首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The need to carry out biological conservation outside protected areas requires avoiding, minimizing or mitigating impacts brought about by habitat transformation upon the biota. Usually, forest plantations hold fewer species than the original forest. However, structurally complex plantations support more species and individuals than simpler ones. Here we test if this phenomenon occurs in amphibian and reptilian assemblages, analyzing information regarding their richness and abundance in forestry plantations from 14 countries and 72 case studies which compare species richness and abundance in plantations and forests. Among amphibians, species richness is lower in plantations than in forests while among reptiles there is no significant difference. The abundance of reptiles increases in plantations. Three studies dealt with reptile assemblages in relation to structural complexity of plantation, which suggest that species richness and abundance is higher in complex plantations. Despite accounting for 50 % of the terrestrial vertebrates, herpetological studies account for 15 % of the research available regarding the impact of plantation upon vertebrates, information deficiency that hampers decision-making on the conservation of herpetozoans outside protected areas.  相似文献   

2.
Forestry practices such as fuel-reduction burning and maintenance of road networks can negatively impact avian assemblages, both directly by changing habitat structure and indirectly by creating conditions favorable for predators or competitors. The Brigalow Belt forests include some of the largest contiguous areas of native forest in the temperate and sub-humid zones of eastern Australia. Over 1 million ha of these forests are proposed to be converted from forestry to conservation tenure, yet the impacts on the avifauna of current and potential future forest management practices are not known. We investigated the influence of road edges and habitat type and structure on the avifauna of a 356 000 ha forest. Survey sites were either <50 m or >300 m from a road, and in either cypress pine Callitris glaucophylla forest, spotted gum Corymbia citriodora forest with a regenerating cypress pine/buloke Allocasuarina luehmannii understorey or spotted gum forest with an open understorey due to fuel-reduction burning. The avifauna differed significantly among vegetation types but not with proximity to a road, with the greatest differences between cypress pine and both types of spotted gum forest. The noisy miner Manorina melanocephala, an aggressive avian competitor, appears to be the factor mediating these assemblage-level differences. Noisy miners were rare in cypress pine forest but were three times more numerous than any other species in spotted gum forest. Spotted gum forest with a regenerating understorey had fewer noisy miners. Although total bird abundance was highest in open spotted gum forest, the species richness and abundance of passerines smaller than noisy miners was significantly lower in this forest type. Abundance of small passerines was eight times higher in sites where <3 noisy miners were recorded. Only one species, the eastern yellow robin, was influenced by proximity to a road edge. Cypress pine forest is potentially an important refuge for smaller birds. The results suggest that burning regimes that reduce regeneration of the cypress pine and buloke subcanopy in spotted gum forest potentially are exacerbating the problem of noisy miner domination of the avifauna.  相似文献   

3.
  • ? Carabid beetles were investigated at five different forest types in the Ibaizabal basin (northern Spain). The landscape is characterized by the presence of remnants of native forest surrounded by conifer plantations.
  • ? Carabids were trapped in 52 stands of mixed forest, beech forest, holm oak forest, mixed pine and Monterey pine plantations in 2005 and 2006. The main objectives of the study were: compare carabid diversity, recognise the characteristic species, and study the effects of ecological variables on carabid assemblages in the different forest types.
  • ? No significative differences in species abundance, richness and diversity were found among the studied forests. Most of the trapped beetles were identified as forest generalists, nevertheless some native and non-native forest specialist species were also found. Distribution of carabid communities overlapped and, except for beech forest, no specific communities were distinguished. Altitude, percentage of grass coverage and temperature were the main variables influencing species distribution.
  • ? The results suggest high habitat homogeneity, caused by regeneration in pine plantations of the indigenous understorey, and by poor habitat quality in native forest (patchy remnants enclosed in conifer plantations). This situation could explain the similar carabid diversity.
  •   相似文献   

    4.
    We compared breeding avian communities among 11 habitat types in north-central Michoacán, Mexico, to determine patterns of forest use by endemic and nonendemic resident species. Point counts of birds and vegetation measurements were conducted at 124 sampling localities from May through July, in 1994 and 1995. Six native forest types sampled were pine, pine–oak, oak–pine, oak, fir, and cloud forests; three habitat types were plantations of Eucalyptus, pine, and mixed species; and the remaining two habitats were shrublands and pastures. Pastures had lower bird-species richness and abundance than pine, oak–pine, and mixed-species plantations. Pine forests had greater bird abundance and species richness than oak forests and shrublands. Species richness and abundance of endemics were greatest in fir forests, followed by cloud forests. Bird abundance and richness significantly increased with greater tree-layer complexity, although sites with intermediate tree complexity also supported high abundances. When detrended correspondence-analysis scores were plotted for each site, bird species composition did not differ substantially among the four native oak-and-pine forest types, but cloud and fir forests, Eucalyptus plantations, and mixed-species plantations formed relatively distinct groups. Plantations supported a mixture of species found in native forests, shrublands, and pastures. Pastures and shrublands shared many species in common, varied greatly among sites in bird-species composition, and contained more species specific to these habitats than did forest types.  相似文献   

    5.
    The joint and independent effects of dominant tree species, forest patch spatial attributes, and forest structure and management as drivers of plant species richness and composition in small forest patches scattered within an intensive agricultural landscape were addressed.In a landscape with scattered urban and intensive dairy agricultural areas in north-west Portugal, within which small forest patches (dominated by pines, eucalypts, or both) represent semi-natural habitat islands, 50 small forest patches, with areas ranging between 0.3 and 3 ha, were selected and surveyed for vascular plant diversity, within dairy farming landscape mosaics dominated by annual forage crops. Explanatory variables were composed of three datasets derived either from GIS mapping or field observations: forest type (dominant tree species), forest patch spatial attributes (patch area and shape index), and measures of forest management and structure (diameter at breast height, tree density per hectare, and percentage cover of vegetation strata). Variations in these forest patch attributes were assessed across forest types, and related to measures of plant diversity (total, native, alien, woody, and herbaceous species richness). Redundancy analysis with variance partitioning was applied to evaluate the joint and independent effects of the three sets of variables on species assemblages. The recent shift in canopy dominance from pine to eucalypt observed in the region appears to be related to a (nonsignificant) tendency for the increase of patch area and to the decrease of patch complexity, as well as several changes in forest structure and management, expressed as a trend to denser tree canopies and lower cover of understory plants. Dominant tree species and attributes related to forest structure and management were the most important factors determining plant diversity. The joint effect of the dominant tree species and forest structure and management resulted in lower levels of plant species richness in eucalypt plantations. These were also more prone to invasion by alien species, probably due to decreased biotic resistance from unsaturated native plant assemblages. Our results draw attention to the importance of dominant tree species and management practices for the maintenance of plant diversity levels (species richness and composition) in dairy landscape mosaics, highlighting the importance of the remnants of semi-natural forests as refuges for plant diversity in the landscape context. Nonetheless, forest plant diversity could further be fostered by promoting naturalness of pine stands and the regeneration of native oak woodlands in some forest areas. This would also diversify the range of ecosystem services that could be provided by forest areas in these peri-urban farmlands.  相似文献   

    6.
    Eucalypt plantations are expanding rapidly in Australia, and their value for native fauna requires investigation. The relative conservation value of young eucalypt plantations was investigated through assessment of avifauna richness, abundance and composition using transect surveys incorporating point counts in five broad habitat types—dryland forests, riparian forests, dryland plantations, riparian plantations, and riparian pastures (strips of riparian vegetation surrounded by pastures). A total of 73 species were recorded during formal surveys. Species richness and abundance were comparable among all habitat types except dryland plantations, which supported fewer species and in lower numbers. The avifauna assemblage differed according to broad habitat types. Forest habitats (dryland and riparian) harboured more forest- and woodland-dependent species, and a greater abundance of nectarivores and insectivores. Riparian plantations supported a similar number of forest- and woodland-dependent species to forest habitats, but also retained some open-country species. Riparian pastures had the highest cumulative species richness, reflecting a diverse mix of forest- and woodland-dependent birds and open-country species. It was the preferred habitat type for granivores and vertebrate eaters. Dryland plantations were dominated by common species and omnivores, and supported fewer forest- and woodland-dependent birds, insectivores and frugivores compared with other habitat types. The presence of riparian strips increased avifauna diversity and abundance in plantations and pastures to a greater extent than predicted by the proportional area of riparian habitat. The importance of riparian habitats needs to be recognised and incorporated into management policies if biodiversity conservation is to be an objective of plantation establishment.  相似文献   

    7.
    《Southern Forests》2013,75(4):285-291
    Softwood forestry with non-native tree species is increasing worldwide and especially in many developing countries of the Southern Hemisphere. Tree plantations are beneficial in environmental and socioeconomic aspects, but at the same time there are recognised costs associated with afforestation. Our aim was to revise the existing information on the impact of exotic conifer plantations in north-western Patagonia on insect biodiversity. A total of five studies were selected and, in these, not every insect group responded in a similar manner to the habitat replacement. There was a tendency towards a reduction in abundance and species richness of several insects inside pine plantations. This change in abundance and richness was especially evident for ant assemblages and when pine plantations were dense. Beetle assemblages, in turn, showed diverse responses to the replacement of native vegetation with forests depending on the native habitat matrix. Our findings confirm that practices that reduce tree density (via thinning or during plantation) should be recommended to minimise their impact on insect biodiversity in north-western Patagonia. The consistent behaviour of ant assemblages, coupled with their abundance, ease to sample and unambiguous taxonomy make them reliable candidates for long-term monitoring of the impact conifer forestation in north-western Patagonia, as well as probably in other regions of the world in which non-native pines replace natural environments.  相似文献   

    8.
    To gain insight into the question of which vegetation characteristics have the most influence on avian assemblages in late-successional forests, the habitat preferences of bird-guilds in old-growth endemic forests of Macedonian pine were studied over 3 years in the Pirin National Park, Bulgaria. Bird–habitat relationships were investigated by comparing vegetation characteristics, and bird species richness, diversity, abundance, and guild structure of birds (determined according to food type, foraging and nesting sites) between mature (60–100 years old) and over-mature (>120 years old) Macedonian pine forest stands. Studied forest age-classes differed mainly by the density, height and diameter of trees, and the amount of dead wood. The first one of these parameters decreased and the latter two parameters increased with the forest succession. The difference in the vegetation structure affected the abundance of bird-guilds and thus, the overall bird abundance and the structure of avian assemblages within Macedonian pine forests. There was no significant difference in bird diversity among studied forest age-classes, but the overall bird abundance increased with forest maturation. Analyzed by study plots, species richness was higher in over-mature forests, but at cluster level, there was no significant difference between mature and over-mature forest age-classes. Half of the studied (insectivorous, hole- and ground-nesters, bark- and canopy-foraging bird species) guilds were more abundant in over-mature forests, while there was no bird-guild exhibiting a preference for mature forest stands. The abundances of bird-guilds were correlated with tree height, diameter at breast height and the amount of dead wood between the studied forest age-classes and this might explain their preferences for over-mature pine forests. Therefore, for future sustainable management of these endemic forests and the conservation of their avifauna, efforts should focus on protecting the remaining native old-growth forest stands and the importance of the structure of Macedonian pine forests on their bird assemblages should be considered in forestry practices.  相似文献   

    9.
    Plantations cover a substantial amount of Earth's terrestrial surface and this area is expected to increase dramatically in the coming decades. Pinus plantations make up approximately 32% of the global plantation estate. They are primarily managed for wood production, but have some capacity to support native fauna. This capacity likely varies with plantation management. We examined changes in the richness and frequency of occurrence of bird species at 32 plots within a Pinus radiata plantation (a management unit comprising multiple Pinus stands) in south-eastern Australia. Plots were stratified by distance to native forest, stand age class and thinning regime. We also assessed the landscape context of each plot to determine relationships between bird assemblages and stand and landscape-level factors. Bird species richness was significantly higher at plots ≥300 m from native forest and in mature (∼20 years since planting) and old (∼27 years since planting) thinned pine stands. We were able to separate the often confounding effects of stand age and thinning regime by including old stands that had never been thinned. These stands had significantly fewer species than thinned stands suggesting thinning regime, not age is a key factor to improving the capacity of pine plantations to support native species (although an age × thinning interaction may influence this result). At the landscape level, species richness increased in pine stands when they were closer to native riparian vegetation. There were no significant differences in species composition across plots. Our study indicates the importance of stand thinning and retention of native riparian vegetation in improving the value of pine plantations for the conservation of native fauna.  相似文献   

    10.
    Effects of reforestation by native tree species on species assemblages of carabid beetles were studied between 40-year-old regenerating plantations and 100-year naturally regenerated forests in Southwestern China. Two old naturally regenerated forest types (ca.100 years old) were chosen: hemlock-spruce forests (Tsuga chinensis and Picea brachytyla) and birch forests (Betula albo-sinensis). Three young regenerating forest types (ca. 40 years old), including spruce plantations (P. brachytyla), larch plantations (Larix kaempferi and Larix mastersian), and natural broad-leaved forests, were established after the logging of the old naturally regenerated forests. Using pitfall traps, we compared the distribution of carabid beetles in the five forest types. Three replicated plots for each forest type were chosen, and each plot was investigated with four trap sites twice each month during the growing season (May to October) in 2004. Our results showed that species richness and abundance were significantly higher in the young regenerating forests than in the old naturally regenerated forests. Analysis of complementarity in carabid species lists across the forest ages and types showed that the old naturally regenerated birch forests had the lowest similarity with the young regenerating larch plantations, and the highest similarity was shown between the two young regenerating plantations. Although PCoA ordination grouped the carabid assemblages according to forest type and forest age, the overall similarity among all forest types was high. Moreover, quantitative character species analysis did not detect significant species associated with forest types and ages. Based on the specificity and fidelity, most carabid species were abundant in all habitats, and only a few species were restricted in one or two forest types. Multiple linear regression between the species richness, abundance and Shannon diversity of carabids and of five environmental variables showed that the cover of canopy and herbaceous layer, and the depth of leaf litter had significant effects in determining richness, abundance and diversity of carabid beetles. Thus, the young regenerating forests at the mature stage could provide an appropriate habitat for most forest species of carabids survived in adjacent old naturally regenerated forests and might replace the role in part of the old-growth forests in sustaining the diversity of carabid assemblages. But some species are still restricted in old naturally regenerated forests, so in order to protect the diversity of carabid assemblages, it is necessary to sustain the intact old naturally regenerated forests when reforesting with some native tree species following natural succession.  相似文献   

    11.
    Plantation forests comprise an important part of the forested areas in European countries. Intensive forestry management and short-rotation cycles of plantation forests reduce habitat diversity and change the composition of invertebrate assemblages, mainly by reducing the number of habitat specialist species. Here, we analysed the effect of vegetation structure, amount of dead organic matter (DOM) and plantation age on spider functional diversity and assemblage structure in short-rotation plantations of native silver poplar in Hungary. Three stages, representing young plantations, 6- to 10-year-old stands (five stands), middle-aged plantations, aged between 23 and 26 years (five stands) and mature, 35- to 37-year-old forests at commercial maturity (five stands) were sampled. Each sample consisted of the data of ten pitfall traps. Traps were installed 5 m from each other in a 2 × 5 grid. Functional diversity was positively related to vegetation structure. High functional diversity indicates a higher number of available niches and potential resources. The abundance of moist habitat species and forest specialist species was positively correlated with DOM. Furthermore, moist habitat species were also related to vegetation structure. The most important environmental parameters affecting spiders were factors attributed to trees (litter and DOM), understory vegetation structure and, to a lesser extent, forest age. Different-aged stands may be similar in terms of species composition of their spider fauna if they comprise the same habitat structural patterns. Our study emphasises that the simple habitat structure of plantation forests has a negative effect on spider communities.  相似文献   

    12.
    In Japan, selective thinning is a common thinning method, though line thinning receives much attention because of its economic merits. In this study, we examined effects of the two thinning methods on bird communities in Todo fir (Abies sachalinensis) plantations in Hokkaido, Japan. We surveyed bird species in forests under four different management types — unthinned, selectively thinned, line-thinned plantation, and naturally regenerated forest (here after referred to as natural forest) stands — using a line-transect method. We also investigated vegetation structure (canopy tree and understory) of these stands. Bird species richness did not differ between natural forests and plantations, while bird total abundance was greater in plantations than in natural forests. Bird species richness and total abundance were comparable among the three management types for plantations. Abundances of 10 bird species were different among the four management types, and five species were more abundant in line-thinned plantations. However, two species were more abundant in selectively thinned stands than in line-thinned stands, and they frequently appeared in natural forests. There were no distinct differences in vegetation structure among the management types for plantations. Our results suggest that line thinning could be beneficial for some bird species in plantations.  相似文献   

    13.
    Senbeta  Feyera  Teketay  Demel  Näslund  Bert-Åke 《New Forests》2002,24(2):131-145
    Regeneration of native woody species was studied in the plantations and the adjacent natural forest at Munessa-Shashemene Forest Project Area, Ethiopia. The aim of the study was to test the hypothesis that tree plantations foster regeneration of native woody species. A total of 60 plots, having 10 × 10 m area each, were studied in monoculture plantations of 4 exotic species (Cupressus lusitanica, Eucalyptus globulus, E. saligna, Pinus patula) and an adjacent natural forest. Ages of the plantations ranged between 9 and 28 years. Soil seed bank analysis was also undertaken from soil samples collected in each of the 60 plots to examine the similarity between the soil seed flora and aboveground vegetation. A total of 56 naturally regenerated woody species were recorded beneath all plantation stands with densities ranging between 2300 and 18650 individuals / ha in different stands. There was a significant difference among plantation stands with regard to understorey density (standard deviation: 4836 ± 1341). Vegetation diversity was assessed through analyses of floristic composition, species richness and abundance. Generally, seedling populations were the most abundant components of the regeneration in most of the plantation stands, forming 68 % of the total regeneration count in all stands. A total of 77 plant species represented by 44 herbs, 13 woody species, 8 grasses and 12 unidentified species were recorded in the soil seed bank from all stands. Similarity between the soil seed bank and aboveground flora was very low implying that the role of soil seed banks is negligible rather dispersal plays an important role in the process of regeneration. These results support the concept that forest plantations can foster the regeneration of native woody species, thereby increasing biological diversity, provided that there are seed sources in the vicinity of the plantations.  相似文献   

    14.
    [目的]探讨天然次生林和人工林及人工林树种选择对树冠层蚂蚁群落多样性的影响。[方法]运用树栖蚂蚁陷阱法调查云南省绿春县天然次生林和4种人工林的树冠层蚂蚁群落、植物多样性及植物垂直密度变化。[结果](1)共采集蚂蚁标本17 998头,隶属于6亚科29属68种。(2)树冠层蚂蚁多度:紫胶林-玉米混农林紫胶林桉树林橡胶林天然次生林。(3)树冠层蚂蚁丰富度:紫胶林-玉米混农林紫胶林天然次生林橡胶林桉树林。(4)树冠层蚂蚁ACE估计值:紫胶林-玉米混农林紫胶林天然次生林桉树林橡胶林。(5)树冠层蚂蚁多度和丰富度与枯落物盖度、300 cm处垂直密度和乔木郁闭度呈显著或极显著负相关,而与植物盖度显著正相关;ACE估计值与枯落物盖度、草本植物盖度和乔木郁闭度显著负相关,与175 199.9 cm区段内垂直密度显著正相关。[结论]人工林对蚂蚁多样性保护有一定积极作用,尤其选择乡土树种保护效果更显著,对人工林进行合理的管理有利于保护生物多样性。  相似文献   

    15.
    The first 2 years of post-burn vegetation succession of 11–13-year-old rehabilitated bauxite mines in Western Australia is compared to the native jarrah (Eucalyptus marginata) forest using the techniques of ordination (CANOCOTM) and classification (TWINSPANTM). Analyses of understorey species density and cover values showed consistent patterns of composition and abundance between the native jarrah forest and the rehabilitated areas, both before and after burning. These patterns resulted from the intentional establishment of high densities of legume species in the initial rehabilitation process and proliferation of high densities of seeding species and non-native eucalypt seedlings following burning of the rehabilitated areas, features not characteristic of native jarrah forest. Burnt sites showed larger changes in species abundance and composition than unburnt control sites as indicated by their relative shift of position in the ordination hyper-space. This shift in position was generally less for sites burnt in spring than sites burnt in autumn. The first two divisions of the site classifications separated the unburnt sites and early spring post-burn sites from the forest and the remainder of the post-burn sites. The species classification showed that each of these groups was associated with a specific suite of species. Pit age (i.e. 11, 12 or 13 years-old at time of burning) was an important determinant of species composition in both the ordinations and classifications. Although species densities recovered more rapidly than live plant cover in the rehabilitated areas following burning, the vegetation of these rehabilitated sites exhibited little evidence of returning to their pre-fire species composition and abundance after 2 years. However, the high species similarity (75–79%) between the pre-burn (including species only present as seed in the topsoil) and post-burn vegetation indicates the importance of the initial floristic composition in determining the potential direction of the post-fire succession.  相似文献   

    16.
    The abandonment of agricultural lands in Northern and Eastern Europe increases the area covered by first generation forests, which are either formed as an outcome of secondary succession or established as plantations. However, questions remain as to how these new stands develop and what kind of species they favour, which in turn has impacts on their ecological and economical value. Our aim was to compare understorey vascular plant and bryophyte vegetation characteristics between naturally regenerated and planted birch stands on abandoned agricultural sites in Estonia, focusing on the aspects of species richness and forest understorey recovery. Species richness and diversity of vascular plants were similar in both stand types but the number of forest vascular plant species was significantly higher in naturally regenerated stands. The bryophyte layer of naturally regenerated stands had a higher species richness, diversity, and number of forest bryophyte species. The higher number of forest vascular plant and bryophyte species in naturally regenerated stands can be explained by the longer undisturbed succession period. The recovery of the forest understorey was unaffected by former agricultural land use (crop field or grassland). The influence of soil properties on the recovery of the forest understorey was not detected, but the number of vascular plant species that grow in forests as well as in grasslands was negatively correlated with distance from forest. Overall, understorey vegetation of natural and planted birch stands did not reveal substantial differences. However, in the case of vigorous natural birch regeneration in the vicinity of forest land, unassisted reforestation should be favoured.  相似文献   

    17.
    Small-mammal communities were monitored over 4 years in South Moravian rural lowland forests in order to study relationships with various forest habitat types. Early successional sites (plantations) and forest edges maintained communities with higher abundance and diversity. Lowest total abundance was observed in unmanaged lowland forest and highest abundance in plantations with irregular undergrowth management. Low diversity was typical of non-fruiting monocultures. In plantations, both diversity and abundance were affected by herb layer removal, with sites subject to regular cutting, displaying lower levels. Significant differences in diversity and species richness were only detected between early and late successional sites, with the former showing higher values. Two basic small-mammal community groups were determined; (1) those inhabiting sites with a thick herb undergrowth and an open tree canopy (plantation) and (2) those inhabiting stands with sparse or no herb layer and a closed canopy (high forest). Forest stands support long-term populations of dominant small forest-dwelling mammal species and, as such, serve as reservoirs, even in rural landscapes dominated by intensive arable farming. Managed early succession lowland forests represent important refuges for a number of small open-habitat mammals negatively affected by intensive farming.  相似文献   

    18.
    Despite the fact that tree plantations are not able to completely replace the ecological function of natural forests, the present study proposes to evaluate for which bird species or avian groups tree plantations act as habitat in fragmented landscape in southern Brazil. We compared the richness and abundance of bird species in a natural forest to adjacent plantations of Araucaria, a native tree species and of pine, an exotic plant in South America. Moreover, we evaluated the impact of tree plantations on richness of avian groups with different levels of dependence on forest habitat, feeding habits and foraging strata as well as on threatened species. The fixed 100 m radius point-counts method was used. A total of 114 bird species were recorded in all areas. Of those, 93 occurred in natural forest, 87 in Araucaria plantations and 81 in pine plantations. These results indicate that richness and abundance were lower in the pine plantations than in the natural forest and in the Araucaria plantations. Araucaria plantations can be used by a high number of bird species and their richness was not significantly lower than that observed in the adjacent natural forest. Our results suggest that Araucaria plantations could act as habitat for a large number of bird species, especially for forest-dependents species, insectivores, frugivores and species at different threat categories.  相似文献   

    19.
    An increase in edge area reduces the effective size of habitat fragments and thus the area available for habitat-interior specialists. However, it is unclear how edge effects compare at different ecotones in the same system. We investigated the response of a small mammal community associated with Afromontane forests to edge effects at three different habitat transitions: natural forest to grassland (natural edge, structurally different vegetation types), natural forest to mature plantation (human-altered edge, structurally similar vegetation types) and natural forest to harvested plantation (human-altered edge, structurally different vegetation types). We predicted that edge effects should be less severe at natural ecotones and at similarly structured contiguous vegetation types than human-altered ecotones and differently structured contiguous vegetation types, respectively. We found that forest species seemed to avoid all habitat edges in our study area. Surprisingly, natural edges supported a less diverse small mammal community than human-altered forest edges. However, edge effects were observed deeper into native forests surrounded by mature alien plantations (and more so at harvested plantations) than into native forests surrounded by native grasslands. The net effect of mature plantations was therefore to reduce the functional size of the natural forest by creating a larger edge. We suggest that when plantations are established a buffer zone of natural vegetation be left between natural forests and newly established plantations to mitigate the negative effects of plantation forestry.  相似文献   

    20.
    We compared the structure of the arboreal layer and the diversity and species composition of the understory vegetation of three types of mature forest communities: oak (Quercus pyrenaica) and beech (Fagus sylvatica) forests and Scots pine (Pinus sylvestris) plantations. Our main aim was to determine whether differences in these variables existed and were due to the identity of the dominant tree species. We selected four stands or replicates per forest type located geographically close and with relatively similar conditions. We found no differences in the arboreal structure of oak and beech forests, which were characterised by great variability in tree size, while in case of plantations, this variability was lower at both the intra-stand (estimated by the coefficient of variation) and inter-stand (i.e. the four replicates harboured trees of similar sizes) scales. However, the highest variability in the canopy layer of natural forests was not consistently linked to greater understory species richness. Indeed, the lowest plant species richness was found in beech forests, while oak forests harboured the highest value at either the sampling unit (per m2) or stand scales. The greatest negative correlation between plant diversity and the environmental variables measured was found for litter depth, which was the highest in beech forests. The results obtained by the CCA indicated that the four replicates of each forest type clustered together, due to the presence of characteristic species. We concluded that pine plantations did not approach the environmental conditions of native forests, as plantations were characterised by singular understory species composition and low arboreal layer variability, compared to natural woodlands.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号