首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Determining the magnitude of carbon (C) storage in forests and peatlands is an important step towards predicting how regional carbon balance will respond to climate change. However, spatial heterogeneity of dominant forest and peatland cover types can inhibit accurate C storage estimates. We evaluated ecosystem C pools and productivity in the Marcell Experimental Forest (MEF), in northern Minnesota, USA, using a network of plots that were evenly spaced across a heterogeneous 1-km2 mosaic composed of a mix of upland forests and peatlands. Using a nested plot design, we estimated the standing C stock of vegetation, coarse detrital wood and soil pools. We also estimated aboveground net primary production (ANPP) as well as coarse root production. Additionally we evaluated how vegetation cover types within the study area differed in C storage. The total ecosystem C pool did not vary significantly among upland areas dominated by aspen (160 ± 13 Mg C ha−1), mixed hardwoods (153 ± 19 Mg C ha−1), and conifers (197 ± 23 Mg C ha−1). Live vegetation accounted for approximately 50% of the total ecosystem C pool in these upland areas, and soil (including forest floor) accounted for another 35–40%, with remaining C stored as detrital wood. Compared to upland areas, total C stored in peatlands was much greater, 1286 ± 125 Mg C ha−1, with 90–99% of that C found in peat soils that ranged from 1 to 5 m in depth. Forested areas ranged from 2.6 to 2.9 Mg C ha−1 in ANPP, which was highest in conifer-dominated upland areas. In alder-dominated and black spruce-dominated peatland areas, ANPP averaged 2.8 Mg C ha−1, and in open peatlands, ANPP averaged 1.5 Mg C ha−1. In treed areas of forest and peatlands, our estimates of coarse root production ranged from 0.1 to 0.2 Mg C ha−1. Despite the lower production in open peatlands, all peatlands have acted as long-term C sinks over hundreds to thousands of years and store significantly more C per unit area than is stored in uplands. Despite occupying only 13% of our study area, peatlands store almost 50% of the C contained within it. Because C storage in peatlands depends largely on climatic drivers, the impact of climate changes on peatlands may have important ramifications for C budgets of the western Great Lakes region.  相似文献   

2.
There is limited understanding of the carbon (C) storage capacity and overall ecological structure of old-growth forests of western Montana, leaving little ability to evaluate the role of old-growth forests in regional C cycles and ecosystem level C storage capacity. To investigate the difference in C storage between equivalent stands of contrasting age classes and management histories, we surveyed paired old-growth and second growth western larch (Larix occidentalis Nutt)–Douglas-fir (Pseudostuga menziesii var. glauca) stands in northwestern Montana. The specific objectives of this study were to: (1) estimate ecosystem C of old-growth and second growth western larch stands; (2) compare C storage of paired old-growth–second growth stands; and (3) assess differences in ecosystem function and structure between the two age classes, specifically measuring C associated with mineral soil, forest floor, coarse woody debris (CWD), understory, and overstory, as well as overall structure of vegetation. Stands were surveyed using a modified USFS FIA protocol, focusing on ecological components related to soil, forest floor, and overstory C. All downed wood, forest floor, and soil samples were then analyzed for total C and total nitrogen (N). Total ecosystem C in the old-growth forests was significantly greater than that in second growth forests, storing over 3 times the C. Average total mineral soil C was not significantly different in second growth stands compared to old-growth stands; however, total C of the forest floor was significantly greater in old-growth (23.8 Mg ha−1) compared to second growth stands (4.9 Mg ha−1). Overstory and coarse root biomass held the greatest differences in ecosystem C between the two stand types (old-growth, second growth), with nearly 7 times more C in old-growth trees than trees found on second growth stands (144.2 Mg ha−1 vs. 23.8 Mg ha−1). Total CWD on old-growth stands accounted for almost 19 times more C than CWD found in second growth stands. Soil bulk density was also significantly higher on second growth stands some 30+ years after harvest, demonstrating long-term impacts of harvest on soil. Results suggest ecological components specific to old-growth western larch forests, such as coarse root biomass, large amounts of CWD, and a thick forest floor layer are important contributors to long-term C storage within these ecosystems. This, combined with functional implications of contrasts in C distribution and dynamics, suggest that old-growth western larch/Douglas-fir forests are both functionally and structurally distinctive from their second growth counterparts.  相似文献   

3.
The recovery process of fallow stands in the mountainous region of Northwestern Vietnam was studied, based on a chronosequence of 1–26-year-old secondary forests after intensive shifting cultivation. The number of species present in a 26-year-old secondary forest attained 49% of the 72 species present in an old-growth forest. Total stem density decreased gradually from 172,500 ha−1 in a 3-year-old forest to 24,600 ha−1 in the 26-year-old stand, but stem density of larger trees (diameter at breast height (D) ≥ 5 cm) increased from 60 ha−1 in a 7-year-old to 960 ha−1 in the 26-year-old forests, which was similar to that of an old-growth forest. Annual biomass increment of the 26-year-old stand was 4.2 Mg ha−1 year−1. A saturation curve was fitted to biomass accumulation in secondary forests. After an estimated time of 60 years, a secondary forest can achieve 80% of the biomass of old-growth forests (240 Mg ha−1). Species diversity expressed by Shannon Index shows that it takes 60 years for a secondary forest in fallow to achieve a plant species diversity similar to that of old-growth forests.  相似文献   

4.
An accurate characterization of tree carbon (TC), forest floor carbon (FFC) and soil organic carbon (SOC) in tropical forest plantations is important to estimate their contribution to global carbon stocks. This information, however, is poor and fragmented. Carbon contents were assessed in patula pine (Pinus patula) and teak (Tectona grandis) stands in tropical forest plantations of different development stages in combination with inventory assessments and soil survey information. Growth models were used to associate TOC to tree normal diameter (D) with average basal area and total tree height (HT), with D and HT parameters that can be used in 6–26 years old patula pine and teak in commercial tropical forests as indicators of carbon stocks. The information was obtained from individual trees in different development stages in 54 patula pine plots and 42 teak plots. The obtained TC was 99.6 Mg ha−1 in patula pine and 85.7 Mg ha−1 in teak forests. FFC was 2.3 and 1.2 Mg ha−1, SOC in the surface layer (0–25 cm) was 92.6 and 35.8 Mg ha−1, 76.1 and 19 Mg ha−1 in deep layers (25–50 cm) in patula pine and teak, respectively. Carbon storage in trees was similar between patula pine and teak plantations, but patula pine had higher levels of forest floor carbon and soil organic carbon. Carbon storage in trees represents 37 and 60% of the total carbon content in patula pine and teak plantations, respectively. Even so, the remaining percentage corresponds to SOC, whereas FFC content is less than 1%. In summary, differences in carbon stocks between patula pine and teak trees were not significant, but the distribution of carbon differed between the plantation types. The low FFC does not explain the SOC stocks; however, current variability of SOC stocks could be related to variation in land use history.  相似文献   

5.
The purpose of this study was to estimate biomass and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi). The study site was located in central Taiwan and the makino bamboo plantation had a stand density of 21191 ± 4107 culms ha−1. A diameter distribution model based on the Weibull distribution function and an allometric model was used to predict aboveground biomass and carbon storage. For an accurate estimation of carbon storage, the percent carbon content (PCC) in different sections of bamboo was determined by an elemental analyzer. The results showed that bamboos of all ages shared a similar trend, where culms displayed a carbon storage of 47.49–47.82%, branches 45.66–46.23%, and foliage 38.12–44.78%. In spite of the high density of the stand, the diameter distribution of makino bamboo approached a normal distribution and aboveground biomass and carbon storage were 105.33 and 49.81 Mg ha−1, respectively. Moreover, one-fifth of older culms from the entire stand were removed by selective cutting. If the distribution of the yield of older culms per year was similar to the current stand, the yields of biomass and carbon per year would be 21.07 and 9.89 Mg ha−1 year−1. An astonishing productivity was observed, where every 5 years the yield of biomass and carbon was equal to the current status of stockings. Thus, makino bamboo has a high potential as a species used for carbon storage.  相似文献   

6.
Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3% (±3.3) and 50.3% (±2.9). Average carbon content in the soil was 4.1% (±2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha−1 and the mean annual increment for carbon in the biomass was 4.2 Mg ha−1 yr−1. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha−1 yr−1. Total stored carbon in the forest was 180.4 Mg ha−1 at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R2 adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.  相似文献   

7.
Long-term management impacts on carbon storage in Lake States forests   总被引:2,自引:0,他引:2  
We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of similar ages, providing a unique opportunity to evaluate long-term management impacts on carbon pools in two major North American forest types. Management resulted in total ecosystem carbon pools of 130-137 Mg ha−1 in thinned red pine and 96-177 Mg ha−1 in managed northern hardwoods compared to 195 Mg ha−1 in unmanaged red pine and 224 Mg ha−1 in unmanaged northern hardwoods. Managed stands had smaller tree and deadwood pools than unmanaged stands in both ecosystems, but management had limited impacts on understory, forest floor, and soil carbon pools. Total carbon storage and storage in individual pools varied little across thinning intensities in red pine. In northern hardwoods, selection cuttings stored more carbon than the diameter-limit treatment, and selection cuttings generally had larger tree carbon pools than the shelterwood or diameter-limit treatments. The proportion of total ecosystem carbon stored in mineral soil tended to increase with increasing treatment intensity in both ecosystems, while the proportion of total ecosystem carbon stored in the tree layer typically decreased with increasing treatment intensity. When carbon storage in harvested wood products was added to total ecosystem carbon, selection cuttings and unmanaged stands stored similar levels of carbon in northern hardwoods, but carbon storage in unmanaged stands was higher than that of thinned stands for red pine even after adding harvested wood product carbon to total ecosystem carbon. Our results indicate long-term management decreased on-site carbon storage in red pine and northern hardwood ecosystems, but thinning intensity had little impact on carbon storage in red pine while increasing management intensity greatly reduced carbon storage in northern hardwoods. These findings suggest thinning to produce different stand structures would have limited impacts on carbon storage in red pine, but selection cuttings likely offer the best carbon management options in northern hardwoods.  相似文献   

8.
With increasing CO2 in the atmosphere, there is an urgent need of reliable estimates of biomass and carbon pools in tropical forests, most especially in Africa where there is a serious lack of data. Information on current annual increment (CAI) of carbon biomass resulting from direct field measurements is crucial in this context, to know how forest ecosystems will affect the carbon cycle and also to validate eddy covariance flux measurements. Biomass data were collected from 25 plots of 13 ha spread over the different vegetation types and land uses of a moist evergreen forest of 772,066 ha in Cameroon. With site-specific allometric equations, we estimated biomass and aboveground and belowground carbon pools. We used GIS technology to develop a carbon biomass map of our study area. The CAI was estimated using the growth rates obtained from tree rings analysis. The carbon biomass was on average 264 ± 48 Mg ha−1. This estimate includes aboveground carbon, root carbon and soil organic carbon down to 30 cm depth. This value varied from 231 ± 45 Mg ha−1 of carbon in Agro-Forests to 283 ± 51 Mg ha−1 of carbon in Managed Forests and to 278 ± 56 Mg ha−1 of carbon in National Park. The carbon CAI varied from 2.54 ± 0.65 Mg ha−1 year−1 in Agro-Forests to 2.79 ± 0.72 Mg ha−1 year−1 in Managed Forests and to 2.85 ± 0.72 Mg ha−1 year−1 in National Park. This study provides estimates of biomass, carbon pools and CAI of carbon biomass from a forest landscape in Cameroon as well as an appropriate methodology to estimate these components and the related uncertainty.  相似文献   

9.
Data on the biomass and productivity of southeast Asian tropical forests are rare, making it difficult to evaluate the role of these forest ecosystems in the global carbon cycle and the effects of increasing deforestation rates in this region. In particular, more precise information on size and dynamics of the root system is needed. In six natural forest stands at pre-montane elevation (c. 1000 m a.s.l.) on Sulawesi (Indonesia), we determined above-ground biomass and the distribution of fine (d < 2 mm) and coarse roots (d > 2 mm), estimated above- and below-ground net production, and compared the results to literature data from other pre-montane paleo- and neotropical forests. The mean total biomass of the stands was 303 Mg ha−1 (or 128 Mg C ha−1), with the largest biomass fraction being recorded for the above-ground components (286 Mg ha−1) and 11.2 and 5.6 Mg ha−1 of coarse and fine root biomass (down to 300 cm in the soil profile), resulting in a remarkably high shoot:root ratio of c. 17. Fine root density in the soil profile showed an exponential decrease with soil depth that was closely related to the concentrations of base cations, soil pH and in particular of total P and N. The above-ground biomass of these stands was found to be much higher than that of pre-montane forests in the Neotropics, on average, but lower compared to other pre-montane forests in the Paleotropics, in particular when compared with dipterocarp forests in Malesia. The total above- and below-ground net primary production was estimated at 15.2 Mg ha−1 yr−1 (or 6.7 Mg C ha−1 yr−1) with 14% of this stand total being invested below-ground and 86% representing above-ground net primary production. Leaf production was found to exceed net primary production of stem wood. The estimated above-ground production was high in relation to the mean calculated for pre-montane forests on a global scale, but it was markedly lower compared to data on dipterocarp forests in South-east Asia. We conclude that the studied forest plots on Sulawesi follow the general trend of higher biomasses and productivity found for paleotropical pre-montane forest compared to neotropical ones. However, biomass stocks and productivity appear to be lower in these Fagaceae-rich forests on Sulawesi than in dipterocarp forests of Malesia.  相似文献   

10.
This paper estimates the difference in stand biomass due to shorter and lighter trees in southwest (SW) and southern Amazonia (SA) compared to trees in dense forests in central Amazonia (CA). Forest biomass values used to estimate carbon emissions from deforestation throughout, Brazilian Amazonia will be affected by any differences between CA forests and those in the “arc of deforestation” where clearing activity is concentrated along the southern edge of the Amazon forest. At 12 sites (in the Brazilian states of Amazonas, Acre, Mato Grosso and Pará) 763 trees were felled and measurements were made of total height and of stem diameter. In CA dense forest, trees are taller at any given diameter than those in SW bamboo-dominated open, SW bamboo-free dense forest and SA open forests. Compared to CA, the three forest types in the arc of deforestation occur on more fertile soils, experience a longer dry season and/or are disturbed by climbing bamboos that cause frequent crown damage. Observed relationships between diameter and height were consistent with the argument that allometric scaling exponents vary in forests on different substrates or with different levels of natural disturbance. Using biomass equations based only on diameter, the reductions in stand biomass due to shorter tree height alone were 11.0, 6.2 and 3.6%, respectively, in the three forest types in the arc of deforestation. A prior study had shown these forest types to have less dense wood than CA dense forest. When tree height and wood density effects were considered jointly, total downward corrections to estimates of stand biomass were 39, 22 and 16%, respectively. Downward corrections to biomass in these forests were 76 Mg ha−1 (∼21.5 Mg ha−1 from the height effect alone), 65 Mg ha−1 (18.5 Mg ha−1 from height), and 45 Mg. ha−1 (10.3 Mg ha−1 from height). Hence, biomass stock and carbon emissions are overestimated when allometric relationships from dense forest are applied to SW or SA forest types. Biomass and emissions estimates in Brazil's National Communication under the United Nations Framework Convention on Climate Change require downward corrections for both wood density and tree height.  相似文献   

11.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

12.
To understand the influence of disturbance, age–class structure, and land use on landscape-level carbon (C) budgets during conversion of old-growth forests to managed forests, a spatially explicit, retrospective C budget from 1920 through 2005 was developed for the 2500 ha Oyster River area of Fluxnet-Canada's coastal BC Station. We used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), an inventory-based model, to simulate forest C dynamics. A current (circa 1999) forest inventory for the area was compiled, then overlaid with digitized historic disturbance maps, a 1919 timber cruise map, and a series of historic orthophotographs to generate a GIS coverage of forest cover polygons with unique disturbance histories dating back to 1920. We used the combined data from the historic and current inventory and forest change data to first estimate initial ecosystem C stocks and then to simulate forest dynamics and C budgets for the 86-year period. In 1920, old-growth forest dominated the area and the long-term landscape-level net ecosystem C balance (net biome productivity, NBP) was a small sink (NBP 0.2 Mg C ha−1 year−1). From 1930 to 1945 fires, logging, and slash burning resulted in large losses of biomass C, emissions of C to the atmosphere, and transfers of C from biomass to detritus and wood products (NBP ranged from −3 to −56 Mg C ha−1 year−1). Live biomass C stocks slowly recovered following this period of high disturbance but the area remained a C source until the mid 1950s. From 1960 to 1987 disturbance was minimal and the area was a C sink (NBP ranged from 3 to 6 Mg C ha−1 year−1). As harvest of second-growth forest began in late 1980s, disturbances again dominated the area's C budget, partially offset by ongoing C uptake by biomass in recovering young forests such that the C balance varied from positive to negative depending upon the area disturbed that year (NBP from 6 to −15 Mg C ha−1 year−1). Despite their high productivity, the area's forests are not likely to attain C densities of the landscape prior to industrial logging because the stands will not reach pre-logging ages. Additional work is underway to examine the relative role historic climate variability has had on the landscape-level C budget.  相似文献   

13.
As in many other developing countries, the state government of Acre, Brazil, is developing a program for compensating forest holders (such as communities of rubber tappers and indigenous peoples as well as small, medium and large private land holders) reducing their emission of atmospheric heat-trapping gases by not deforesting. We describe and then apply to Acre a method for estimating carbon stocks by land cover type. We then compare the results of our simple method, which is based on vegetation mapping and ground-based samples, with other more technically demanding methods based on remote sensing. We estimated total biomass carbon stocks by multiplying the measured above-ground biomass of trees >10 cm DBH in each of 18 forest types and published estimates for non-forest areas, as determined by measurement of 44 plots throughout the state (ranging from 1 to 10 ha each), by land-cover area estimated using a geographical information system. State-wide, we estimated average above-ground biomass in forested areas to be 246 ± 90 Mg ha−1; dense forest showed highest (322 ± 20 Mg ha−1) and oligotrophic dwarf forest (campinarana) the lowest biomass (20 ± 30 Mg ha−1). The two most widespread forest types in Acre, open canopy forests dominated by either palms and bamboo (for which ground-based data are scant), support an estimated 246 ± 44 and 224 ± 50 Mg ha−1 of above-ground biomass, respectively. We calculate the total above-ground biomass of the 163,000 km2 State of Acre to be 3.6 ± 0.8 Pg (non-forest biomass included). This estimate is very similar to two others generated using much more technologically demanding methods, but all three methods, regardless of sophistication, suffer from lack of field data.  相似文献   

14.
We studied the carbon density and accumulation in trees at five sites in a tropical dry forest (TDF) to address the questions: how is the TDF structured in terms of tree and carbon density in different DBH (diameter at breast height) classes? What are the levels of carbon density and accumulation in the woody species of TDF? Is the vegetation carbon density evenly distributed across the forest? Does carbon stored in the soil reflect the pattern of aboveground vegetation carbon density? Which species in the forest have a high potential for carbon accumulation? The WSG among species ranged from 0.39 to 0.78 g cm−3. Our study indicated that most of the carbon resides in the old-growth (high DBH) trees; 88-97% carbon occurred in individuals ?19.1 cm DBH, and therefore extra care is required to protect such trees in the dry forest. Acacia catechu, Buchanania lanzan, Hardwickia binata, Shorea robusta and Terminalia tomentosa accounted for more than 10 t ha−1 carbon density, warranting extra efforts for their protection. Species also differed in their capacity to accumulate carbon indicating variable suitability for afforestation. Annually, the forest accumulated 5.3 t-C ha−1 yr−1 on the most productive, wettest Hathinala site to 0.05 t-C ha−1 yr−1 on the least productive, driest Kotwa site. This study indicated a marked patchy distribution of carbon density (151 t-C ha−1 on the Hathinala site to 15.6 t-C ha−1 on the Kotwa site); the maximum value was more than nine times the minimum value. These findings suggest that there is a substantial scope to increase the carbon density and accumulation in this forest through management strategies focused on the protection, from deforestation and fire, of the high carbon density sites and the old-growth trees, and increasing the stocking density of the forest by planting species with high potential for carbon accumulation.  相似文献   

15.
Biomass and carbon sequestration rate of a young (four year old) mixed plantation of Dalbergia sissoo Roxb., Acacia catechu Willd., and Albizia lebbeck Benth. growing in Terai region (a level area of superabundant water) of central Himalaya was estimated. The plantation is seed sown in the rainy season of year 2004 and spread over an area of 44 ha. Allometric equations for both above and below ground components were developed for three tree species. The density of trees in the plantation was 1322 trees ha−1 The diameters of trees were below 10 cm. Five diameter classes were defined for D. sissoo and A. catechu and 3 for A. lebbeck. 5 trees were harvested in each diameter class. Individual tree allometry was exercised for developing the allometric equations relating tree component (low and above ground) biomass to d.b.h. Post analysis equations were highly significant (P > 0.001) for each component of all species. In the plantation Holoptelia integrifolia Roxb. (Family Ulmaceae) has been reduced to shrub form because of frost. Only the aboveground biomass of H. integrifolia and other shrubs were estimated by destructive harvesting method. Herbaceous forest floor biomass and leaf litter fall were also estimated. The total forest vegetation biomass was 10.86 Mg ha−1 in 2008 which increased to 19.49 Mg ha−1 in 2009. The forest is sequestering carbon at the rate of 4.32 Mg ha−1 yr−1.  相似文献   

16.
The efficiency with which trees convert photosynthetically active radiation (PAR) to biomass has been shown to be consistent within stands of an individual species, which is useful for estimating biomass production and carbon accumulation. However, radiation use efficiency (?) has rarely been measured in mixed-species forests, and it is unclear how species diversity may affect the consistency of ?, particularly across environmental gradients. We compared aboveground net primary productivity (ANPP), intercepted photosynthetically active solar radiation (IPAR), and radiation use efficiency (? = ANPP/IPAR) between a mixed deciduous forest and a 50-year-old white pine (Pinus strobus L.) plantation in the southern Appalachian Mountains. Average ANPP was similar in the deciduous forest (11.5 Mg ha−1 y−1) and pine plantation (10.2 Mg ha−1 y−1), while ? was significantly greater in the deciduous forest (1.25 g MJ−1) than in the white pine plantation (0.63 g MJ−1). Our results demonstrate that late-secondary hardwood forests can attain similar ANPP as mature P. strobus plantations in the southern Appalachians, despite substantially less annual IPAR and mineral-nitrogen availability, suggesting greater resource-use efficiency and potential for long-term carbon accumulation in biomass. Along a 260 m elevation gradient within each forest there was not significant variation in ?. Radiation use efficiency may be stable for specific forest types across a range of environmental conditions in the southern Appalachian Mountains, and thus useful for generating estimates of ANPP at the scale of individual watersheds.  相似文献   

17.
Tropical forests play an important role in the global carbon cycle. Despite an increasing number of studies have addressed carbon storage in tropical forests, the regional variation in such storage remains poorly understood. Uncertainty about how much carbon is stored in tropical forests is an important limitation for regional-scale estimates of carbon fluxes and improving these estimates requires extensive field studies of both above- and belowground stocks. In order to assess the carbon pools of a tropical seasonal forest in Asia, total ecosystem carbon storage was investigated in Xishuangbanna, SW China. Averaged across three 1 ha plots, the total carbon stock of the forest ecosystem was 303 t C ha−1. Living tree carbon stocks (both above- and belowground) ranged from 163 to 258 t C ha−1. The aboveground biomass C pool is comparable to the Dipterocarp forests in Sumatra but lower than those in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1–2 t C ha−1 to the total carbon stock. The mineral soil C pools (top 100 cm) ranged from 84 to 102 t C ha−1 and the C in woody debris from 5.6 to 12.5 t C ha−1, representing the second and third largest C component in this ecosystem. Our results reveal that a high percentage (70%) of C is stored in biomass and less in soil in this tropical seasonal forest. This study provides an accurate estimate of the carbon pool and the partitioning of C among major components in tropical seasonal rain forest of northern tropical Asia. Results from this study will enhance our ability to evaluate the role of these forests in regional C cycles and have great implications for conservation planning.  相似文献   

18.
Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0–1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems ≥4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006–2007. Live AGB ranged from 166.3 Mg ha−1 (bootstrapped 95% CI: 144.4,187.0) to 283.2 Mg ha−1 (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64–75%) with limited crown illumination but the largest proportion of the live AGB (68–85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle.  相似文献   

19.
In regions of Australia of low–medium rainfall (500–800 mm/year), there is growing community and land-owner support for re-planting trees to achieve multiple environmental objectives, particularly amelioration of soil salinity. Sequestration of carbon by newly established trees is not only another important environmental benefit, but also a potential commercial benefit. To obtain estimates of carbon sequestered by species of commercial potential in such regions, we calibrated the carbon (C) accounting model FullCAM to Eucalyptus cladocalyx and Corymbia maculata plantations. This was achieved by harvesting trees of a range in sizes to determine the allometric relationships that most accurately predict biomass and stem density from measures of stem diameter. Predictions of stem diameter were obtained from a forest growth model (3-PG) previously calibrated for these two species. By applying these predictions of changes in stem diameter as the stand matures in our allometric relationships, we estimated changes in partitioning of biomass (between stem, branches, bark, foliage and roots) and stem wood density as the stand matures under scenarios of 500, 600 and 750 mm mean annual rainfall. We found that for both species, regardless of annual rainfall, throughout the rotation 37–50% of carbon sequestered in the total tree biomass was in the stem, 18–27% in both branches and roots, and the remainder in foliage or bark. However, rate of accumulation of carbon was dependent on annual rainfall, with average annual rate of sequestration of carbon in tree biomass and litter during the first rotation of E. cladocalyx (or C. maculata) increasing from 3.68 (or 4.17) to 4.72 (or 4.86) Mg C ha−1 yr−1 as annual rainfall increased from about 500 to 750 mm. Although it was predicted that decomposition negated any accumulation of debris between successive rotations, carbon was predicted to accumulate in sawlog products, given that assumed rates of product decomposition were slightly less than their rate of accumulation. This resulted in a slight increase (<8 Mg C ha−1) in predicted total sequestration of carbon between successive rotations.  相似文献   

20.
Changes in above-ground biomass (AGB) of 17 1 ha logged plots of terra firme rain forest in the eastern Amazon (Brazil, Paragominas) were monitored for four years (2004–2008) after reduced-impact logging. Over the same time period, we also monitored two 0.5 ha plots in adjacent unlogged forest. While AGB in the control plots changed little over the observation period (increased on average 1.4 Mg ha−1), logging resulted in immediate reductions in ABG that averaged 94.5 Mg ha−1 (±42.0), which represented 23% of the 410 Mg ha−1 (±64.9) present just prior to harvesting. Felled trees (dbh > 55 cm) accounted for 73% (±15) of these immediate losses but only 18.9 Mg ha−1 (±8.1) of biomass was removed in the extracted logs. During the first year after logging, the annual AGB balance (annual AGB gain by recruitment and growth − annual AGB loss by mortality) remained negative (−31.1 Mg ha−1 year−1; ±16.7), mainly due to continued high mortality rates of damaged trees. During the following three years (2005–2008), average net AGB accumulation in the logged plots was 2.6 Mg ha−1 year−1 (±4.6). Post-logging biomass recovery was mostly through growth (4.3 ± 1.5 Mg ha−1 year1 for 2004–2005 and 6.8 ± 0.9 Mg ha−1 year1 for 2005–2008), particularly of large trees. In contrast, tree recruitment contributed little to the observed increases in AGB (1.1 ± 0.6 Mg ha−1 year−1 for 2004–2005 and 3.1 ± 1.3 Mg ha−1 year−1 for 2005–2008). Plots with the lowest residual basal area after logging generally continued to lose more large trees (dbh ≥70 cm), and consequently showed the greatest AGB losses and the slowest overall AGB gains. If 100% AGB recovery is desired and the 30-year minimum cutting cycle defined by Brazilian law is adhered to, current logging intensities (6 trees ha−1) need to be reduced by 40–50%. Such a reduction in logging intensity will reduce financial incomes to loggers, but might be compensated for by the payment of environmental services through the proposed REDD (reduced emissions from deforestation and forest degradation) mechanism of the United Nations Framework Convention on Climate Change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号