首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Chusquea ramosissima is a native monocarpic bamboo species growing in subtropical forests of northeastern Argentina, which can dominate gaps and open forests in the region, particularly after human disturbance. This bamboo species started to flower in different areas of northeastern Argentina in 2001, with the flowering peak during 2002 and 2003 and small isolated flowering events still occurring until 2010. We studied the effects of C. ramosissima flowering and die-back on microclimate, litter decomposition, nutrient availability, sapling growth, abundance and regeneration of tree canopy species. We wanted to know how environmental conditions and ecosystem processes change through time after bamboo flowering and if bamboo die-back would favor regeneration of canopy trees. Twenty 50 × 50 m plots of flowering and non-flowering bamboo were permanently marked and vegetation dynamics as well as nutrient cycling and microclimate studies were performed. C. ramosissima die-back enhanced growth and reduced mortality rate of tree saplings during the first year after flowering. Only growth of tree saplings previously established was enhanced by the flowering event and tree-species richness and saplings abundance of canopy trees did not change as expected due to bamboo flowering. The short-term effect of tree saplings growth was likely due to incident solar radiation at the forest floor which doubled in the first year after the bamboo flowering event. Increased light availability at the forest floor simultaneously promoted the growth of other understory plants such as ferns, lianas and Piper spp. that rapidly colonized gaps and intercepted a percentage of the incident solar radiation after the first year, which together with an increased litter layer due to the senescence of the bamboo, may have inhibited establishment of new tree individuals and affected tree growth. Contrary to predictions, soil water, litter decomposition and soil nutrients were not significantly affected by bamboo flowering. Thus, successful tree regeneration in gaps following bamboo flowering appears to be restricted to a very narrow window of increased light availability (i.e., 1 year) before growth of other understory plants and rapid re-colonization of bamboo. Changes in resource availability, and the opportunity for overstory regeneration after bamboo flowering events appears to depend on climatic and community characteristics of the ecosystem where the flowering event occurs and also, on the flowering patterns and their synchronicity.  相似文献   

2.
Effects of bamboo stands on seed rain and seed limitation in a rainforest   总被引:1,自引:0,他引:1  
Bamboos often negatively affect tree recruitment, survival, and growth, leading to arrested tree regeneration in forested habitats. Studies so far have focused on the effects of bamboos on the performance of seedlings and saplings, but the influence of bamboos on forest dynamics may start very early in the forest regeneration process by altering seed rain patterns. We tested the prediction that the density and composition of the seed rain are altered and seed limitation is higher in stands of Guadua tagoara (B or bamboo stands), a large-sized woody bamboo native from the Brazilian Atlantic Forest, compared to forest patches without bamboos (NB or non-bamboo stands). Forty 1 m2 seed traps were set in B and NB stands, and the seed rain was monitored monthly for 1 year. The seed rain was not greatly altered by the presence of bamboos: rarefied seed species richness was higher for B stands, patterns of dominance and density of seeds were similar between stands, and differences in overall composition were slight. Seed limitation, however, was greater at B stands, likely as a resulted of reduced tree density. Despite such reduced density, the presence of trees growing amidst and over the bamboos seems to play a key role in keeping the seeds falling in B stands because they serve as food sources for frugivores or simply as perches for them. The loss of such trees may lead to enhanced seed limitation, contributing ultimately to the self-perpetuating bamboo disturbance cycle.  相似文献   

3.
The bambooPhyllostachys bambusoides has been widely planted on riverbanks in Japan to protect against erosion. Recently, unmanagedP. bambusoides stands with high culm density are spreading along the banks of rivers. In order to study the impact of the bamboo stands on riparian ecosystems, the relations between bamboo stand structure, light conditions and plant communities under the canopy were examined. The study sites were set in bamboo stands with various culm densities in the middle of the Yahagi River in Toyota, Aichi Prefecture. There was a close relationship between canopy coverage and relative photon flux density (RPFD) in the bamboo stands. RPFD showed a highly negative relationship with total culm density, whereas no significant relation was observed between the basal area of bamboo and RPFD. The total number of plant species in the bamboo stands increased with decreasing culm density. Only a small number of tree saplings were observed in the stands with the highest culm densities, while several species of forest floor herbs were found in the stands with lower culm densities. A number of invasive and annual plants colonized the thinned stand. We suggest that moderate thinning and clearing of dead culms are needed to maintain biological diversity in the bamboo stands on riverbanks.  相似文献   

4.
This paper reviews the primary effects of canopy on understorey vegetation to provide insight into the management of the canopy space to benefit tree regeneration. Site conditions, like nutrient and water availability, overstorey conditions, e.g. tree species, and canopy density, are important determinants of ground vegetation. An investigation of canopy effects is concerned about how the canopy trees modify site conditions. As canopy density may be deliberately modified during regeneration treatments, the effect of canopy density on individual species in the herbaceous layer and tree regeneration is important. This autecological perspective focuses on the successional traits of species to help understand species differences in fecundity, survival, density and growth. From a synecological perspective, the importance of successional traits for the outcome of competition between species arising from differences in canopy densities is highlighted. This review shows that moderately dense canopies may favour tree regeneration over aggressive shade-intolerant graminoids or forbs. This is particularly true for shade-tolerant and intermediate shade-tolerant tree species. To better understand and utilise this phenomenon, research should try to identify and isolate different canopy effects.  相似文献   

5.
6.
To document the spatial and temporal variation of environmental signals inducing seed germination in temperate forests, we measured temporal patterns of environmental signals and seed germination of six pioneer tree species in unthinned and thinned stands of conifer forests (Cryptomeria japonica plantations) and in the understory and gaps of hardwood forests in Japan. We also conducted germination experiment in laboratory for the six pioneer species to test the effects of red:far-red (R:FR) light ratio and temperature fluctuations on the seed germination. In conifer forests, the photosynthetic photon flux density (PPFD), the R:FR ratio, and the amplitude of temperature fluctuations in thinned stands were 2, 1.5, and 3 times higher, respectively, than those of unthinned stands. The PPFD and R:FR ratios just above forest floor also increased after the removal of thick litter accumulation. As a result, higher seed germination was observed in thinned compared to unthinned stands for three photoblastic species, whereas little differences were observed for three non-photoblastic species. These findings suggest that thinning, which frequently reduces litter accumulation, can substantially affect the regeneration of pioneer species and the resultant species diversity in conifer plantations. None of the measured environmental signals changed seasonally in unthinned stands of conifer forests, but they all changed remarkably in the understory of the hardwood forests. In this system, all signals were high and nearly identical to those in the gaps in early spring prior to canopy closure. Thus, the percent germination of the three photoblastic species was enhanced by high R:FR ratios and/or large temperature fluctuations even beneath the canopy and was nearly equal to that in the thinned conifer stands where the environmental conditions were nearly identical to those in the gaps. However, all of the environmental signals decreased with the expansion of canopy leaves and reached minimums at canopy closure. Even in the thinned stands and the gaps, the PPFD and magnitude of temperature fluctuations decreased over time due to shading by growing herbs and/or emerging canopy leaves. In these temporally changing environments, the germination of all photoblastic species ceased simultaneously. This study clearly demonstrated that the environmental signals inducing seed germination of photoblastic pioneer species spatially and temporally change in temperate forests, particularly in deciduous hardwood forests. Furthermore, these signals, PPFD, R:FR ratio, and the amplitude of temperature fluctuations, appear to play a very important role in tree regeneration and subsequent species diversity.  相似文献   

7.
We assessed the relationship of the regeneration (seedling and sapling) densities of seven representative tall-tree species to the past partial cutting and current stand structure. We also determined if differences in tree regeneration were associated to establishment substrates (coarse woody debris (CWD) and root throws) and understory inhibitor vegetation (the dwarf bamboo species: Sasa senanensis). The study was conducted in 17 conifer–hardwood mixed stands in a heavy snowfall region in Hokkaido, northern Japan. The results suggest that stand structure, rather than logging intensity, is the primary factor influencing regeneration densities. Total conifer basal area was positively correlated with the regeneration density of individual tree species, including two conifers and three hardwoods. These patterns differ from those observed in old-growth stands in the region. A negative correlation between total conifer basal area and dwarf bamboo coverage suggests that the presence of dense conifer canopies causes an increase in regeneration density of tall-tree species by preventing domination of dwarf bamboo. Picea glehnii, a species that depends for its establishment strongly on CWD, has lower seedling and sapling density in stands with higher logging intensity. This seems to be a result of the decrease in the volume of CWD with increasing logging intensity in these stands. We suggest that both reducing logging intensity and retaining overstory conifers should be considered to develop a sustainable silvicultural system in this region. Providing sufficient CWD and root throws may also be important to ensure natural regeneration of tree species that require these as an establishment substrate.  相似文献   

8.
通过对含有鄂西箬竹的4种植被,即针阔混交林、次生阔叶林、疏灌丛及草甸的样地调查,比较分析了箬竹群落的区系构成,生活型、群落结构及竹类生存状况。20年前的针叶树种的采伐提升了样地的物种多样性,但影响了其下层植物箬竹的生存。疏灌丛比其背景植被草甸含有更高的物种多样性和更多的地下芽植物,然而疏灌丛下的箬竹长势更好。箬竹偏喜于缓坡上具有中等盖度的植被环境。发生于次生阔叶林中的箬竹群体开花预示着在整个神农架亚高山生境的箬竹将在未来的几年内同时开花死亡。这不仅会改变现存竹类立地的区系构成和群落结构,同时也会波及到这一稀有物种的生存问题。  相似文献   

9.
Extensive tree dieback is a recurrent issue in many regions. Crown dieback of Fraxinus nigra Marsh. (black ash; brown ash) in the northeastern and north central United States is an example. F. nigra is a widely distributed hardwood that is often the dominant species in wetland forests from Manitoba to Newfoundland and West Virginia to Indiana. Widespread crown dieback of F. nigra has been noted in many regions, but there are few quantitative assessments of dieback extent or relationship to potential causes. Most F. nigra dieback episodes are not associated with specific disease or pest agents. Drought, excessive soil moisture, cohort senescense, and road influences, have all been suggested as potential contributing factors. Our objectives were to (1) quantify variable dieback across northern Minnesota, a region described as having extensive dieback, (2) determine the relationship between dieback and site moisture, (3) relate dieback to tree age/size distributions, and (4) assess whether dieback was related to road proximity. Given the increasing threat of Agrilus planipennis (emerald ash borer) in the region, it is important to know the current health status of F. nigra populations before widespread infestation occurs. Many stands in our study exhibited high incidences of crown dieback. However, the incidence of dieback was variable across the region. Spatial variability in dieback was associated with site wetland characteristics; more dieback occurred on jurisdictional wetlands and on sites with a higher wetness index and a deeper depth to a perching layer. Dieback was also positively correlated with mean stand diameter, and tree diameters were generally correlated with age, suggesting that stands with larger and older individuals experienced more dieback. Cohort senescence is a possible explanation for this trend. Finally, dieback occurred with higher frequency nearer to roads. The road influence could be related to hydrological alterations or perhaps toxicity from road deicing salt. The fact that dieback is more severe close to roads may contribute to a general perception that black ash dieback is more severe throughout the region than our study suggests. Collectively, our results indicate that the healthiest F. nigra stands in our study region are likely to be younger and located on relatively drier sites and farther from roads, compared to stands with significant crown dieback.  相似文献   

10.
In pine forests damaged by pine wilt disease, in western Japan, the effect of protection regimes of pine trees on the stand dynamics were examined in the following four stands: (1) lightly damaged stand (age 30–40 years) with no procedure in operation for protecting pine trees; (2) severely damaged stand (age 30–40 years) with no procedure in place for protecting pine trees; (3) severely damaged stand (age 50 years) with a selective cutting of infected trees; (4) severely damaged stand (age 30–40 years) with a selective cutting of infected trees. All the stands had been abandoned before the pine wilt disease damage. The understory structure of the severely damaged stand with no protection procedure was similar to that of the lightly damaged stand. Frequent invasion by tree species and acceleration in the growth of understory trees occurred after the dieback in the selective cutting stand. These results suggest that a deficiency in the canopy layer caused by the dieback resulted in low disturbance intensity in the early stages after the dieback, but the selective cutting increased the intensity by the reduction in the understory as well as the canopy layer. The intensity of the disturbance in the selective cutting stands was larger in the younger stand because it had a higher density of selectively cut pine trees. The different stand structure of pine forests occurred after the dieback because the intensity of the disturbance varied as a result of the selective cutting operation and the stand age.  相似文献   

11.
Four vegetation types, namely coniferous and broadleaved mixed forest, secondary deciduous broadleaved forest, open shrubs and meadow, with dwarf bamboo (Indocalamus wilsoni) are compared on their floristic composition, life form, community structure, and survivorship of bamboos. Disturbance of conifer-logging two decades ago promoted the species diversity, but negatively influenced the survivorship of dwarf bamboo which is dominate on the forest floor. Open shrubs bear more species diversity and more geophytes in its life-form spectrum than its background vegetation subalpine meadow, however, dwarf bamboo is growing much better in the open shrubs than in the meadow. It seems dwarf bamboo probably favorites to occur in the vegetation at gentle slopes with a mediate canopy cover. Its mass flowering in the secondary deciduous forest suggests that a simultaneous flowering and following dieback maybe irrupt in the recently coming years over the subalpine Shennongjia in China, which will be not only alter the floristic composition and community structure of the old bamboo stands, but also influence the survivorship of this rare species. Biography: Li Zhao-hua (1964-), male, Ph. D Candidate in the Ceter for Development Researches (ZEF) of Bonn University, ZEF, Bonn University, Walter-Flex-Str. 3, D-53113 Bonn, Germany. Responsible editor: Chai Ruihai  相似文献   

12.
In mixed angiosperm–conifer forests worldwide, infrequent landscape-level catastrophic disturbances create a mosaic of persistent and different aged forest stands in the landscape with varying levels of dominance by the conifer component. In the ‘temporal stand replacement model’ (TSRM), disturbance creates conditions favouring a colonising cohort that is replaced by a suite of relatively shade-tolerant canopy species, which establish following the synchronous senescence of the pioneer canopy. In most southern hemisphere mixed angiosperm–conifer forests, with the exception of those in southern Africa, the establishing cohort is usually a large and very long-lived (550–650 years) conifer that is gradually replaced by angiosperms. As an explanation of the apparent dominance of the conifer Podocarpus latifolius, we examine the efficacy of the TSRM in mixed Afrotemperate forests where the establishing cohort is not a conifer. Forest succession in Afrotemperate forests was deterministic with the successive replacement of species determined first by their establishment success in shaded environments, and second, by their relative longevity. Several angiosperm species that were common canopy dominants established a pioneer cohort but were gradually replaced by P. latifolius, a shade-tolerant species. Continuous regeneration beneath the angiosperm canopy by P. latifolius eliminates synchronous canopy senescence, a key feature of the TSRM, as a mechanism driving the temporal replacement of canopy species. Senescing angiosperms created canopy gaps that were colonised by grasses and ferns, which suppressed canopy tree regeneration. In contrast, with continuous regeneration beneath the shaded canopy, P. latifolius gains a critical advantage over angiosperms at gap formation. Thus, in the absence of fairly large-scale natural disturbances, conifers come to dominate Afrotemperate forests. Commensurate with the latter, conifers in Podocarpus-forest were dated to approximately 320 years, more than 100 years older than the oldest P. latifolius in angiosperm-dominated forest. Tree life-history differences (shade tolerance, longevity) and the time since disturbance drive successional change from an angiosperm-dominated system to a stage dominated by P. latifolius. In general, the TSRM is a plausible explanation for the observed canopy tree structure and dynamics in mixed Afrotemperate forests. South African Afrotemperate forest is unusual among other southern hemisphere mixed angiosperm–conifer forests in that a suite of angiosperm canopy species, rather than a single conifer species, forms the colonising cohort.  相似文献   

13.
The aim of this study is to determine the competing regeneration and expansion patterns of two co-occurring pine species (Pinus brutia, Pinus nigra ssp. pallasiana), in a transitional montane Mediterranean zone. We measured the regeneration density of all woody species in 102 randomly located stands along an altitudinal gradient on the island of Lesbos, Greece. Individuals of pines were assigned to different size classes. Topographic factors (altitude, aspect, and soil depth) and light availability (through hemispherical photographs) were measured for each stand. Statistical analyses were applied to explore the effect of each factor on recruitment density of the competing pine species, and to elucidate patterns of interaction. Canopy openness was the most important parameter controlling the recruitment of P. brutia, while the regeneration density of P. nigra was mainly related to canopy openness and heat load. An idiosyncratic response of the recruitment vigour of the two species was identified along gradients of shade and drought stress. The decline in P. nigra recruitment density with drought conditions underlines threats to its population maintenance even in the absence of fire. On the other hand P. brutia seems to be a stronger invader in transitional zones. The studied species could be considered typical representatives of the two most widely distributed pine functional types across the Mediterranean basin, and our results agree with the theoretical ability of such species to maintain and expand their populations.  相似文献   

14.
Coffea arabica shrubs are indigenous to the understorey of the moist evergreen montane rainforest of Ethiopia. Semi-forest coffee is harvested from semi-wild plants in forest fragments where farmers thin the upper canopy and annually slash the undergrowth. This traditional method of coffee cultivation is a driver for preservation of indigenous forest cover, differing from other forms of agriculture and land use which tend to reduce forest cover. Because coffee farmers are primarily interested in optimizing coffee productivity, understanding how coffee yield is maximized is necessary to evaluate how, and to what extent, coffee production can be compatible with forest conservation.Abiotic variables and biotic variables of the canopy were recorded in 26 plots within 20 forest fragments managed as semi-forest coffee systems near Jimma, SW Ethiopia. In each plot, coffee shrub characteristics and coffee yield were recorded for four coffee shrubs. Cluster and indicator species analyses were used to differentiate plant communities of shade trees. A multilevel linear mixed model approach was then used to evaluate the effect of abiotic soil variables, shade tree plant community, canopy and stand variables, coffee density and coffee shrub size variables on coffee yield.Climax species of the rainforest were underrepresented in the canopy. There were three impoverished shade tree communities, which differed in tree species composition but did not exhibit significant differences in abiotic soil variables, and did not directly influence coffee yield. Coffee yield was primarily determined by coffee shrub branchiness and basal diameter. At the stand level a reduced crown closure increased coffee yield. Yield was highest for coffee shrubs in stands with crown closure less than median (49 ± 1%). All stands showed a reduced number of stems and a lower canopy compared to values reported for undisturbed moist evergreen montane rainforests.Traditional coffee cultivation is associated to low tree species diversity and simplified forest structure: few stems, low canopy height and low crown closure. Despite intensive human interference some of the climax species are still present and may escape local extinction if they are tolerated and allowed to regenerate. The restoration of healthy populations of climax species is critical to preserve the biodiversity, regeneration capacity, vitality and ecosystem functions of the Ethiopian coffee forests.  相似文献   

15.
Beech (Fagus orientalis Lipsky) forest covers about 565,000 ha of land in Guilan province, north of Iran and forms a major carbon pool. It is an important economic, soil protection and recreation resource. We studied long-term effects of fire on the structure and composition 37 years after fire occurrence in these forests. To do this research, we selected 85 ha burned and 85 ha unburned beech forests). The results indicated that the fire had not changed the overall uneven-aged structure, but it changed forest composition from pure stands to mixed stands that now include species such as Carpinus betulus, Acer cappadocicum and Alnus subcordata. The density of trees and regeneration was significantly increased, while the density of shrubs significantly decreased. The main reasons for increased tree regeneration were attributed to (1) reduction of litter depth, and (2) increase in available light from opening of the canopy and reduction in shrub competition. It is apparent that the forest is on a path to return to its natural state before the fire after 37 years.  相似文献   

16.
不同类型毛竹林植物物种多样性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
通过对不同类型毛竹林植物物种多样性的研究,结果表明:毛竹林内物种是丰富的,但较大部分物种是脆弱的;乔木层植物物种多样性指数与林下木本植物物种多样性指数相关显著,与草本植物物种多样性指数相关不显著,乔木层物种多样性指数小于林下植物物种多样性指数;木本植物物种多样性指数,竹阔混交林>竹针混交林>毛竹纯林,粗放经营竹林>中等集约经营竹林>集约经营竹林;林下草本植物物种多样性指数,竹针混交林>毛竹纯林>竹阔混交林,中等集约经营竹林>粗放经营竹林>集约经营竹林;竹阔混交林向毛竹纯林转型时,林下木本植物部分丧失,而草本植物将可能增加,也可能减少.  相似文献   

17.
This study examines the structural characteristics of the tree layer, dead wood, canopy openings, and regeneration patterns of a spruce old-growth forest in the Bohemian Forest, Czech Republic. An old-growth stand with minor human influence and a stand that was presumably logged about 200 years ago were analyzed and compared, as some forest managers considered the presumable human impact as a reason for salvage logging. Even though the stands differed in tree density, height and DBH structure, it was not possible to conclude whether it was due to management history or the environmental differences. The volume of dead wood also differed between the stands. There was about 142 and 83 m3 ha−1 of dead wood in the old-growth stand and presumably logged stand, respectively. The amount of dead wood found in the old-growth stand was comparable with values reported from spruce old-growth stands across Central Europe. In both stands, many canopy trees were arranged in linear patterns, which was a result of spruce regeneration on nurse logs. This suggests that the origin and development of the stands were characterized by natural processes and during the past 200 years typical old-growth structural characteristics have already evolved.  相似文献   

18.
We determine the time frame after initial fuel treatment when prescribed fire will be likely to produce high enough mortality rates in ponderosa pine (Pinus ponderosa var. scopulorum Dougl. ex Laws.) regeneration to be successful in maintaining treatment effectiveness in the Black Hills of South Dakota. We measured pine regeneration in disturbed stands and young pine growth rates to estimate the susceptibility of pine regeneration to prescribed fire with time since initial treatment. We also determined surface fuel accumulation rates for stands after prescribed fire to help estimate likely fire behavior in maintenance prescribed fire. Given our estimates of regeneration density and tree size, and likely fire behavior, we then used small pine tree mortality—fire effect relations to estimate the effects of prescribed fire on developing understory pine at specific times since initial treatments.  相似文献   

19.
Tree plantations can be an important tool for restoration of abandoned pasturelands in the tropics. Plantations can help speed up secondary forest succession by improving soil conditions, attracting seed-dispersal agents, and providing shade necessary for understory growth. In this study, abundance and richness of understory regeneration was measured in three native tree plantations 15–16 years of age at La Selva Biological Station in the Costa Rican Caribbean lowlands. Each plantation contained tree species in pure plots, a mixture of the species, and natural regeneration plots (no trees planted). The greatest abundance of regeneration was found in the understory of pure plots of Jacaranda copaia (Aubl.) D.Don., Vochysia guatemalensis Donn.Sm., Dipteryx panamensis Benth, Vochysia ferruginea Mart., and in two mixed stands, while the lowest was found in the natural regeneration treatments with about half the values as in the plantation stands. There was a significant negative correlation between percent canopy openness and abundance of regeneration in the understory. Two distinctive clusters separated the regeneration treatments from the mixed and pure plantations at a very low Bray–Curtis similarity value. The natural regeneration treatments are separated from mixed and pure plantations in the two-dimensional ordination. The lack of difference between the understory make-up of pure and mixed plantations in abundance, species richness, and seed-dispersal syndromes of understory species suggests that planting mixed stands is not necessarily superior to planting pure stands for promoting understory diversity of woody species. While regeneration of woody species can be faster under pure- or mixed-species plantations than in open pastures, the abundance, richness and species composition depends on each plantation species, or species assemblages in case of the mixtures.  相似文献   

20.

The anticipated increase in extreme disturbance events due to climate change is likely to expose Norway spruce (Picea abies (L.) Karst.) dominated forests in northern Europe to new conditions. Empirical data on the resilience of such natural (unmanaged) forests to disturbance and the long-term patterns of regeneration in its aftermath are currently scarce. We performed a quantitative assessment of natural forest stands in north–western Latvia to identify and characterise the patterns of stand structure 44 years after a stand-replacing disturbance and investigated the effects of legacies on regeneration. The spatial distribution of tree species and their dimensions were assessed in 71 circular sample plots (500 m2 each) in natural forest areas, where Norway spruce dominated prior to the windthrow and salvage logging was not carried out. Spatial indices (species mingling index, size differentiation index, and aggregation index) were used to characterise stand structure and diversity. The different initial states (age and coverage of surviving trees) of stands affected eventual tree species dominance, size differentiation, degree of mingling and aggregation. Our results demonstrate a close relationship between disturbance legacies and spatial indices. The pre-storm understory and canopy survivors decreased species mingling, whereas survivors increased size differentiation. The size differentiation increased also with a higher degree of species mingling. Leaving differential post-storm legacies untouched promotes a higher structural and species diversity and therefore supports the management approach of preserving canopy survivors.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号