首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concern about the impact of pesticides on both health and environment has resulted in the search for alternative control measures for stored-product insect pest. Amongst such alternatives are insect growth regulators (IGRs), a class of biorational compounds that disrupt the normal development of insects. Because of their selectivity of action, these compounds appear to fit the requirements for Third Generation Pesticides, environmentally benign and safer grain protectants. IGRs have been developed commercially and are being used to control insect pests in agriculture, forestry, public health and stored products. IGRs affect the biology of treated insects, for example, both embryonic and post-embryonic development, reproduction, behaviour and mortality. Abnormal morphogenesis is the observed effect of IGR action on the insects. Many of them are more potent than current insecticides, even against the eggs.Compared with the conventional insecticides, IGRs do not exhibit quick knock-down in insects or cause mortality, but the long-term exposure to these compounds largely stops the population growth, as a result of the effects mentioned in both the parents and progeny.The present paper focuses on the previous works on different IGRs available commercially. Also, their possible role in the management of stored-product insect pests has been discussed.  相似文献   

2.
昆虫病原真菌是一类重要的微生物杀虫剂,广泛应用于农林害虫的生物防治。由于寄主范围广和主动侵染的特点,昆虫病原真菌在侵染、致死靶标害虫的同时,对包括天敌昆虫在内的非靶标节肢动物等会产生潜在的致病或亚致死风险。本文总结了昆虫病原真菌在害虫防治中的研究进展及对天敌生物的影响,并展望了昆虫病原真菌作为极具潜力的生物农药与天敌生物联合防治害虫的未来发展方向。  相似文献   

3.
This review summarizes the current knowledge on the distribution, natural history, economic importance and management of 16 major species of date palm pests in Israel. Another 15, rarely occurring, pest species are also identified. Research on the date palm pests in Israel was initiated against a background of severe outbreaks of scale insects in the late 1950s. These outbreaks were caused mainly by unrestrained use of organophosphates. This situation led to the gradual development of an Integrated Pest Management (IPM) program, which was implemented first against scale insects and later against fruit pests. The IMP approach resulted in successful control of the scale insects, up to the present, whereas agrotechnical and crop management procedures, including covering the fruit bunches with plastic nets and early harvesting of several date cultivars, were successfully applied to achieve efficient control of the fruit moths. In addition, the use of chemical compounds in date plantations was drastically reduced and restricted to heavy foci of pest infestation. In time, microbial control, mainly application ofBacillus thuringiensis products against the lesser date moth, and the use of pheromone traps for monitoring and controlling red palm weevil, enabled further reductions in the use of synthetic insecticides. The overall change in pest management also significantly improved the preservation of natural enemies of the pests in the plantations. Whereas in the 1950s the major problems were caused by the parlatoria date scale and the green scale, in the early 2000s the key pests in date plantations in Israel are the lesser date moth and sap beetles in most of the date-growing areas, and spider mites which are restricted to the Arava Valley. Future management of the first two of these pests should rely on an improved monitoring system and integration of pheromone application for reduction of the population and damage. Efforst should be made to prevent the red palm weevil, which currently is a potential pest, from becoming an actual key pest in date plantations.  相似文献   

4.
近年来,药用植物地下害虫为害日益突出,严重降低中草药的产量和品质。由于地下害虫在土壤中活动,取食药用植物的地下部分,给防治带来很大的困难。同时,农药的过度使用也给中草药安全带来了隐患。本文对药用植物地下害虫的主要种类、为害特点、发生规律和防治中存在的问题进行了综述,重点阐述了不同药用植物上常见的地下害虫种类,并提出了相应的无公害综合防治措施。  相似文献   

5.
BACKGROUND: Olive fruit fly, Bactrocera oleae (Rossi), is a key pest in olive orchards, causing serious economic damage. To date, the pest has already developed resistance to the insecticides commonly applied to control it. Thus, in searching for new products for an accurate resistance management programme, targeting the ecdysone receptor (EcR) might provide alternative compounds for use in such programmes. RESULTS: Residual contact and oral exposure in the laboratory of B. oleae adults to the dibenzoylhydrazine‐based compounds methoxyfenozide, tebufenozide and RH‐5849 showed different results. Methoxyfenozide and tebufenozide did not provoke any negative effects on the adults, but RH‐5849 killed 98‐100% of the treated insects 15 days after treatment. The ligand‐binding domain (LBD) of the EcR of B. oleae (BoEcR‐LBD) was sequenced, and a homology protein model was constructed. Owing to a restricted extent of the ligand‐binding cavity of the BoEcR‐LBD, docking experiments with the three tested insecticides showed a severe steric clash in the case of methoxyfenozide and tebufenozide, while this was not the case with RH‐5849. CONCLUSION: IGR molecules similar to the RH‐5849 molecule, and different from methoxyfenozide and tebufenozide, might have potential in controlling this pest. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
Management of stored-grain insect pests by farmers or elevator managers should be based upon a knowledge of the grain storage environment and the ecology of insect pests. Grain storage facilities and practices, geographical location, government policies, and marketing demands for grain quality are discussed as factors influencing stored-grain insect pest management decisions in the United States. Typical practices include a small number of grain samples designed to provide grain quality information for segregation, blending and marketing. This low sampling rate results in subjective evaluation and inconsistent penalties for insect-related quality factors. Information on the efficacy of insect pest management practices in the United States, mainly for farm-stored wheat, is discussed, and stored-grain integrated pest management (IPM) is compared to field-crop IPM. The transition from traditional stored-grain insect pest control to IPM will require greater emphasis on sampling to estimate insect densities, the development of sound economic thresholds and decision-making strategies, more selective use of pesticides, and greater use of nonchemical methods such as aeration. New developments in insect monitoring, predictive computer models, grain cooling by aeration, biological control, and fumigation are reviewed, their potential for improving insect pest management is discussed, and future research needs are examined.  相似文献   

7.
储藏物害虫生物性防治技术研究现状和展望   总被引:16,自引:0,他引:16  
有效的杀虫剂和熏蒸剂种类的减少,以及它们对环境的污染和对人畜健康的影响,使得生物性的防治技术在储藏物害虫的控制上显得越来越重要。近年来,有关储藏物害虫生物性防治技术的研究报道越来越多。根据过去20年的文献,特别是根据刚出版的第七届国际储藏物保护会议的有关论文,评述了储藏物害虫生物性防治技术的研究现状,展望了将来的发展。内容涉及到天敌昆虫、昆虫信息素、病原微生物、抗虫品种和遗传防治等领域,着重于它们在实践中的应用。  相似文献   

8.
近5年来, 我国在害虫变态发育与生殖调控、害虫滞育调控、害虫迁飞、害虫与共生微生物互作、害虫对杀虫剂的抗性、害虫与寄主植物的化学通讯、害虫对植物抗虫性的适应、害虫对作物种植结构调整的响应、害虫对全球气候变化的响应等农业害虫发生新规律新机制解析方面取得了系列重要进展, 同时推进了抗虫作物、RNA农药、行为调控和生态调控等害虫防控新技术与新产品的研发; 提出迁飞性草地贪夜蛾分区治理、多食性盲蝽区域防控、地下害虫韭蛆绿色防控和抗性麦蚜精准化学防控等害虫绿色防控新模式新体系。根据国内外农业害虫综合防治科技发展趋势和中国农业高质量发展现实需求, 我国需进一步重视农业昆虫交叉学科前沿和新兴技术领域, 以产业需求为导向, 强化害虫防控基础理论创新, 创制智能监测预警和绿色防控新技术、新产品, 创新集成区域绿色防控和跨区协同治理技术体系, 为保障国家粮食安全、助力乡村全面振兴提供强有力的植保科技支撑。  相似文献   

9.
落叶果树是指秋末落叶的一类果树,是我国重要的农林作物之一。近年来,随着果树种植结构的调整和种植面积的扩大,虫害对果树产业的影响越来越严重,越来越多的科研工作者加入到果园害虫防治的队伍中,并在果园害虫绿色防控方面获得了一批新技术,取得了一些新成果。为持续推动果树虫害防治新理念的落实,该文统计了20世纪60年代至今落叶果树虫害防治相关研究论文的发表情况,综述了落叶果树主要害虫的演变,总结了60年来落叶果树害虫防治理念及技术的转变。展望未来,害虫智能化精准识别与种群动态监测、害虫生态调控、害虫遗传调控以及基于纳米材料的RNA杀虫剂等新技术正推动果园害虫监测防控体系的不断创新。  相似文献   

10.
The ecological implications of insect resistance in conifers are rarely discussed. It is however a fairly straightforward plant-insect interaction and should be treated as such, making use of the increasing amount of information in this field. Work on tree breeding is usually carried out by silviculturalists who, not surprisingly, rarely consider the insect component of the environment in which the treess are growing. In all fairness, it must be stated that many entomologists, fail to consider the plant component of the interaction. Clonal forestry will almost certainly result in the loss of genetic variability. The use of clonal material has already been cited as a possible source for the diminution of the resistance against pests and diseases and if particular resistance mechanisms against forest pests are sought in the future the reduction in genetic material caused by clonal selection could have serious consequences. The ethics of clonal forestry have been questioned as have the ethics of biotechnological advances in the area of recombinant DNA molecules. The potential of both these techniques should be publicized and brought to the attention of the general public and the scientific community at large and evaluated. To improve our forest environment and to protect the environment as a whole, entomologists, geneticists, physiologists and silviculturalists must work together to produce better trees that require little, if any, chemical aid, be it insecticides, herbicides, fungicides or fertilizers. An increasing awareness of the environmental problems generated by large-scale insecticide applications to forest plantations, coupled with an increasingly chemophobic work-force and the difficulty in obtaining pesticide registration for use in forest environments, means that the forest industry world-wide must look to the use of integrated control measures with more diligence than has been shown in the past. Many recent outbreaks of pests and diseases have been linked with particular seed origins of tree crops. Host plant resistance as part of a suite of other proposed integrated control tools is thus an obvious candidate for development. Despite this, scientists concerned with tree improvement continue to select largely for silvicultural traits rather than for resistance to pests and disease. The different avenues open to plant breeders are examined and the potential of breeding trees resistant to insect attack highlighted. Using resistant trees as part of an integrated pest management system has five very important properties. Firstly, there is no additional pest control cost to the grower, secondly, it operates at all levels of insect incidence and not just when the pest is at high population levels, thirdly, it reduces the insect population cumulatively, fourthly it avoids toxic residues and environmental pollution and, finally, it usually interacts well with the other integrated pest management strategies in existence.  相似文献   

11.
Weeds may serve as reservoirs for new and invasive insect pests. The cassava root scale ( Protortonia navesi ) is a recent pest in the Brazilian 'Cerrado' that causes qualitative and quantitative damage by sucking plant sap. Recently, field surveys revealed that many common weeds in this region act as host for P. navesi in cassava fields. In a discrete survey, 15 weed species were identified that were hosting P. navesi . Among these, 13 species occurred during the cropping season and five were observed 4 months after cassava harvest. Eight months after harvest, only cassava volunteer plants were found to be hosting P. navesi . This survey provided a real example of the problem created when weeds host new crop pests. The management of weeds (including crop volunteers) needs to be considered as part of generalised pest management and pest invasion prevention schemes. Effective weed management can be a means of limiting the survival of new pests and the re-infestation of susceptible crop species in subsequent years. Simple studies like this point to a practical need to create greater collaborations between pest management researchers working within discrete pest categories.  相似文献   

12.
绿肥作物不仅能够提供地肥、改善土壤结构,而且还可以提供优质饲料,对我国农牧业生产安全具有重要意义,也是我国实现化肥减量、保持农业绿色发展的重要途径之一。我国绿肥种质资源丰富,绿肥害虫种类较多,但有关绿肥害虫研究的基础目前还较为薄弱,一些主要绿肥作物以及绿肥与主栽作物不同配置模式下害虫的发生种类与发生规律尚不清楚,相应的监测与防控技术缺乏。本文在系统分析国内外文献的基础上,结合国家绿肥现代农业产业技术体系的研究进展,综述了目前国内外主要绿肥作物上害虫发生的种类与规律、绿肥害虫的风险评估、不同绿肥-主作物种植模式下害虫发生规律与防控研究的现状。针对国内外绿肥害虫防控研究的现状及存在的问题,结合我国农业产业结构的调整,提出了今后绿肥害虫防控研究的主要方向。  相似文献   

13.
Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat‐based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer‐reviewed literature. Results from a vote‐counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry  相似文献   

14.
BACKGROUND: White grubs are the most widespread and damaging pests in turfgrass habitats of the northeast USA, and their management is highly dependent on chemical pesticides. Because this complex includes at least eight species, opportunities for pest management would be enhanced by understanding how susceptibility to control products varies across taxa. The objective of this laboratory study was to measure variation in the susceptibility of four species to 18 biological, biorational and chemical insecticides used as curative controls. RESULTS: Across species, the most efficacious biological and chemical insecticide alternatives were Steinernema scarabaei and chlorpyrifos respectively. For biorational and chemical insecticides, the European chafer [Amphimallon majale (Razoumowsky)] was the least susceptible species. For biologicals, the Japanese beetle (Popillia japonica Newman) was the least susceptible. Considering all control products, the oriental beetle [Anomala orientalis (Waterhouse)] was the most susceptible. CONCLUSION: The magnitude of variation in susceptibility supports the idea that a single product will not reliably suppress populations of all taxa, and highlights the need for pest management practitioners to identify white grub species before intervention. This differential susceptibility could have broader consequences for grub management if a numerically dominant target species is more completely suppressed than a co‐occurring species. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Cocoa is a key or source of income and poverty reduction in the humid forest of Southern Cameroon. Cameroon like other African countries went through a major economic crisis in the early 1980s with a decline in international commodity prices and significant changes in macroeconomic policies. Structural adjustment reforms following the economic crisis led to removal of fertilizers and pesticides subsidies, cocoa price liberalization and the overall withdraw of Government interventions from the cocoa sub-sector. Cocoa input price increases have been compounded by the devaluation of the CFA Franc, which doubled the prices of the imported pesticides which were considered key to the control of cocoa pests. This overall economic shock led to changes in cocoa producer's production decisions as a response to minimize cost. Among the changes the use of alternatives to imported chemicals for cocoa pest control. Farmers responded to the high prices of pesticides by developing, from local botanical knowledge and pest management strategies, which include plant extracts and plant extracts mixed with pesticides at different proportions. This is a major decision given the importance of imported chemical in the cost of production of cocoa. Valuable indigenous knowledge from farmers could be used also as an effective support system for communicating and diffusing modern knowledge and technologies to farmers. The paper describes the farmer knowledge-based alternatives to chemical pesticides for pest control in cocoa fields as a response to high pest control costs. Pest management specialists are urged to take advantage of this shift in practice and assess their effectiveness for further use. Two sets of questions are posed: (1) were the conventional insecticides, with all their problems, really necessary? and (2) are the materials derived from locally grown plants effective pest management agents or are they, in some way, placebos?  相似文献   

16.
Leaf eating insect outbreaks of unprecedented severity occurred on oil palms and cocoa in what became Malaysia, from the late 1950s to early 1960s. Growers faced two crucial questions, what to do about the attacks, and what caused them. The tropical climate generally continues suitable for phytophagous insects to realise their large increase capacity, a factor emphasised in the stable agroecosystem of perennial tree crops. Parasitic and predatory natural enemy insects are equally favoured and maintain control. It became increasingly evident that the prime cause of outbreak was disruption of this balance by the introduction of broad spectrum, long residual contact insecticides (bslrcs), with various contributory factors. Patchy pesticide residues would continue to eliminate inherently exploratory parasitic and predatory insects, something worsened by uneven initial application. In these conditions, there is a complete overlap of generations of both pests and enemies, with no evolution of synchronised or otherwise coordinated life cycles (‘continuous generation mode’– CGM). In outbreaks the pests tend to be at a similar lifecycle stage (‘discrete generation mode’– DGM), so that at times a high proportion of an enemy population that may be building up cannot find a suitable host stage. Simply stopping application was often enough to end the vicious circle of treatment and reoutbreak, but also, commonly, there was heavy damage in the meantime. Selective application was developed, involving inherent pesticide characteristics or method of use opposite in at least one aspect to bslrc (i.e. narrow spectrum, short residue life, or non-contact). Large areas were treated, e.g., from the air. Infestations mostly disappeared with only one or a few applications. In that era of the 1960s, chemical application compatible with biological control was known as ‘integrated control’. The bslrcs had been introduced to control other regularly occurring pests (‘key’ pests), limited localised build up of the target pests e.g., from climatic fluctuations (‘occasional’ pest), or as a ‘precaution’. Some species only appeared after disruption started (‘potential’ pest). Development of selective chemical control continued to be for key and occasional pests, aiming at effective kill once decided upon. Census monitoring ensured application only when justified economically, with timing to the most vulnerable stage in the pest lifecycle. Among non-chemical approaches, cultural methods include provision of suitable flora in the ground vegetation for food sources for adult parasitic insects. Reasonably dense ground vegetation cover is grown to suppress rhinoceros beetle damage in oil palm replantings. Other possibilities include dissemination of insect diseases, traps and attractants, and resistant plant types. This fitted ‘pest management’ which by the mid-1970s came to encompass selective chemical use, as ‘integrated pest management (IPM)’. There were similar developments in other parts of the world, and in other perennial tree crops, extended also to short term crops (e.g., rice and vegetables). IPM is not an esoteric methodology awaiting ‘complete knowledge’. It can be applied on the basis of principle and existing knowledge for the most reliable economic control, targetted to encompass any aspect, such as toxicology and environmental effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Bioassays of Lacanobia subjuncta (Grote and Robinson) larvae established baseline LC50 values and identified the potential of reduced-risk, organophosphate replacement and naturally derived insecticides (eg chloronicotinyls, spinosyns, oxadiazines, insect growth regulators, microbial insecticides and particle films) to control this pest. The toxicities of these products were compared with those of organophosphate, carbamate, chlorinated cyclodiene and synthetic pyrethroid insecticides used in the management of lepidopteran pests in Washington apple orchards. Field trials were conducted comparing candidate insecticides to conventional alternatives. Several new insecticides (eg spinosad, methoxyfenozide, indoxacarb and an aluminosilicate particle film) proved to be effective for the management of L subjuncta. We summarize the goals and challenges of developing an integrated pest management program for new and resurgent pests as insecticide tools continue to change, and propose a hypothesis for the sudden increase in pest status of L subjuncta based on organophosphate tolerances. The role of novel insecticides with unique modes of action in resistance management and the encouragement of biological control are also discussed.  相似文献   

18.
利用高温控制害虫具有无残留、无污染的优点,高温对害虫的致死作用在害虫种群生态调控研究和保证食品安全,促进绿色农产品生产中有潜在的应用价值。本文综述了国内外影响高温对昆虫致死效应的因子和应用高温防治害虫的技术方法。影响高温致死效率的因子包括:温度的高低和处理时间的长短,不同温度的处理顺序和预适应温度等温度处理模式,缺氧等逆境胁迫,昆虫种类及其发育阶段等。利用高温防治害虫的技术包括:温室内,在生长期采用高温闷棚,在播前产后用热蒸汽处理苗床或培养土。在田间,利用对作物安全的瞬间明火烧伤害虫敏感部位;利用害虫的趋光性点明火诱杀;作物生产空闲期采取覆膜封闭,利用太阳能产生高温、缺氧条件,减少或根除土传病菌和害虫。在仓库,利用微波、无线射频或流动床产生的热空气在短时间内升温,杀死储粮害虫。在储运场所,用热水浸泡、热蒸汽熏蒸、高温结合低氧或低温以及盐水浴结合无线射频处理鲜活农产品,杀死害虫。本文最后讨论了该领域存在的问题,指出阐明高温对昆虫影响的机理,降低防治成本,减轻作物和环境损害,是高温控制害虫技术推广应用的关键。  相似文献   

19.
The foundation of an integrated pest management program involves valid treatment thresholds, accurate and simple monitoring methods, effective natural controls, selective pesticides and trained individuals who can implement the concept. The Integrated Control Concept written by Stern, Smith, van den Bosch and Hagen elucidated each of these points in an alfalfa ecosystem. Alfalfa hay (Medicago sativa L.) has a low per acre value, requires little hand labor and is primarily marketed in the USA. In contrast, fresh market table grape (Vitis vinifera L.) has a high per acre value, requires frequent hand labor operations, suffers unacceptable cosmetic damage and is marketed throughout both the USA and the world. Each of the components of a working IPM program is present in table grape production. Marketing grapes to foreign countries presents special problems with pests considered invasive and where residue tolerances for some selective insecticides are lacking. However, fresh market grape farmers are still able to deal with these special problems and utilize an IPM program that has resulted in a 42% reduction in broad‐spectrum insecticide use from 1995 to 2007. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
BACKGROUND: The spread of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips‐vectored tospoviruses with calendar applications of broad‐spectrum insecticides have been unsuccessful. The result has been a classic ‘3‐R’ situation: resistance to numerous insecticides; resurgence of the western flower thrips populations as a result of natural predators and native competitor thrips being eliminated; replacement by various other pests. This paper reports on integrated pest management programs for fruiting vegetables that are effective, economical, ecologically sound and sustainable. RESULTS: The components include the following: define pest status (economic thresholds); increase biotic resistance (natural enemies and competition); integrate preventive and therapeutic tactics (scouting, ultraviolet‐reflective technologies, biological control, compatible insecticides, companion plants and fertility); vertically integrate the programs with other pests; continually communicate latest science‐based management tactics with end‐users. CONCLUSION: These programs have been widely implemented in Florida and have significantly improved the management of western flower thrips and thrips‐transmitted viruses. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号