy for the estimation of storage time of apple lots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号