首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Determining the magnitude of carbon (C) storage in forests and peatlands is an important step towards predicting how regional carbon balance will respond to climate change. However, spatial heterogeneity of dominant forest and peatland cover types can inhibit accurate C storage estimates. We evaluated ecosystem C pools and productivity in the Marcell Experimental Forest (MEF), in northern Minnesota, USA, using a network of plots that were evenly spaced across a heterogeneous 1-km2 mosaic composed of a mix of upland forests and peatlands. Using a nested plot design, we estimated the standing C stock of vegetation, coarse detrital wood and soil pools. We also estimated aboveground net primary production (ANPP) as well as coarse root production. Additionally we evaluated how vegetation cover types within the study area differed in C storage. The total ecosystem C pool did not vary significantly among upland areas dominated by aspen (160 ± 13 Mg C ha−1), mixed hardwoods (153 ± 19 Mg C ha−1), and conifers (197 ± 23 Mg C ha−1). Live vegetation accounted for approximately 50% of the total ecosystem C pool in these upland areas, and soil (including forest floor) accounted for another 35–40%, with remaining C stored as detrital wood. Compared to upland areas, total C stored in peatlands was much greater, 1286 ± 125 Mg C ha−1, with 90–99% of that C found in peat soils that ranged from 1 to 5 m in depth. Forested areas ranged from 2.6 to 2.9 Mg C ha−1 in ANPP, which was highest in conifer-dominated upland areas. In alder-dominated and black spruce-dominated peatland areas, ANPP averaged 2.8 Mg C ha−1, and in open peatlands, ANPP averaged 1.5 Mg C ha−1. In treed areas of forest and peatlands, our estimates of coarse root production ranged from 0.1 to 0.2 Mg C ha−1. Despite the lower production in open peatlands, all peatlands have acted as long-term C sinks over hundreds to thousands of years and store significantly more C per unit area than is stored in uplands. Despite occupying only 13% of our study area, peatlands store almost 50% of the C contained within it. Because C storage in peatlands depends largely on climatic drivers, the impact of climate changes on peatlands may have important ramifications for C budgets of the western Great Lakes region.  相似文献   

2.
An accurate characterization of tree carbon (TC), forest floor carbon (FFC) and soil organic carbon (SOC) in tropical forest plantations is important to estimate their contribution to global carbon stocks. This information, however, is poor and fragmented. Carbon contents were assessed in patula pine (Pinus patula) and teak (Tectona grandis) stands in tropical forest plantations of different development stages in combination with inventory assessments and soil survey information. Growth models were used to associate TOC to tree normal diameter (D) with average basal area and total tree height (HT), with D and HT parameters that can be used in 6–26 years old patula pine and teak in commercial tropical forests as indicators of carbon stocks. The information was obtained from individual trees in different development stages in 54 patula pine plots and 42 teak plots. The obtained TC was 99.6 Mg ha−1 in patula pine and 85.7 Mg ha−1 in teak forests. FFC was 2.3 and 1.2 Mg ha−1, SOC in the surface layer (0–25 cm) was 92.6 and 35.8 Mg ha−1, 76.1 and 19 Mg ha−1 in deep layers (25–50 cm) in patula pine and teak, respectively. Carbon storage in trees was similar between patula pine and teak plantations, but patula pine had higher levels of forest floor carbon and soil organic carbon. Carbon storage in trees represents 37 and 60% of the total carbon content in patula pine and teak plantations, respectively. Even so, the remaining percentage corresponds to SOC, whereas FFC content is less than 1%. In summary, differences in carbon stocks between patula pine and teak trees were not significant, but the distribution of carbon differed between the plantation types. The low FFC does not explain the SOC stocks; however, current variability of SOC stocks could be related to variation in land use history.  相似文献   

3.
The recovery process of fallow stands in the mountainous region of Northwestern Vietnam was studied, based on a chronosequence of 1–26-year-old secondary forests after intensive shifting cultivation. The number of species present in a 26-year-old secondary forest attained 49% of the 72 species present in an old-growth forest. Total stem density decreased gradually from 172,500 ha−1 in a 3-year-old forest to 24,600 ha−1 in the 26-year-old stand, but stem density of larger trees (diameter at breast height (D) ≥ 5 cm) increased from 60 ha−1 in a 7-year-old to 960 ha−1 in the 26-year-old forests, which was similar to that of an old-growth forest. Annual biomass increment of the 26-year-old stand was 4.2 Mg ha−1 year−1. A saturation curve was fitted to biomass accumulation in secondary forests. After an estimated time of 60 years, a secondary forest can achieve 80% of the biomass of old-growth forests (240 Mg ha−1). Species diversity expressed by Shannon Index shows that it takes 60 years for a secondary forest in fallow to achieve a plant species diversity similar to that of old-growth forests.  相似文献   

4.
Four forest stands each of twenty major forest types in sub-tropical to temperate zones (350 m asl–3100 m asl) of Garhwal Himalaya were studied. The aim of the study was to assess the stem density, tree diversity, biomass and carbon stocks in these forests and make recommendations for forest management based on priorities for biodiversity protection and carbon sequestration. Stem density ranged between 295 and 850 N ha−1, while total biomass ranged from 129 to 533 Mg ha−1. Total carbon storage ranged between 59 and 245 Mg ha−1. The range of Shannon–Wiener diversity index was between 0.28 and 1.75. Most of the conifer-dominated forest types had higher carbon storage than broadleaf-dominated forest types. Protecting conifer-dominated stands, especially those dominated by Abies pindrow and Cedrus deodara, would have the largest impact, per unit area, on reducing carbon emissions from deforestation.  相似文献   

5.
Carbon (C) accreditation of forest development projects is one approach for sequestering atmospheric CO2, under the provisions of the Kyoto protocol. The C sequestration potential of reforested mined land is not well known. The purpose of this work was to estimate and compare the ecosystem C content in forests established on surface, coal-mined and non-mined land. We used existing tree, litter, and soil C data for fourteen mined and eight adjacent, non-mined forests in the Midwestern and Appalachian coalfields to determine the C sequestration potential of mined land reclaimed prior to the passage of the Surface Mining Control and Reclamation Act (1977). We developed statistically significant and biologically reasonable models for ecosystem C across the spectrum of site quality and stand age. On average, the highest amount of ecosystem C on mined land was sequestered in pine stands (148 Mg ha−1), followed by hardwood (130 Mg ha−1) and mixed stands (118 Mg ha−1). Non-mined hardwood stands sequestered 210 Mg C ha−1, which was about 62% higher than the average of all mined stands. Our mined land response surface models of C sequestration as a function of site quality and age explained 59, 39, and 36% of the variation of ecosystem C in mixed, pine, and hardwood stands, respectively. In pine and mixed stands, ecosystem C increased exponentially with the increase of site quality, but decreased with age. In mined hardwood stands, ecosystem C increased asymptotically with age, but it was not affected by site quality. At rotation age (60 yr), ecosystem C in mined hardwood stands was less on high quality sites, but similar for low quality sites compared to non-mined hardwood stands. The overall results indicated that the higher the original forest site quality, the less likely C sequestration potential was restored, and the greater the disparity between pre- and post-mining C sequestration stocks.  相似文献   

6.
Long-term management impacts on carbon storage in Lake States forests   总被引:2,自引:0,他引:2  
We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of similar ages, providing a unique opportunity to evaluate long-term management impacts on carbon pools in two major North American forest types. Management resulted in total ecosystem carbon pools of 130-137 Mg ha−1 in thinned red pine and 96-177 Mg ha−1 in managed northern hardwoods compared to 195 Mg ha−1 in unmanaged red pine and 224 Mg ha−1 in unmanaged northern hardwoods. Managed stands had smaller tree and deadwood pools than unmanaged stands in both ecosystems, but management had limited impacts on understory, forest floor, and soil carbon pools. Total carbon storage and storage in individual pools varied little across thinning intensities in red pine. In northern hardwoods, selection cuttings stored more carbon than the diameter-limit treatment, and selection cuttings generally had larger tree carbon pools than the shelterwood or diameter-limit treatments. The proportion of total ecosystem carbon stored in mineral soil tended to increase with increasing treatment intensity in both ecosystems, while the proportion of total ecosystem carbon stored in the tree layer typically decreased with increasing treatment intensity. When carbon storage in harvested wood products was added to total ecosystem carbon, selection cuttings and unmanaged stands stored similar levels of carbon in northern hardwoods, but carbon storage in unmanaged stands was higher than that of thinned stands for red pine even after adding harvested wood product carbon to total ecosystem carbon. Our results indicate long-term management decreased on-site carbon storage in red pine and northern hardwood ecosystems, but thinning intensity had little impact on carbon storage in red pine while increasing management intensity greatly reduced carbon storage in northern hardwoods. These findings suggest thinning to produce different stand structures would have limited impacts on carbon storage in red pine, but selection cuttings likely offer the best carbon management options in northern hardwoods.  相似文献   

7.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

8.
To understand the influence of disturbance, age–class structure, and land use on landscape-level carbon (C) budgets during conversion of old-growth forests to managed forests, a spatially explicit, retrospective C budget from 1920 through 2005 was developed for the 2500 ha Oyster River area of Fluxnet-Canada's coastal BC Station. We used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), an inventory-based model, to simulate forest C dynamics. A current (circa 1999) forest inventory for the area was compiled, then overlaid with digitized historic disturbance maps, a 1919 timber cruise map, and a series of historic orthophotographs to generate a GIS coverage of forest cover polygons with unique disturbance histories dating back to 1920. We used the combined data from the historic and current inventory and forest change data to first estimate initial ecosystem C stocks and then to simulate forest dynamics and C budgets for the 86-year period. In 1920, old-growth forest dominated the area and the long-term landscape-level net ecosystem C balance (net biome productivity, NBP) was a small sink (NBP 0.2 Mg C ha−1 year−1). From 1930 to 1945 fires, logging, and slash burning resulted in large losses of biomass C, emissions of C to the atmosphere, and transfers of C from biomass to detritus and wood products (NBP ranged from −3 to −56 Mg C ha−1 year−1). Live biomass C stocks slowly recovered following this period of high disturbance but the area remained a C source until the mid 1950s. From 1960 to 1987 disturbance was minimal and the area was a C sink (NBP ranged from 3 to 6 Mg C ha−1 year−1). As harvest of second-growth forest began in late 1980s, disturbances again dominated the area's C budget, partially offset by ongoing C uptake by biomass in recovering young forests such that the C balance varied from positive to negative depending upon the area disturbed that year (NBP from 6 to −15 Mg C ha−1 year−1). Despite their high productivity, the area's forests are not likely to attain C densities of the landscape prior to industrial logging because the stands will not reach pre-logging ages. Additional work is underway to examine the relative role historic climate variability has had on the landscape-level C budget.  相似文献   

9.
Data on the biomass and productivity of southeast Asian tropical forests are rare, making it difficult to evaluate the role of these forest ecosystems in the global carbon cycle and the effects of increasing deforestation rates in this region. In particular, more precise information on size and dynamics of the root system is needed. In six natural forest stands at pre-montane elevation (c. 1000 m a.s.l.) on Sulawesi (Indonesia), we determined above-ground biomass and the distribution of fine (d < 2 mm) and coarse roots (d > 2 mm), estimated above- and below-ground net production, and compared the results to literature data from other pre-montane paleo- and neotropical forests. The mean total biomass of the stands was 303 Mg ha−1 (or 128 Mg C ha−1), with the largest biomass fraction being recorded for the above-ground components (286 Mg ha−1) and 11.2 and 5.6 Mg ha−1 of coarse and fine root biomass (down to 300 cm in the soil profile), resulting in a remarkably high shoot:root ratio of c. 17. Fine root density in the soil profile showed an exponential decrease with soil depth that was closely related to the concentrations of base cations, soil pH and in particular of total P and N. The above-ground biomass of these stands was found to be much higher than that of pre-montane forests in the Neotropics, on average, but lower compared to other pre-montane forests in the Paleotropics, in particular when compared with dipterocarp forests in Malesia. The total above- and below-ground net primary production was estimated at 15.2 Mg ha−1 yr−1 (or 6.7 Mg C ha−1 yr−1) with 14% of this stand total being invested below-ground and 86% representing above-ground net primary production. Leaf production was found to exceed net primary production of stem wood. The estimated above-ground production was high in relation to the mean calculated for pre-montane forests on a global scale, but it was markedly lower compared to data on dipterocarp forests in South-east Asia. We conclude that the studied forest plots on Sulawesi follow the general trend of higher biomasses and productivity found for paleotropical pre-montane forest compared to neotropical ones. However, biomass stocks and productivity appear to be lower in these Fagaceae-rich forests on Sulawesi than in dipterocarp forests of Malesia.  相似文献   

10.
Coarse woody debris (CWD) has become recognised as an important component of the carbon (C) pool in forest ecosystems. In Ireland, managed Sitka spruce (Picea sitchensis (Bong) Carr.) forests account for 52.3% of the total forest estate. To determine the stock and decay dynamics of above and belowground CWD, field surveys using fixed area sample plots, were conducted in six even-aged Sitka spruce stands, representing the young, intermediate and mature stages of a typical commercial rotation. The volume, mass, density loss and C:N ratio of all CWD types (logs, stumps, and coarse roots) were determined using a five-decay class (DC) system. The decay rates and half life of CWD was also determined. To estimate CWD coarse root mass; roots associated with stumps classified in different decay classes were excavated. The coarse roots were categorised into small (2-10 mm), medium (10-50 mm) and large (>50 mm) diameter classes.CWD C-mass ranged from 6.98 to 18.62 Mg ha−1 and was highest in an intermediate forest (D35), while the aboveground volume varied from 6.31 to 42.27 m3 ha−1. Coarse roots accounted for 21% to 85% of the total CWD C-pool in the surveyed stands. The total CWD C-mass was poorly correlated with the number of thinning events (R2 = 0.29), when data from D35 was excluded. The density loss was significant in logs (45%), stumps (58%), and small- (38%), medium- (50%) and large roots (38%) as decay progress from DC 0 to 4. There was a 46%, 41%, 51%, 72% and 57% decline in C:N ratio of logs, stumps, small-, medium- and large roots, respectively, as decay progressed from DC 0 to 4. The density decay rates were 0.059, 0.048 and 0.036 kg m−3 year−1 for logs, stumps and coarse roots, respectively. The size classification of roots did not significantly affect their decay rate. The half life (50% decomposition) of CWD was estimated has 12-, 14- and 19 years for logs, stumps and roots of Sitka spruce. Regression curves showed a strong correlation between the density and C:N ratio (R2 = 0.69, 0.74 and 0.93 for logs, stumps and coarse roots, respectively). The long term storage of C and its slow rate of decomposition make CWD a vital structural and functional component of the CWD C-pool and a major controller of forest ecosystem C-retention.  相似文献   

11.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

12.
We studied the leaf litter-dwelling fauna of managed deciduous forests and primeval reference sites in Western and Central Europe and addressed the questions if the higher overall species richness close to downed coarse woody debris (CWD) is related to intra-specific or inter-specific aggregation, if the aggregation pattern changes with the amount of CWD on the forest floor, and how much CWD is needed for different taxa. The analysis is based on shelled Gastropoda, Diplopoda/Isopoda, Chilopoda and Coleoptera. Among-sample heterogeneity was lower close to CWD than distant from CWD. This was most pronounced in Diplopoda/Isopoda and Gastropoda. Diplopoda/Isopoda are comparatively mobile and assemblages were already quite homogenous close to CWD at levels above 5 m3 downed deadwood ha−1. Gastropoda have a low mobility, and more than 20 m3 downed deadwood ha−1 is needed for assemblage homogeneity. We further focused on the Gastropoda as sensitive indicators. Enhanced densities and species richness close to CWD were not a simple function of leaf litter weight, thus effects of densities on heterogeneity are not solely driven by leaf litter accumulation close to CWD. In contrast to euryecious litter-dwellers such as the Punctidae, stenecious slow active dispersers such as the Clausiliidae clearly require more than 20 m3 CWD ha−1 for an even distribution. Specialists depending on CWD even seem to have gone extinct in some managed forests. For conserving the litter-dwelling fauna, we propose a target of at least 20 m3 downed CWD ha−1 in already managed forests and rigorous restrictions for deadwood removal from still (almost) pristine systems.  相似文献   

13.
Tropical forests play an important role in the global carbon cycle. Despite an increasing number of studies have addressed carbon storage in tropical forests, the regional variation in such storage remains poorly understood. Uncertainty about how much carbon is stored in tropical forests is an important limitation for regional-scale estimates of carbon fluxes and improving these estimates requires extensive field studies of both above- and belowground stocks. In order to assess the carbon pools of a tropical seasonal forest in Asia, total ecosystem carbon storage was investigated in Xishuangbanna, SW China. Averaged across three 1 ha plots, the total carbon stock of the forest ecosystem was 303 t C ha−1. Living tree carbon stocks (both above- and belowground) ranged from 163 to 258 t C ha−1. The aboveground biomass C pool is comparable to the Dipterocarp forests in Sumatra but lower than those in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1–2 t C ha−1 to the total carbon stock. The mineral soil C pools (top 100 cm) ranged from 84 to 102 t C ha−1 and the C in woody debris from 5.6 to 12.5 t C ha−1, representing the second and third largest C component in this ecosystem. Our results reveal that a high percentage (70%) of C is stored in biomass and less in soil in this tropical seasonal forest. This study provides an accurate estimate of the carbon pool and the partitioning of C among major components in tropical seasonal rain forest of northern tropical Asia. Results from this study will enhance our ability to evaluate the role of these forests in regional C cycles and have great implications for conservation planning.  相似文献   

14.
Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3% (±3.3) and 50.3% (±2.9). Average carbon content in the soil was 4.1% (±2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha−1 and the mean annual increment for carbon in the biomass was 4.2 Mg ha−1 yr−1. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha−1 yr−1. Total stored carbon in the forest was 180.4 Mg ha−1 at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R2 adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.  相似文献   

15.
The biomass and decomposition of coarse woody debris (CWD, ≥10 cm in diameter) were studied in a monsoon evergreen broad-leaved old-growth forest in Dinghushan Nature Reserve, Southern China. The study examined the biomass of CWD from 1992 to 2008 and decomposition of three dominant tree species CWD (Castanopsis chinensis, Cryptocarya concinna, Schima superba) from 1999 to 2008. Changes in the wood density of three tree species’ CWD were used to estimate the decay rates with a single exponential model. The results showed that the biomass of CWD in the old-growth forest was increasing from 17.41 tonnes ha−1 (t ha−1) in 1992 to 38.54 t ha−1 in 2008, and a higher decay constant was observed for C. concinna (0.1570 – 19 years for 95% mass loss); the decay rates of S. superba and C. chinensis were 0.1486 (20 years for 95% mass loss) and 0.1095 (27 years for 95% mass loss), respectively. The difference in decay constant rates may be due to their substrate quality and decomposers. The content of carbon (C) in three species declined after 9 years of decay. Nitrogen (N) content increased in all species with decay. The C/N ratio in the three species declined during the decay process.  相似文献   

16.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

17.
Forest management practices have led to a reduction in the volume and a change in the composition of coarse woody debris (CWD) in many forest types. This study compared CWD volume and composition in reserves and two types of managed forest in the central boreal zone of Sweden. Ten areas were surveyed, each containing clear-cut, mature managed and old-growth stands, to determine the volume of standing and lying CWD in terms of species composition, decay class and size class. Volumes of CWD on clear-cuts and in mature managed forests were high compared with previous studies. Old-growth forests (72.6 m3 ha?1) contained a greater volume of CWD than mature managed forests (23.3 m3 ha?1) and clear-cuts (13.6 m3 ha?1). Differences were greatest for the larger size classes and intermediate decay stages. Despite stand ages being up to 144 years, CWD volume and composition in managed forests was more similar to clear-cuts than to old-growth forests.  相似文献   

18.
Many old-growth forest stands in northwest Pakistan have been structurally transformed as a consequence of logging and livestock grazing, some of which are thereafter left to secondary succession. These forests represent an important resource for local inhabitants who gather and sell medicinal plants as part of their livelihood. With this in mind, the main objectives of our study were: (1) to assess differences in the structure of the tree layer and the abundance of medicinal plants among differently transformed forests, (2) to evaluate the recovery potential of medicinal plants under re-growth forests, and (3) to assess relationships between tree stand structural characteristics and the occurrence of medicinal plants.The first step of the study involved creating an approximate map covering an area of 90 km2 for five forest-use types (old-growth forest, forest degraded by logging, derived woodland, agroforest and re-growth forest). Fifteen plots per forest-use type were randomly allocated at altitudes ranging from 2200 m to 2400 m asl, within which the abundance of 10 locally important medicinal herb species was assessed.The study stands differed greatly in tree basal area, which was highest in old-growth forest (48 m2 ha−1), lowest in agroforest areas (6 m2 ha−1) and intermediate in re-growth forest (20 m2 ha−1). All ten medicinal plant species were encountered in old-growth and in re-growth forests, but only five of these species also occurred on agroforest plots. The mean coverage of study medicinal plants was highest in old-growth forest (7%), low in forest degraded by logging, derived woodland and agroforest (0.3-2%), and intermediate in re-growth forest (4%). The Jaccard abundance based similarity index indicates a considerable similarity (0.6) between re-growth and old growth forest for both trees and medicinal plants. The overall abundance of medicinal plants increased with increasing tree basal area and canopy cover. The abundance of some particular species decreased; however, the most sought-after medicinal species Bergenia ciliata, Valeriana jatamansi and Viola cancescens increased with tree basal area within specific forest-use type and also across forest-use types. In conclusion, our data suggest that anthropogenic forest degradation leads to a reduction in the abundance of economically viable medicinal plants for the study region. It is further indicated that this can be reversed if degraded forests are allowed to regenerate.  相似文献   

19.
Land-use and land cover strongly influence carbon (C) storage and distribution within ecosystems. We studied the effects of land-use on: (i) above- and belowground biomass C, (ii) soil organic C (SOC) in bulk soil, coarse- (250–2000 μm), medium- (53–250 μm) and fine-size fractions (<53 μm), and (iii) 13C and 15N abundance in plant litter, bulk soil, coarse-, and medium- and fine-size fractions in the 0–50 cm soil layer in Linaria AB, Canada between May and October of 2006. Five adjacent land-uses were sampled: (i) agriculture since 1930s, (ii) 2-year-old hybrid poplar (Populusdeltoides × Populus × petrowskyana var. Walker) plantation, (iii) 9-year-old Walker hybrid poplar plantation, (iv) grassland since 1997, and (v) an 80-year-old native aspen (Populus tremuloides Michx.) stand. Total ecosystem C stock in the native aspen stand (223 Mg C ha−1) was similar to that of the 9-year-old hybrid poplar plantation (174 Mg C ha−1) but was significantly greater than in the agriculture (132 Mg C ha−1), 2-year-old hybrid poplar plantation (110 Mg C ha−1), and grassland (121 Mg C ha−1). Differences in ecosystem C stocks between the land-uses were primarily the result of different plant biomass as SOC in the 0–50 cm soil layer was unaffected by land-use change. The general trend for C stocks in soil particle-size fractions decreased in the order of: fine > medium > coarse for all land-uses, except in the native aspen stand where C was uniformly distributed among soil particle-size fractions. The C stock in the coarse-size fraction was most affected by land-use change whilst the fine fractions the least. Enrichment of the natural abundances of 13C and 15N across the land-uses since time of disturbance, i.e., from agriculture to 2- and then 9-year-old hybrid poplar plantations or to grassland, suggests shifts from more labile forms of C to more humified forms of C following those land-use changes.  相似文献   

20.
This paper presents a synthesis of experiments conducted in a tropical tree plantation established in 2001 and consisting of 22 plots of 45 m × 45 m with either one, three or six native tree species. We examined the changes in carbon (C) pools (trees, herbaceous vegetation, litter, coarse woody debris (CWD), and mineral topsoil at 0-10 cm depth) and fluxes (decomposition of CWD and litter, as well as soil respiration) both through time and among diversity levels. Between 2001 and 2009 the aboveground C pools increased, driven by trees. Across diversity levels, the mean observed aboveground C pool was 7.9 ± 2.5 Mg ha−1 in 2006 and 20.4 ± 7.4 Mg ha−1 in 2009, a 158% increase. There was no significant diversity effect on the observed aboveground C pool, but we found a significant decrease in the topsoil C pool, with a mean value of 34.5 ± 2.4 Mg ha−1 in 2001 and of 25.7 ± 5.7 Mg ha−1 in 2009 (F1,36 = 52.12, p < 0.001). Assuming that the biomass C pool in 2001 was negligible (<1 Mg ha−1), then the plantation gained in C, on average, ∼20 and lost ∼9 Mg ha−1 in biomass and soil respectively, for an overall gain of ∼11 Mg ha−1 over 8 years. Across the entire data set, we uncovered significant effects of diversity on CWD decomposition (diversity: F2,393 = 15.93, p < 0.001) and soil respiration (monocultures vs mixtures: t = 15.35, df = 11, p < 0.05) and a marginally significant time × diversity interaction on the loss of total C from the mineral topsoil pool (see above). Monthly CWD decomposition was significantly faster in monocultures (35.0 ± 24.1%) compared with triplets (31.3 ± 21.0%) and six-species mixtures (31.9 ± 26.8%), while soil respiration was higher in monocultures than in mixtures (t = 15.35, df = 11, p < 0.001). Path analyses showed that, as diversity increases, the links among the C pools and fluxes strengthen significantly. Our results demonstrate that tree diversity influences the processes governing the changes in C pools and fluxes following establishment of a tree plantation on a former pasture. We conclude that the choice of tree mixtures for afforestation in the tropics can have a marked influence on C pools and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号