首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
Douglas-fir growing on the western slopes of the Oregon Coast Range are experiencing an unprecedented outbreak of Swiss needle cast (SNC) caused by the fungus Phaeocryptopus gaeumannii. SNC can produce substantial physiological stress in host trees by reducing needle gas exchange and enhancing premature needle abscission, resulting in slower growth. Based on the frequent link between stressed trees and insect activity, we explored the potential influence of SNC on Douglas-fir beetle, Dendroctonus pseudotsugae, activity and some tree physiological parameters that may influence beetle attraction (i.e., constitutive ethanol and monoterpene contents of woody tissues) and host susceptibility (i.e., wound-induced resin flow). Woody tissue ethanol concentrations, wound-induced resin flow, and beetle attraction were all reduced as SNC severity increased. Although trees affected by SNC attracted fewer beetles, the number of attacks did not decline, the attacks were more likely to penetrate to sapwood depth, and the galleries were longer than in healthier trees, most likely due to a weakened oleoresin defense. However, there have been no current reports of increased Douglas-fir beetle activity on SNC stressed trees, and no rapid increases in beetle population numbers, or outbreaks associated with these diseased forests. SNC stressed trees may remain free from attacks because pioneering beetles have difficulty recognizing them as being stressed with low ethanol concentrations. Furthermore, beetle populations may not be increasing since stressed trees appear unsuitable for reproduction, as no eggs, larvae, or adult beetles were observed in excavated galleries on any attacked trees. However, if large volumes of host materials became available as a result of some catastrophic event (e.g. wildfire or wind-throw), and the beetles can reproduce successfully enough to increase population densities then the potential for a devastating outbreak of Douglas-fir beetle in SNC stressed trees might be exacerbated because they have compromised oleoresin defense systems, and may be killed with fewer beetle attacks.  相似文献   

2.
There is limited understanding of the carbon (C) storage capacity and overall ecological structure of old-growth forests of western Montana, leaving little ability to evaluate the role of old-growth forests in regional C cycles and ecosystem level C storage capacity. To investigate the difference in C storage between equivalent stands of contrasting age classes and management histories, we surveyed paired old-growth and second growth western larch (Larix occidentalis Nutt)–Douglas-fir (Pseudostuga menziesii var. glauca) stands in northwestern Montana. The specific objectives of this study were to: (1) estimate ecosystem C of old-growth and second growth western larch stands; (2) compare C storage of paired old-growth–second growth stands; and (3) assess differences in ecosystem function and structure between the two age classes, specifically measuring C associated with mineral soil, forest floor, coarse woody debris (CWD), understory, and overstory, as well as overall structure of vegetation. Stands were surveyed using a modified USFS FIA protocol, focusing on ecological components related to soil, forest floor, and overstory C. All downed wood, forest floor, and soil samples were then analyzed for total C and total nitrogen (N). Total ecosystem C in the old-growth forests was significantly greater than that in second growth forests, storing over 3 times the C. Average total mineral soil C was not significantly different in second growth stands compared to old-growth stands; however, total C of the forest floor was significantly greater in old-growth (23.8 Mg ha−1) compared to second growth stands (4.9 Mg ha−1). Overstory and coarse root biomass held the greatest differences in ecosystem C between the two stand types (old-growth, second growth), with nearly 7 times more C in old-growth trees than trees found on second growth stands (144.2 Mg ha−1 vs. 23.8 Mg ha−1). Total CWD on old-growth stands accounted for almost 19 times more C than CWD found in second growth stands. Soil bulk density was also significantly higher on second growth stands some 30+ years after harvest, demonstrating long-term impacts of harvest on soil. Results suggest ecological components specific to old-growth western larch forests, such as coarse root biomass, large amounts of CWD, and a thick forest floor layer are important contributors to long-term C storage within these ecosystems. This, combined with functional implications of contrasts in C distribution and dynamics, suggest that old-growth western larch/Douglas-fir forests are both functionally and structurally distinctive from their second growth counterparts.  相似文献   

3.
Swiss needle cast imposes strong geographical patterns in Douglas-fir needle retention throughout the Coast Ranges of Oregon and southwestern Washington. These geographical patterns in foliage retention have been related to the spatial variability in average climatic conditions, with climate presumed a major causal factor in the spread and intensification of the fungus that causes Swiss needle cast. Annual fluctuations in foliage retention have likewise been hypothesized to follow fluctuations in annual climatic conditions. The objective of this analysis was to test a full suite of climatic variables for their ability to predict regional and annual patterns in Douglas-fir foliage retention on 296 permanent sample plots comprising six different Swiss needle cast studies. Foliage retention was estimated annually from 1996 to 2009 and climatic data were generated from the PRISM website through ClimateWNA (Wang et al., 2006). Among the 85 annual, seasonal, and monthly climate variables explored, average foliage retention was predicted most consistently by a temperature-based continentality index, mean annual precipitation, winter temperature, summer temperature, and spring or summer precipitation. The same 85 variables were tested for predicting annual fluctuations in foliage retention, allowing for lagged effects of climatic conditions 1-4 years prior to each year of observation. The annual foliage retention models had climate variables similar to the periodic average foliage retention models, but with a variety of lagged effects. The periodic average foliage retention model suggested that under future climate scenarios foliage retention would increase.  相似文献   

4.
Forest thinning and prescribed fire practices are widely used, either separately or in combination, to address tree stocking, species composition, and wildland fire concerns in western US mixed conifer forests. We examined the effects of these fuel treatments alone and combined on dwarf mistletoe infection severity immediately after treatment and for the following 100 years. Thinning, burning, thin + burn, and control treatments were applied to 10 ha units; each treatment was replicated three times. Dwarf mistletoe was found in ponderosa pine and/or Douglas-fir in all units prior to treatment. Stand infection severity was low to moderate, and severely infected trees were the largest in the overstory. Thinning produced the greatest reductions in tree stocking and mistletoe severity. Burning reduced stocking somewhat less because spring burns were relatively cool with spotty fuel consumption and mortality. Burning effects on vegetation were enhanced when combined with thinning; thin + burn treatments also reduced mistletoe severity in all size classes. Stand growth simulations using the Forest Vegetation Simulator (FVS) showed a trend of reduced mistletoe spread and intensification over time for all active treatments. When thinned and unthinned treatments were compared, thinning reduced infected basal area and treatment effects were obvious, beginning in the second decade. The same was true with burned and unburned treatments. Treatment effects on infected tree density were similar to infected basal area; however, treatment effects diminished after 20 years, suggesting a re-treatment interval for dwarf mistletoe.  相似文献   

5.
Chen Z  Kolb TE  Clancy KM 《Tree physiology》2001,21(16):1159-1169
We compared growth rates among mature interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) trees showing resistance or susceptibility to defoliation caused by western spruce budworm (Choristoneura occidentalis Freeman), and among clones and half-sib seedling progeny of these trees in a greenhouse. We also investigated bud burst phenology and photosynthetic responses of clones to budworm defoliation in greenhouse experiments. Resistant mature trees had a higher radial growth rate than susceptible trees, especially during periods of budworm defoliation. Clones from resistant trees grew larger crowns than clones from susceptible trees, whereas stem base diameter at the ground line and height did not differ. Half-sib seedling progeny from resistant trees had larger stem diameter, height, and total biomass than progeny from susceptible trees. Mean 5-year radial growth increment of mature trees was more strongly correlated with growth of seedlings than with growth of clones. Clones from resistant trees had later bud burst than clones from susceptible trees, and budworm defoliation of clones depended on the degree of synchrony between bud burst phenology and budworm larval feeding. Clones of resistant and susceptible mature trees showed similar responses of net photosynthetic rate to 2 years of budworm defoliation. We conclude that phenotypic differences in crown condition of Douglas-fir trees following western spruce budworm defoliation are influenced by tree genotype and that high growth rate and late bud burst phenology promote tree resistance to budworm defoliation.  相似文献   

6.
Ungulate browsing greatly influences regeneration dynamics of some forest ecosystems, yet the relationship between browse susceptibility and foliar chemistry of forest tree seedlings is not well understood. We applied field fertilization (15N-9P-10K controlled-release fertilizer at 0, 20, 40, and 60 g per seedling) and investigated how subsequent changes in terpenoid production and foliar nutrition influence ungulate browse preference for Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla Raf. Sarg.), and western redcedar (Thujaplicata Donn ex D. Don) seedlings across four sites in northwestern Oregon, USA. Fertilization increased foliar N concentration of all three species, but above-ground growth of only Douglas-fir and western hemlock. Foliar monoterpene concentrations for western hemlock and western redcedar also increased at higher fertilization rates, while Douglas-fir monoterpene production was not affected by fertilization. Regardless of monoterpene levels, ungulate browse preference was greater for fertilized western hemlock seedlings. The opposite response, however, was observed for western redcedar at two of the four study sites where the likelihood of browse was greater for non-fertilized than fertilized seedlings. Differences in browse preference among species may depend on the type and amount of individual monoterpenes manufactured in response to fertilization. Western redcedar produce α- and β-thujone, oxygenated monoterpenes known to promote gastroenteritis and possibly inhibit microbial rumen activity, which were absent from Douglas-fir or western hemlock. Higher concentrations of α- and β-thujone associated with increasing fertilizer rate provide a plausible explanation as to why ungulates preferred non-fertilized western redcedar. Our results illustrate species-specific adaptation in browse avoidance and selective ungulate browsing behavior of individual trees as linked to foliar chemistry.  相似文献   

7.
The effects of early vegetation management on the survival and growth of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] were examined 5 and 15 years after planting in the Oregon Coast Range. Our first objective was to document the effects of vegetation species competition upon key ecosystem properties. The second objective was to document the effects of vegetation removal during early Douglas-fir stand establishment upon long-term tree growth and on biomass production by vegetation components. Seven levels of manual vegetation removal were maintained for the first 5 years after planting: 0%, 25%, 50%, 75%, and 100% shrub removal; and 100% shrub removal combined with 50% or 100% herbaceous vegetation removal. Shrub and herb removal did not affect Douglas-fir survival at year five, but treatments providing less than 75% shrub removal significantly reduced Douglas-fir survival by year 15. Removing shrubs and herbs completely (100S + 100H) during the 5 years following tree planting allowed successful tree establishment, with a 366% increase in biomass accumulation per hectare for Douglas-fir in that treatment at the end of 14 years of growth. At 15 years stand age, even with shrub removal alone, a 304% gain in tree biomass per hectare was obtained compared to no vegetation removal (NVR). By stand age 15 years, any increase in the degree of understory removal beyond 75% did not contribute significantly to additional tree survival and growth. The understory vegetation on NVR treatment plots and the herbaceous vegetation on 100% shrub removal (100S) treatment plots, contained >90% and >80% of aboveground biomass N at 5 years, respectively, indicating possible competition for soil N. Soil moisture was not different among treatments at 5 years. Complete vegetation removal (100S + 100H) for 5 years resulted in a significant increase in soil bulk density (P < 0.05), a significant decrease in total soil C (P < 0.05) and no change in total soil N in the upper 15 cm of the mineral soil. By 14 years, however, only the soil bulk density remained greater (P < 0.05) on the 100S + 100H treatment. We conclude that greater tree survival and growth occurred with at least 75% shrub removal. Our results suggest that managers may have substantial flexibility in maintaining a partial understory component suitable for ecosystem productivity, canopy cover and wildlife habitat, while maintaining forests productive for timber resources.  相似文献   

8.
Although much is known about drivers of productivity in Douglas-fir and red alder stands, less is known about how productivity may relate to stand transpiration and water use efficiency. We took advantage of a 15-year-old experiment involving Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) in the western Cascade Range of western Oregon to test the following hypotheses: (a) more productive stands transpire more water, (b) the relationship between productivity and transpiration differs between species, and (c) the relationship between productivity and transpiration differs between sites varying in soil moisture and fertility. Furthermore, the experimental design included alder, a facultative nitrogen-fixing species, which could also affect fertility. Fixed area plots (20 × 20 m) were planted as monocultures of each species or in mixtures at a common density (1100 trees ha−1) in a randomized-block design. Transpiration of Douglas-fir and red alder was measured using heat dissipation sensors installed in eight trees per plot and scaled to the plot level based on sapwood basal area for each species. Although up to 53% of the variability in tree transpiration was explained by basal area, irrespective of species or site conditions, the two stands with the highest biomass and sapwood basal area did not transpire the most. Instead of more productive stands transpiring more water, the greatest variability in both productivity and transpiration was determined by site conditions and to a lesser degree, species composition. For example, 70% of the variation in tree biomass increment (TBI) was determined by leaf area index, which was much higher at the site with higher fertility and soil moisture (p < 0.05). Despite marked phenological and physiological differences, Douglas-fir and red alder performed similarly. Only 19% of annual water use of Douglas-fir occurred between October and March when alder was leafless. Also, there was no evidence of a fertilization effect of the nitrogen-fixing red alder on the Douglas-fir: the nitrogen concentration and N-isotopic ratio of Douglas-fir needles did not differ whether trees were grown in monoculture or in mixtures with red alder. We conclude that lower soil fertility and contrasting microclimate at one site relative to the other suppressed NPP while maintaining higher transpiration, thus reducing water use efficiency.  相似文献   

9.
Using a retrospective approach, based on historical needle cast disease and insect pest records, data series of needle losses (reconstructed by the use of the needle trace method), tree growth parameters and meteorological data were studied to determine the impact of the appropriate pointer (epidemic or calamity) years on the annual radial and height increment of 46 sample trees in six Scots pine (Pinus sylvestris) stands in Estonia from 1887 to 2006. First, the needle cast epidemics during the last 120 years were retrospectively determined, with resulting 4.6 epidemics per decade as a mean frequency. If the sum of precipitation from May to August reached 300 mm (the mean of 12 epidemic years studied: 361 ± 15 mm), an epidemic of needle cast caused by Lophodermium seditiosum might follow the next year in young plantations. For insect defoliators, similarly clear triggering threshold values of precipitation or temperature could not be determined, although dry and warm summers and mild winters supported the calamities. We separately detected that both larger needle losses and growth reductions in trees related to Lophodermium needle cast epidemic years lasted until the same age of pines, 22–24 years, but for insect pest (diprinoid sawflies) calamity years the growth reduction lasted longer. The relevance of these findings for the prediction of Lophodermium needle cast epidemics is briefly discussed.  相似文献   

10.
The carryover effects of N fertilization on five coastal Pacific Northwest Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) plantations were studied. “Carryover” is defined as the long-term impact of N fertilizer added to a previous stand on the growth of a subsequent stand. Average height and diameter at 1.3 m above-ground (DBH) of 7–9-year-old Douglas-fir trees and biomass and N-content of understory vegetation were assessed on paired control (untreated) and urea-N-fertilized plots that had received cumulative additions of 810–1120 kg N ha−1 to a previous stand. Overall productivity was significantly greater in the fertilized stands compared to the controls. In 2006, the last growth measurement year, mean seedling height was 15% greater (p = 0.06) and mean DBH was 29% greater (p = 0.04) on previously fertilized plots compared to control plots. Understory vegetation biomass of fertilized plots was 73% greater (p = 0.005), and N-content was 97% greater (p = 0.004) compared to control plots. These results show that past N fertilization markedly increased seedling growth in these plantations as well as biomass and N-content of understory vegetation in a subsequent rotation. These findings suggest that N fertilization could potentially increase site productivity of young Douglas-fir stands found on low quality sites in the Pacific Northwest 15–22 years after application by a carryover effect. These plantations have not yet reached the age where marketable materials can be harvested from them, and the growth of trees should be monitored over a longer time period before potential impacts on older stands, if any, can be determined.  相似文献   

11.
Snags are important both as structural components and as animal habitat in forests, but abundance is often low and their dynamics poorly understood in young, managed stands. Using a large data set of 19,622 snags from permanent plots in second-growth forests of coastal British Columbia, we modeled snag longevity (time from tree mortality to snag fall) for three species: Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western redcedar (Thuja plicata). Snag longevity was strongly related to species and snag size (diameter): the median snag longevity was 16 years for Douglas-fir, 11 years for hemlock and 5 years for redcedar. Western redcedar was predominantly in the subcanopy and its rapid fall rate was related to the small size of its snags. In addition to diameter, other attributes (height to diameter ratio, height, and live crown ratio before death) contributed significantly to models for one or two of the species. However, site level variables did not contribute significantly to any of the models. Snags greater than 50 cm diameter, especially Douglas-fir snags, have the potential for persistence well beyond 20 years in these second-growth forests, and could be important for wildlife.  相似文献   

12.
Sources of variation in leaf area index (LAI; m2 of projected leaf area per m2 of ground area) and its seasonal dynamics are not well known in managed Douglas-fir stands, despite the importance of leaf area in forecasting forest growth, particularly in stands impacted by insects or disease. The influence of Swiss needle cast (SNC) on coastal Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb] Franco) LAI and litterfall dynamics was quantified by destructively sampling 122 stems from 36 different permanent plots throughout north coastal Oregon, USA, and by monitoring litterfall for 3 years in 15 of these plots. LAI, total annual litterfall, and the seasonal distribution of foliage and fine woody litterfall were all influenced by stand structural attributes, physiographic features, and SNC severity. Mean LAI in this study was 5.44 ± 2.16. The relatively low LAIs were attributed primarily to the effects of SNC on foliage retention, and secondarily to its direct measurement by hierarchical foliage sampling in contrast to indirect measurement by light interception or tree allometry. For a given stand structure and SNC severity, LAI was 36% greater in the fall after current year foliage was fully developed and older aged classes had not yet senesced. Annual litterfall expressed as a proportion of LAI at the start of the growing season varied from 0.13 to 0.53 and declined with increasing initial LAI. SNC also shifted more of the annual foliage litterfall to earlier in the spring. Fine woody litterfall experienced a different seasonal shift as the peak occurred later in the year on sites with high SNC, but this only occurred on northerly aspects. Defoliation from the endemic SNC pathogen can drastically reduce LAI and change both total and seasonal foliage litterfall patterns.  相似文献   

13.

Context

Since the 2003 drought and heat wave, Douglas-fir dieback has been reported in France in trees older than 30 years. Consequently, it is questioned whether selected Douglas-fir provenances are suited to the frequent and severe drought events which are forecast due to climate change.

Aims

Our objective was to contribute to the screening of variability in productivity and growth response to soil-water deficit of mature trees from provenances not currently used for plantation in France.

Methods

We sampled 22 provenances, including coastal and interior Douglas-fir, covering a wide part of its natural distribution, from Oregon to California for coastal provenances and from British Columbia to New Mexico for interior provenances. These provenances were planted at the mid 1970s in two provenance trials located in the south-west area of France. Variability of productivity, of wood density, and of radial growth in response to drought episodes among provenances was quantified and related to soil-water deficit computed by daily water balance calculations.

Results

Whatever the provenance, annual radial growth is highly dependent on local soil-water deficit (Felines R 2 = 0.57, Le Treps R2 = 0.49). Radial growth and wood properties exhibit large differences between provenances at 30 years old. Variability between provenances for all wood characteristics studied is mainly structured geographically. Coastal provenances perform best for productivity at 30 years old (619 cm2?±?59), and exhibit a small growth reduction in 2004, the second successive year of drought (?10.7 %?±?3.8). Surprisingly, the southern interior provenances from the driest environments in the natural range show a large growth reduction in 2004 (?30.5 %?±?5.2).

Conclusions

The provenances tested exhibited significant differences in growth performance and growth reduction induced by the soil-water deficit. The approach coupling retrospective analysis of radial growth on mature trees and water balance modelling is relevant for evaluating provenance adaptation to more frequent or severe drought episodes.  相似文献   

14.
In the Pacific Northwest (PNW) region of the contiguous United States, retention of live (green) trees in harvest units is an integral part of forest management practices on federal lands, yet the ecological benefits that result from various levels or patterns of retained trees remain speculative. The Demonstration of Ecosystem Management Options (DEMO) study was established to address these informational gaps. The experimental design consists of six treatments, each 13 ha in size, replicated at six locations (blocks) in western Washington and Oregon. Treatments represent strong contrasts in retention level (15–100% of original basal area) and pattern (trees dispersed vs. aggregated in 1-ha patches) in mature Douglas-fir (Pseudotsuga menziesii) forests. A wide variety of ecological responses and public perceptions of visual quality have been examined; this paper provides a comprehensive review of the short-term (1–7 years) results of these studies. Level of retention had a strong effect on many responses. At 15% retention, regardless of pattern, microclimate, ecological responses, and public perceptions of visual quality did not differ from those measured in the “clearcut” areas of aggregated treatments. In contrast to level of retention, pattern of retention had limited effect on most measures of biological response. Small changes within forest aggregates were balanced by large changes in adjacent harvested areas, thus on average, responses within aggregated treatments were comparable to those in dispersed treatments. Nevertheless, retaining trees in 1-ha aggregates provided several benefits over dispersed retention. Aggregates greatly reduced damage to and mortality of residual trees (particularly at lower levels of retention) and provided short-term refugia for forest organisms sensitive to disturbance or environmental stress (e.g., bryophytes and late-seral herbs). However, aggregates were susceptible to edge effects (e.g., elevated light and temperature), which may compromise their ability to serve as sources for recolonization of adjacent harvested areas. Collectively, our findings suggest that retention levels >15% are needed to effectively retain sensitive plants and animals, ameliorate harsh microclimatic conditions, and gain public acceptance of retention harvests in these forests. A combination of relatively large (≥1 ha) aggregates and dispersed trees at levels considerably greater than current minimum standards in the PNW may be the most effective strategy for sustaining a broad array of forest values in managed stands.  相似文献   

15.
To evaluate the relationship of overstory residual trees to the growth of unmanaged young-to-mature understory Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.), the basal area and volume of 14 paired plots with and without residual trees were examined in the Willamette National Forest, Oregon. Residual trees were large survivors of the fires that initiated the understory between 55 and 121 yr ago. Understory stands were naturally regenerated and not managed in any way. High residual tree and understory densities were negatively associated with understory volume. The relation of density of residual trees to total understory and Douglas-fir basal areas and volumes was best described by a negative logarithmic function. The rate of decrease in total understory and Douglas-fir basal areas and volumes per individual residual tree became smaller with increasing residual-tree density. Predicted total understory volume reduction was 23% with five residual trees/ha and 47% with 50 residual trees/ha, averaging 4.6% and 0.9% per residual tree, respectively. After including the estimated volume growth of residual trees since initiation of the understory, stand volume was still 19% lower with five residual trees/ha and 41% lower with 50 residual trees/ha than in stands with no residual trees, averaging a reduction of 38% and 0.8% per residual tree, respectively. In mixed stands of Douglas fir and western hemlock, predicted Douglas-fir basal area and volume declined more rapidly than did total understory basal area and volume when residual-tree densities exceeded about 15 trees/ha. This difference was probably due to the relative shade-intolerance of Douglas fir. Predicted Douglas-fir volume reduction was 13% with five residual trees/ha and 75% with 50 residual trees/ha, averaging 2.6% and 1.5% per residual tree, respectively. The southern aspects had more than 150% the total understory basal area and volume and more than 200% the Douglas-fir volume and basal area of the northern aspects. Lower density and basal area of understory trees, particularly of dominant and codominant Douglas fir, were associated with increasing residual-tree densities. Given the same diameter at breast height (DBH), heights of Douglas fir were not related to residual trees. Regardless of understory age, understory volume was greatest in stands with the lowest understory densities. These results suggest that timber production in unthinned green-tree retention units may be reduced and may depend on the density of leave-trees. Thinning of understory trees is recommended to reduce growth loss from intraspecific competition.  相似文献   

16.
Plant-soil-water relations of a silvopastoral system composed of a Douglas-fir (Pseudotsuga menziesii) timber crop, subterranean clover (Trifolium subterraneum) as a nitrogen-fixing forage, and tall fescue (Festuca arundinacea) as a forage crop were investigated near Corvallis, Oregon, during 1983–1986. Treatments included all possible combinations of two tree-planting patterns (trees planted 2.4 m apart in a grid, and groups of five trees spaced 7.6 m between clusters) and two grazing/understory management systems (agroforests were seeded to subclover and grazed by sheep; forests were unseeded and ungrazed).Mean twig xylem water potential (XWP) for Douglas-fir trees ranged from –0.3 to –1.5 MPa on forest plots and from –0.3 to –1.2 MPa on agroforest sites. Pre-dawn and sunset XWP were more negative for forest than for agroforest plots during dry summer periods. Midday XWP was similar for both agroforest and forest plots on all dates. Soil water content at 50–100 cm depth was greater under agroforest plots as compared to forest plots in 1984, but not in 1985 (unusually dry spring). Average foliage nitrogen content of tree needles was 1.54% vs. 1.43% for agroforests vs. forests, respectively.Our data are consistent with the hypotheses that: (1) grazing of understory vegetation may reduce water stress of trees during dry periods by reducing transpirational water use by the forage plants; and (2) nitrogen-fixing vegetation combined with grazing increases nitrogen uptake of associated trees. However, neither mean foliar N nor average XWP differences experienced by trees in agroforest versus forest plantations were sufficient to have an effect on tree growth. Our data demonstrate that it is possible to produce a second crop (i.e. forage grazed by sheep) in timber plantations without reducing the growth of the main tree crop.Submitted as Oregon Agrocultural Experiment Station Technical Paper No. 10109.  相似文献   

17.
Densities of pseudothecia on Douglas-fir needles infected with Phaeocryptopus gaeumanni and needle retention on Christmas trees were related to male and female parentage in a 4 by 5 factorial mating in replicated plantings in western Oregon. Interactions of families by plantation and of male parentage by plantation were highly significant. The additive proportion of variation calculated from variance components due to male and female parentage was greater than 1.00; hence, no evidence was found of nonadditive genetic variance.  相似文献   

18.
Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.  相似文献   

19.
In recent years, an increased number of mature paper birch (Betula papyrifera Marsh.) and heart-leafed paper birch (B. papyrifera var. cordifolia (Regel) Fern.) in northeastern United States forests have exhibited decline symptoms including foliar loss, reduced fine branching, and tree mortality. We assessed crown health, radial growth, and available soil cations in 2006 as a preliminary assessment of factors that may be influencing paper birch decline. Tree rings began to decrease in width in 1998—the year of a severe region-wide ice storm. All trees (regardless of their current decline status) experienced reduced growth starting in 1998 and tree growth continued to decrease for two years following the ice storm. After this generalized growth decrease, trees that now have vigorous crowns showed a marked increase in growth, whereas trees that now have low crown vigor did not rebound in growth, but instead exhibited a significantly higher incidence of locally absent annual rings. Extractable soil-aluminum (Al), a phytotoxic element mobilized by acid deposition, was significantly higher in soils associated with declining trees compared to those adjacent to vigorous trees. Higher soil calcium (Ca) availability was associated with both vigorous crowns and increased radial growth following the 1998 ice storm. Furthermore, increased soil Ca availability was negatively correlated to the percentage of declining trees, and positively related to increased radial growth, whereas elevation was not significantly associated with either parameter. Although previously overlooked as a factor influencing paper birch recovery from injury, we found that available soil Ca was linked to crown vigor and rebounds in growth following an inciting event.  相似文献   

20.
Plantation success in northeastern Oregon can be limited by poor survival for western larch (Larix occidentalis Nutt.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco) seedlings. Vegetation management treatments may increase soil moisture availability during the dry summer months, thereby increasing the probability of seedling survival. Chemical site preparation treatments were applied in spring 2007, summer 2007, and spring 2008 to determine if such treatments would improve survival and growth of bareroot Douglas-fir and bareroot and plug western larch seedlings on three sites near Elgin, Oregon. Although some herbicide treatments significantly increased survival, results were not consistent among sites. Overall, Douglas-fir had greater survival after 7–8 years than larch seedlings. Seedling size 7–8 years after planting was also highly variable among sites and treatments with larch seedlings being taller and larger than Douglas-fir seedlings, on the average. Size for all stock types was negatively correlated with vegetative cover and positively correlated with first-year soil moisture. Macro- and microclimatic conditions, including topography and soil depth, were likely contributors to differences in survival and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号