首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined how the density, growth and survival of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton) regeneration are influenced by gap size, soil nutrient availability and understory vegetation. We used a factorial combination of (1) three gap sizes (small: <100 m2; medium: 100–300 m2; large: ∼1000 m2); (2) presence/absence of liming (92% CaCO3 at 500 kg ha−1, 1st year post-harvest); and (3) presence/absence of vegetation control (weeding twice a year; 1st to 3rd year post-harvest). We monitored height increment and survival of 1500 seedlings and saplings of both species from the 3rd to the 6th year post-harvest, and assessed density 6 years post-harvest. Both species exhibited a complex set of density, growth and survival responses across the combination of treatments. Compared to sugar maple, yellow birch had an overall lower density, greater growth, and similar survival rate; the two species attained maximum values in different gap size for density, and similar gap size for growth and survival. Liming had very little or no effect on the species. The growth of yellow birch was slightly but significantly greater when understory vegetation was controlled, particularly in medium and large gaps. These results suggest that a variety of canopy gap sizes can provide the right combination of understory conditions for regenerating these two functionally different tree species.  相似文献   

2.
In order to better understand the structure and composition of forest plant communities, we aimed to predict the abundance of understory herbaceous species locally at the stand level and according to different environments. For this, we seeked to model species distributions of abundance at a regional scale in relationship with the local stand structure (canopy openness) and regional soil resources (soil pH).Floristic inventories, performed in different light and soil conditions located in 1202 records of north eastern France, were used to analyze the combined effect of canopy openness and soil pH on the abundance of 12 common western European forest species: Anemone nemorosa, Deschampsia flexuosa, Festuca altissima, Hedera helix, Lamium galeobdolon, Lonicera periclymenum, Molinia caerulea, Oxalis acetosella, Pteridium aquilinum, Rubus fruticosus, Rubus idaeus, and Vaccinium myrtillus. Ordinal regression models relating species abundance responses to their environment were developed.For most species (eight out of 12), distribution was significantly affected by canopy openness and soil pH. Differences among low-abundance (i.e. cover <25%) and high-abundance (i.e. cover >25%) responses were noted for 11 species along the canopy openness gradient and four species along the pH gradient. The present study quantifies optimal light and soil nutrient requirements for high-abundance responses and quantifies light and soil nutrients tolerance conditions for low-abundance responses. The combination of both factors highlights the pre-eminence of pH conditions occurrence and canopy openness for species abundance.The models developed by this study may be used to define canopy openness thresholds in function of soil characteristics to control the development of species during forest regeneration. The species-specific reactions on local canopy openness along a regional soil gradient illustrate the need for a species-specific management approach.  相似文献   

3.
  • ? In mixed-species forest stands, large losses in tree species diversity often occur during the regeneration phase. In a former coppice-with-standards, we investigated whether the limiting stage in the recruitment process of advance regeneration is the immediate seedling response to canopy release. Experimental canopy gaps were opened and the survival and growth of advance seedlings (Fagus sylvatica, Acer pseudoplatanus, Acer campestre, Acer platanoides) growing in the gaps or under closed canopy were monitored for three years.
  • ? All species responded positively and rapidly to canopy release. Survival was not affected by gap opening. Diameter increment after gap opening was similar across species, and height increment was greater for Acer platanoides and for Acer pseudoplatanus. Post-release diameter and height growth were mainly determined by pre-release seedling size. Competition from neighbouring seedlings did not affect growth in the three years following canopy opening.
  • ? In the recruitment process of F. sylvatica and Acer sp. advance regeneration, the recovery from canopy release did not appear as a limiting step that would filter against some species. Pre-release size was the main factor accounting for post-release growth and is probably a major determinant of long-term seedling dominance.
  •   相似文献   

    4.
    With the increase in abandoned agricultural lands in Western Europe, knowledge on the successional pathways of newly developing forests becomes urgent. We evaluated the effect of time, soil type and dominant species type (shade tolerant or intolerant) on the development during succession of three stand attributes: above-ground biomass, stand height (HT) and stem density (SD). Additionally, we compared above-ground biomass (AGB) in natural and planted forests, using ten chronosequences (8 from the literature and 2 from this study). Both AGB and HT increased over time, whereas SD decreased. HT, SD and AGB differed among species types. For example, birch had greater HT than alder, willow and ash at a similar age and had higher SD than pine and oak at a similar age. However, birch showed lower AGB than pine. HT and AGB differed among soil types. They were higher in rich soil than in poor soils. Comparative analysis between chronosequences showed an effect of the regeneration method (natural regeneration vs plantation) on above-ground biomass. Planted sites had higher AGB than natural regeneration. Time, soil type, species and regeneration method influenced the mechanism of stand responses during secondary succession. These characteristics could be used to clarify the heterogeneity and potential productivity of such spontaneously growing temperate forest ecosystems.  相似文献   

    5.
    Since the mid-1990s the forests of central British Columbia have undergone an unprecedented Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) (MPB) epidemic that has resulted in extensive mortality of canopy lodgepole pine (Pinus contorta var. latifolia Engelm.). This study investigated how seed-source availability, seedbed substrate, overstory structure, and time since MPB attack interact to affect post-MPB seedling recruitment of the dominant tree species of these forests. In addition to post-MPB recruitment, these forests may be regenerated by trees established in the understory prior to MPB disturbance. Accordingly, we examined abundance and patterns of all regeneration less than 130 cm tall. We found post-MPB recruitment was sparse. Subalpine fir (Abies laciocarpa (Hook.) Nutt.) comprised the majority of the post-MPB recruitment. It increased with local parent tree basal area and increased strongly with proximity to a major seed source. This resulted in a patchy distribution for subalpine fir post-MPB regeneration. Lodgepole pine post-MPB recruitment was limited by overstory shading. Recruitment of pine decreased as the total overstory basal area increased. Interior spruce (Picea glauca × engelmannii) post-MPB recruitment was similarly limited by total overstory basal area. Seedbed substrates were uniform and dominated by moss. Substrate type distribution did not change as time since MPB disturbance increased. The overall low post-MPB recruitment observed was likely due to a lack of disturbance to the moss-dominated forest floor. Moss is known to be a poor substrate in northern forests. The distribution of all regeneration less than 130 cm tall showed the same trends as the post-MPB regeneration. We believe the post-MPB seedling recruitment dynamics of these forests was not substantially changed from conditions prior to MPB disturbance. There was no pulse of regeneration up to 10 years post-MPB disturbance. Unless this changes, future stand structure will be dominated by the seedling bank established prior to the MPB epidemic. Subalpine fir dominated the seedling bank (68%) and post-MPB recruitment (94%). This suggests that MPB-disturbed forests are undergoing a substantial shift in landscape-level species composition.  相似文献   

    6.
    Natural regeneration of windthrow areas is an important issue when planning forestry measures after forest disturbances. Seedling recruitment was investigated in storm-damaged hemiboreal mixed forests in eastern Estonia. The establishment and growth of seedlings from natural regeneration was registered for tree species in soil pits and in mounds of uprooted trees in stands that were either heavily or moderately damaged. Seedling growth is expected to be better in large but shallow soil pits created by uprooted Norway spruce [Picea abies (L.) Karst.] and poorer in small but deep pits created by the hardwoods in the area, silver birch (Betula pendula Roth.) and European aspen (Populus tremula L.). The most abundant regenerating species was birch. Pits hosted larger seedling numbers than mounds, due to soil instability in mounds. Rowan (Sorbus aucuparia L.) showed significantly faster growth than the other seedling species. Norway spruce pits were preferred to pits of other species by both birch and spruce seedlings. Black alder [Alnus glutinosa (L.) J. Gaertn.] did not show a preference for pits of a certain species of uprooted tree. Both spruce and rowan preferred hardwood mounds over spruce mounds. Storm severity also affected species composition: birch predominantly occurred on pits and mounds in heavily disturbed areas, while spruce was more abundant in the moderately damaged areas. The effects of advance regeneration and surrounding stands on seedling microsite preferences should be considered in future research and subsequent management recommendations.  相似文献   

    7.
    Natural regeneration of Abies sachalinensis on soil was studied in a natural sub-boreal forest managed by single tree selection cutting located within the Hokkaido Tokyo University Forest. First, seedlings of A. sachalinensis on skid trails, soil mounds, soil pits, and undisturbed soil were counted, and their areas were measured. Most seedlings were found on skid trails. Seedling densities of A. sachalinensis on sites with soil disturbance, with the exception of soil pits, were significantly greater than that on undisturbed soil. Second, densities of Sasa senanensis, heights of S. senanensis, and seedling densities of A. sachalinensis on skid trails and undisturbed soil in both a closed-canopy stand and in a canopy gap were compared. Seedling density of A. sachalinensis on skid trails in the closed-canopy stand was significantly greater than that in the canopy gap. Average density and average height of S. senanensis, which is known to interfere with regeneration of many woody species, were significantly greater on skid trails and undisturbed soil in the canopy gap than those in the closed-canopy stand. It could be concluded from this study that both crown closure and soil disturbance are essential for natural regeneration of A. sachalinensis on soil in sub-boreal forests.  相似文献   

    8.
    The impact of winter harvesting on regeneration 50 years after an experimental diameter-limit cutting was examined in mixed deciduous–coniferous ecosystems of southern Quebec, Canada. The study was conducted in La Mauricie National Park, Quebec, Canada. Regeneration data in two balsam fir (Abies balsamea (L.) Mill.), red spruce (Picea rubens Sarg.), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britt.) ecosystem types were analyzed. Comparisons between uncut and cut stands were obtained from a total of 63 sample plots. For both ecosystems, there were no significant differences between uncut and cut plots for regeneration density and stocking. The most abundant regeneration species were balsam fir, red spruce, sugar maple, red maple (Acer rubrum L.), yellow birch and American beech (Fagus grandifolia Ehrh.). The type of diameter-limit cutting described in the study did not affect regeneration density and stocking but its impact on productivity, timber quality and genetics is still unknown.  相似文献   

    9.
    The forest growth model 4C was used to investigate how conversion management of a Scots pine (Pinus sylvestris L.) stand towards a mixed oak–birch stand would affect stand structural development – and hence biodiversity and productivity – in the long term. For this purpose the 4C model was parameterised for natural regeneration of light demanding species and extended for management of multi-layered stands. A series of structural indicators was selected to describe key factors of forest biodiversity at the stand scale. Two consecutive aspects of Scots pine conversion were tested: (1) the choice of conversion strategy between thinning and gap creation and (2) the choice of conversion regime in terms of cutting cycle, thinning type and pine tree retention. Three simulated conversion strategies aim at the gradual removal of the pine canopy but differ in the spatial organisation of pine cuttings and hence result in different light conditions for regeneration. Only the directed gap creation strategy was able to maintain and increase birch admixture to the stand and to approach natural stand structural development. Simulation of 12 conversion regimes for the directed gap creation strategy indicated that thinning type (from above or from below), pine tree retention at final felling (50% of the standing volume or none) and cutting cycle (6, 9 or 12 years) all significantly influence stand structural development. These effects were clearest for oak development. Birch occurred in a few mixed clusters, but tended to disappear when longer cutting cycles were used. Based on a multi-criteria analysis we conclude that the optimal conversion regime – in which both stand productivity and biodiversity objectives can be combined – implies thinning from above, pine tree retention, and cutting cycles of 6 years. The conceptual validity of the model as well as the applicability of the results are discussed.  相似文献   

    10.
    The growth, aboveground biomass production and nutrient accumulation in black alder (Alnus glutinosa (L.) Gaertn.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) plantations during 7 years after planting were investigated on reclaimed oil shale mining areas in Northeast Estonia with the aim to assess the suitability of the studied species for the reclamation of post-mining areas. The present study revealed changes in soil properties with increasing stand age. Soil pH and P concentration decreased and soil N concentration increased with stand age. The largest height and diameter of trees, aboveground biomass and current annual production occurred in the black alder stands. In the 7-year-old stands the aboveground biomass of black alder (2100 trees ha−1) was 2563 kg ha−1, in silver birch (1017 trees ha−1) and Scots pine (3042 trees ha−1) stands respective figures were 161 and 1899 kg ha−1. The largest amounts of N, P, K accumulated in the aboveground part were in black alder stands. In the 7th year, the amount of N accumulated in the aboveground biomass of black alder stand was 36.1 kg ha−1, the amounts of P and K were 3.0 and 8.8 kg ha−1, respectively. The larger amounts of nutrients in black alder plantations are related to the larger biomass of stands. The studied species used N and P with different efficiency for the production of a unit of biomass. Black alder and silver birch needed more N and P for biomass production, and Scots pine used nutrients most efficiently. The present study showed that during 7 years after planting, the survival and productivity of black alder were high. Therefore black alder is a promising tree species for the reclamation of oil shale post-mining areas.  相似文献   

    11.
    甘肃小陇山灌木林不同改造模式天然更新研究   总被引:1,自引:0,他引:1       下载免费PDF全文
    用样方法,研究了小陇山林区5种典型灌木林地改造模式的乔木树种天然更新幼苗的密度和多样性。结果表明:5种灌木林地改造模式的乔木树种天然更新情况总体良好,小于50 cm高度级幼苗数量相对较少,大于50 cm高度级幼苗的存活率较高;5种改造模式天然更新树种以锐齿栎为主,其中,全面割灌改造日本落叶松(模式3)更新幼苗物种丰富度最高,全面割灌改造油松模式(模式2)天然更新树种丰富度最小;带状割灌改造模式(模式4和模式5)和全面割灌改造华山松模式(模式1)的更新树种多样性较高,各树种分配均匀,优势树种的集中性较低;改造树种华山松的天然更新能力较油松日本落叶松强,带状割灌改造模式更有利于华山松天然更新。  相似文献   

    12.
    This study was conducted to analyze the stand structure of Quercus mongolica forests in Korea and to understand their regeneration dynamics. Forest community types of Mt. Joongwang, Mt. Chiri and Mt. Worak were classified into 7 groups by TWINSPAN. Q. mongolica appeared mainly on mid to upper slope positions. Acer mono, A. pseudo-sieboldianum, Maackia amurensis and Tilia amurensis are commonly associated with Q. mongolica. The density and basal area of Q. mongolica decreased as the stand developed into pole and early-mature stage forests. Total number of species increased as stands developed. Q. mongolica is an early invader of disturbed areas and dominates the stand, which means that this species should be considered as a pioneer species rather than a climax. Germination rate of scattered acorns was very low but fallen leaves over the acorns protected them from animal feeding and raised the germination rate. Among the seedlings of Q. mongolica, more than 70% originated from seedling sprouts. They showed a higher growth potential than seedlings, and their heartwoods are decay resistant. Therefore, their number and size were very important factors in determining the species composition of future forests after clearcutting.  相似文献   

    13.
    We investigated the spatial distribution, advanced regeneration and stand structure of five Shorea robusta-dominated forests in 25 1-ha plots subject to disturbances of different intensities. We aim to elucidate the relationships of advanced regeneration and spatial patterns of the tree species with degree of disturbance magnitude. Sixty-seven tree species were recorded in the forest plots; 41 species were found in the least disturbed forests, while only 10 species were found in the heavily disturbed forests. We found 5320 trees with >1.5 cm diameter at breast height, in total, and found that moderately disturbed forests contained the highest advanced regeneration (sapling)/pole densities. No significant differences were observed in stem basal area among forests. The overall stand density changed quadratically across the disturbance gradient. A strong inverse relationship was found between the overall stand density and diameter class in the least disturbed and moderately disturbed forests. Ten species showed variation in their dispersion patterns across the disturbance gradient. Most of the socio-economically important tree species analyzed showed little or no regeneration in the least and most heavily disturbed forests. Individual species showed different responses to disturbance ranging from ‘tolerant’ (Shorea robusta, Lagerstroemia parviflora and Symplocos spp.) to ‘sensitive’ (Trewia nudiflora, Adina cardifolia and Terminalia alata). We concluded that moderate disturbance intensity not only ensures high stand density, but also enhances the advanced regeneration of socio-economically important tree species and affects their dispersion patterns. Future management strategy must balance the consumptive needs of the local community with those of species conservation by allowing regulated access to the forests.  相似文献   

    14.
    Natural regeneration in canopy gaps is a key process affecting long-term dynamics of many forests, including northern hardwood forests. The density and composition of regenerating trees are often highly variable, reflecting sensitivity to a suite of driving factors operating at different scales (e.g., harvest gap to regional landscape), including production of seeds, physical characteristics of gaps and stands, competition with non-tree vegetation, and browsing by animals. Multivariate analyses over broad geographic areas provide insights into the relative effects of these factors and permit exploration of spatial patterns in regeneration. We examined the effects of gap-, stand-, and landscape-scale factors on densities of tree seedlings (<1 m tall) and saplings (1-2 m tall) in 59 selection-harvested northern hardwood stands located across a 4500 km2 region of Michigan's Upper Peninsula. We used Bayesian multilevel modeling to account for the hierarchical structure of the data and assess uncertainty in parameter estimates. Sugar maple (Acer saccharum) saplings were absent from 61% of 154 m2 plots centered in harvest gaps (n = 347) despite its high shade tolerance and overstory dominance, but densities were high in other gaps. Densities of sugar maple seedlings and/or saplings were negatively associated with a combination of greater stand-scale densities of white-tailed deer (Odocoileus virginianus), greater gap-scale cover of non-tree vegetation, and lower gap-scale light availability, with deer density having the greatest effect. Densities of unpalatable and commercially less valuable ironwood (Ostrya virginiana), the second most common regeneration species, were positively related to gap-scale seed-production potential but were unrelated to factors affecting sugar maple. Ironwood tended to replace sugar maple saplings in areas with high deer density. At the landscape scale, densities of sugar maple seedlings and saplings decreased with decreasing latitude and snow depth and increasing winter deer densities. These inverse spatial patterns suggest that deer herbivory can lead to landscape-scale variation in regeneration success. However, the spatial distribution of habitat types (a proxy for soil moisture and nutrient conditions) confound this observation, with higher densities of sugar maple generally located on stands with less nutrient-rich habitat types. Results demonstrate that combinations of factors operating at different scales, and with different relative magnitudes of impact, contribute to high variation in regeneration composition and density following timber harvest. Selection silvicultural practices, as currently applied, do not ensure regeneration of desirable species; practices might require modifications in general (e.g., increasing gap size) and to match them to regionally varying factors like deer density.  相似文献   

    15.
    The effect of land use type on the dynamics and annual rate of net nitrogen mineralization (NNM) in a naturally generated silver birch stand and in a grassland, both on abandoned agricultural land, was assessed in situ in the upper 0–20 cm soil layer using the method of buried polyethylene bags. Annual NNM rate in the birch stand (156 kg N ha−1 year−1) was higher than in the grassland (102 kg N ha−1 year−1); in both cases NNM covered a major part of the plants annual nitrogen demand. The rate of NNM in the upper 0–10 cm soil layer in the birch stand (99 kg N ha−1 year−1) exceeded the respective rate of NNM in the grassland (51 kg N ha−1 year−1) roughly two times. In the grassland the rates of NNM in the 0–10 and 10–20 cm layers were equal; in the birch stand NNM in the 0–10 cm layer was 1.7 times higher than in deeper 10–20 cm layer. The intensity of daily NNM in the upper 0–10 cm soil layer in the birch stand was the highest in June and in the grassland in May, 776 and 528 mg kg−1 N day−1, respectively. In our study no significant correlation was found between NNM and the environmental factors monthly mean soil temperature, soil moisture content and pH.  相似文献   

    16.
    To better understand the potentials of the soil seed banks in facilitating succession towards a more natural forest of native tree species, we quantified the size and composition of the soil seed banks in established plantations in South China. The seed banks were from four typical 22-year-old plantations, i.e., legume, mixed-conifer, mixed-native, and Eucalyptus overstory species. Species diversity in the seed banks was low, and the vegetation species differed from those found in the seed bank in each plantation. A total of 1211 seedlings belonging to eight species emerged in a seedling germination assay, among which Cyrtococcum patens was most abundant. All species detected were shrubs and herbs, and no viable indigenous tree seeds were found in soil samples. Size and species composition of the seed banks might be related to the overstory species compositions of the established plantations. The seed bank density in soils was highest in the mixed-conifer plantation followed by Eucalyptus, mixed-native, and legume plantations. Species richness among the seed banks of plantations was ranked as follows: Eucalyptus > mixed-conifer > mixed-native = legume. The results indicated that the soil seed banks of the current plantations are ineffective in regenerating the former communities after human disturbances. Particularly, the absence of indigenous tree species seeds in the seed banks would limit regeneration and probably contribute to arrested succession at the pioneer community stage. It would appear from these data that the soil seed banks under the current plantations should not be considered as a useful tool leading the succession to more natural stages. Introduction of target indigenous species by artificial seeding or seedling planting should be considered to accelerate forest regeneration.  相似文献   

    17.
    In production forests in the moist tropics, trees are selected for felling or retention primarily by species and size. Tree regeneration requirements and forest stand responses to harvesting are often ignored, and consequently, the regeneration of the residual forest is not ensured. We developed and tested an alternative approach to tree selection, where seed trees were retained as a proportion of harvestable trees, with the proportion defined as a function of species’ ecological attributes and local abundance (100 ha), in contrast to the conventional approach which retained 10% of harvestable trees, uniformly across commercial species at the compartmental scale (1000 ha). The study was conducted in Democracia Project, a forest management operation in Amazonas, Brazil. The conventional approach failed to retain any seed trees at the 100 ha block scale for 7 of 37 commercial species, whereas the alternative approach retained a minimum number of seed trees per 100 ha block for all commercial species. The conventional approach resulted in the retention of relatively high proportions of potential seed trees for common species (e.g., 22% for Eperua oleifera and 36% for Maquira sclerophila) that are shade bearers and recruit readily at the site; alternately, for species with constraints to regeneration, it retained relatively low proportions (e.g., 2% for Dinizia excelsa and Hymenolobium nitidum). The alternative approach effectively retained lower proportions of common species (e.g., 10% for E. oleifera and 13% for M. sclerophila) and relatively high proportions of species with regeneration constraints (e.g., 20% for D. excelsa and 16% for H. nitidum). Our study demonstrates that it is feasible to implement at an operational scale, species-specific retention rules that take into account local abundance when inventory data are digitised and spatially explicit. Monitoring regeneration in the residual stands over time will provide the evidence to assess the ecological benefits of the adoption of our alternative approach.  相似文献   

    18.
    In September 2003 Hurricane Isabel swept through eastern North Carolina and Virginia, destroying most of what formerly ranked among the most extensive remaining stands of Atlantic White-cedar (Chamaecyparis thyoides L., cedar). As Atlantic White-cedar communities are dependent on irregular, large-scale disturbances, the hurricane event can be viewed as an opportunity for perpetuating cedar populations in the Great Dismal Swamp. The success of cedar regeneration in the Dismal Swamp has been influenced by the management strategies employed by Great Dismal Swamp National Wildlife Refuge (active management) and by the adjacent Dismal Swamp State Park (passive management). We investigated the regeneration success of Atlantic White-cedar 5 years following Hurricane Isabel by sampling five stands at the Dismal Swamp State Park withstanding varying impact from the storm and previous windthrow events. We compared our findings to regeneration surveys completed at the adjacent Great Dismal Swamp National Wildlife Refuge. Atlantic White-cedar seedling densities were up to 100 times higher in the actively managed Wildlife Refuge compared to the passively managed State Park. We also determined the seedbank of viable cedar seeds and we described the vegetation at the State Park. The stands at the State Park are now dominated by red maple (Acer rubrum) with a dense shrubby understory. Since viable cedar seeds were still present in the seedbank (>800,000 ha−1), future seedling establishment is possible at the State Park. However, active management is essential for achieving sufficient seedling densities and survival for regenerating a mature cedar stand.  相似文献   

    19.
    Canopy development on a 6-year-old strip cut was analyzed by measuring the heights to terminal buds and bud scale scars of the tallest individuals of each species present on 50 plots of radius 6 m. Phenology of height growth was monitored during the following growing season. Pin cherry (Prunus pensylvania L.), an intolerant short-lived tree, had the fastest growth rate and was on the average the tallest species from the second to the sixth year of regrowth. Although advance regeneration of sugar maple (Acer saccharum Marsh.) and beech (Fagus grandifoloa Ehrh.) were the tallest trees during the first growing season, their slower growth rate insured that they would not keep up with the pin cherry. Trembling aspen (Populus tremuloides Michx.), striped maple (Acer pensylvanicum L.) and yellow birch (Betula alleghaniensis Britt.) occupied an intermediate position in the canopy by the end of the sixth growing season, and showed relatively greater annual height increment than beech or sugar maple. Height growth phenology differed slightly for each species. Beech, ash (Fraxinus americana L.) and sugar maple commenced growth early, grew rapidly and set buds all by 1 August (beech by 15 June). Yellow birch, pin cherry and trembling aspen started growing as early as the others, grew more slowly at first but then grew for a longer period of time. Striped maple seemed to be somewhat intermediate. Growth phenology and growth rate are related to the tolerance and growth form type (e.g. determinate or indeterminate) of the species. The most tolerant species tend to be determinate in growth form, have slower growth rates and complete height growth earlier. The intolerant species tend to be indeterminate, have a faster growth rate and continue to grow for a longer period. These may be mechanisms by which many species can grow together and avoid adverse effects such as suppression.  相似文献   

    20.
    Vegetation development over a 20-year period following clearcutting in balsam fir (Abies balsamea (L.) Mill.)-yellow birch (Betula alleghaniensis Britt.) ecosystems was examined in a study area located in eastern Québec, Canada. Vegetation, physiographic and soil data were collected in 10 mature ecosystems and in 30 ecosystems harvested 5 years ago (10), 10 years ago (10), or 20 years ago (10). The 40 ecosystems had similar physiographic and soil characteristics. They were typically located on mesic sites situated on ground moraines thicker than 50 cm. Following harvesting, sites were invaded by competing species. Mountain maple (Acer spicatum Lamb.) was the most important competing species. Twenty years after logging, it fully occupied the sites with 7040 stems ha−1 (diameter at breast height ≥ 1 cm). Its regeneration stocking reached 88% with a density of 22775 stems ha−1. Wild red raspberry (Rubus idaeus L. var. strigosus (Michx.)) and fireweed (Epilobium angustifolium L.) were abundant during a 10-year period after logging, but disappeared almost completely afterwards. The abundance of competing species has considerably reduced site production for a period of 20 years and will probably continue to do so for 20 to 30 more years. The proportion of commercial deciduous species increased from 36% of the total number of stems (diameter at breast height ≥ 1 cm) in mature stands to 89% in stands harvested 20 years ago. Balsam fir and white spruce (Picea glauca (Moench) Voss) advanced regeneration was considerably reduced. Stocking of these species went down from 76% in mature stands to only 27% in 20-year-old stands. As a result, it is unlikely that the harvested areas will naturally evolve toward the original climax balsam fir-yellow birch forest type in the foreseeable future.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号