首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Hybrid sterility hinders the transfer of useful traits between Oryza sativa and O. glaberrima. In order to further understand the nature of interspecific hybrid sterility between these two species, a strategy of multi-donors was used to elucidate the range of interspecific hybrid sterility in this study. Fifty-nine accessions of O. glaberrima were used as female parents for hybridization with japonica cultivar Dianjingyou 1, after several backcrossings using Dianjingyou 1 as the recurrent parent and 135 BC6F1 sterile plants were selected for genotyping and deducing hybrid sterility QTLs. BC6F1 plants containing heterozygous target markers were selected and used to raise BC7F1 mapping populations for QTL confirmation and as a result, one locus for gamete elimination on chromosome 1 and two loci for pollen sterility on chromosome 4 and 12, which were distinguished from previous reports, were confirmed and designated as S37(t), S38(t) and S39(t), respectively. These results will be valuable for understanding the range of interspecific hybrid sterility, cloning these genes and improving rice breeding through gene introgression.  相似文献   

2.
Marker assisted backcrossing has been used effectively to transfer the submergence tolerance gene SUB1 into popular rice varieties, but the approach can be costly. The selection strategy comprising foreground marker and phenotypic selection was investigated as an alternative. The non-significant correlation coefficients between ranking of phenotypic selection and ranking of background marker selection in BC2F1, BC3F1 and BC3F2 generations indicated inefficiency of phenotypic selection compared to marker-assisted background selection with respect to recovery of the recipient genome. In addition, the introgression size of the chromosome fragment containing SUB1 was approximately 17 Mb, showing the effects of linkage drag. The significant correlation coefficient between rankings of phenotypic selection with the percentage of recipient alleles in the BC1F1 generation suggested that background selection could be avoided in this generation to minimize the genotyping cost. The phenotypically selected best plant of the BC3F1 generation was selfed and backcross recombinant lines were selected in the resulting BC3F4 generation. The selection strategy could be appropriate for the introgression of SUB1 QTL in countries that lack access to high-throughput genotyping facilities.  相似文献   

3.
Improvement of rice grain yield (YD) is an important goal in rice breeding. YD is determined by its related traits such as spikelet fertility (SF), 1,000-grain weight (TGW), and the number of spikelets per panicle (SPP). We previously mapped quantitative trait loci (QTLs) for SPP and TGW using the recombinant inbred lines (RILs) derived from the crosses between Minghui 63 and Teqing. In this study, four QTLs for SF and four QTLs for YD were detected in the RILs. Comparison of the locations of QTLs for these three yield-related traits identified one QTL cluster in the interval between RM3400 and RM3646 on chromosome 3. The QTL cluster contained three QTLs, SPP3a, SF3 and TGW3a, but no YD QTL was located there. To validate the QTL cluster, a BC4F2 population was obtained, in which SPP3a, SF3 and TGW3a were simultaneously mapped to the same region. SPP3a, SF3 and TGW3a explained 36.3, 29.5 and 59.0 % of phenotype variance with additive effect of 16.4 spikelets, 6 % SF and 1.8 g grain weight, respectively. In the BC4F2 population, though the region has opposite effects on TGW and SPP/SF, a YD QTL YD3 identified in this cluster region can increase 4.6 g grains per plant, which suggests this QTL cluster is a yield-enhancing QTL cluster and can be targeted to improve rice yield by marker aided selection.  相似文献   

4.
Rice grain shape and yield are usually controlled by multiple quantitative trait loci (QTL). This study used a set of F9–10 recombinant inbred lines (RILs) derived from a cross of Huahui 3 (Bt/Xa21) and Zhongguoxiangdao, and detected 27 QTLs on ten rice chromosomes. Among them, twelve QTLs responsive for grain shape/ or yield were mostly reproducibly detected and had not yet been reported before. Interestingly, the two known genes involved in the materials, with one insect-resistant Bt gene, and the other disease-resistant Xa21 gene, were found to closely link the QTLs responsive for grain shape and weight. The Bt fragment insertion was firstly mapped on the chromosome 10 in Huahui 3 and may disrupt grain-related QTLs resulting in weaker yield performance in transgenic plants. The introgression of Xa21 gene by backcrossing from donor material into receptor Minghui 63 may also contain a donor linkage drag which included minor-effect QTL alleles positively affecting grain shape and yield. The QTL analysis on rice grain appearance quality exemplified the typical events of transgenic or backcrossing breeding. The QTL findings in this study will in the future facilitate the gene isolation and breeding application for improvement of rice grain shape and yield.  相似文献   

5.
Hybrid rice has contributed substantially to the improvement of grain production worldwide, yet its poor cooking and tasting characteristics have long been recognized. In this study, 132 recombinant inbred lines derived from LYPJ were used to identify quantitative trait loci (QTLs) for 12 cooking traits with the high‐density SNP linkage map recently developed by our team. We identified 17 QTLs on chromosomes 1, 2, 4, 5, 6, 7, 8, 9 and 11, which accounted for 7.50% to 23.50% of the phenotypic variations. A novel major QTL qBGL7 for boiled grain length was further fine‐mapped to an interval of 440 Kb between the two markers RM21906 and gl3 using a BC3F2 population. Two near‐isogenic lines with extreme boiled grain length, GX5‐176 and GX5‐101, could be directly used in improving cooking quality. We also identified a QTL for soaked grain width expansion rate, qSGWE6, in the Wx gene region on chromosome 6. The Wx differential regulation coincided with sequential variation between the two parents. Our work offered a theoretical basis for molecular breeding of high‐quality hybrid rice.  相似文献   

6.
Grain shape is an important trait for improving rice yield. A number of quantitative trait loci (QTLs) for this trait have been identified by using primary F2 mapping populations and recombinant inbred lines, in which QTLs with a small effect are harder to detect than they would be in advanced generations. In this study, we developed two advanced mapping populations (chromosome segment substitution lines [CSSLs] and BC4F2 lines consisting of more than 2000 individuals) in the genetic backgrounds of two improved cultivars: a japonica cultivar (Koshihikari) with short, round grains, and an indica cultivar (IR64) with long, slender grains. We compared the ability of these materials to reveal QTLs for grain shape with that of an F2 population. Only 8 QTLs for grain length or grain width were detected in the F2 population, versus 47 in the CSSL population and 65 in the BC4F2 population. These results strongly suggest that advanced mapping populations can reveal QTLs for agronomic traits under complicated genetic control, and that DNA markers linked with the QTLs are useful for choosing superior allelic combinations to enhance grain shape in the Koshihikari and IR64 genetic backgrounds.  相似文献   

7.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

8.
本文报道了水稻第1染色体长臂上微效千粒重QTL qTGW1.2的验证和分解。针对前期qTGW1.2定位结果, 应用SSR标记检测, 从籼籼交组合珍汕973/密阳46衍生的1个BC2F7分离群体中, 筛选到杂合区间分别为RM11621-RM297和RM212-RM265的2个单株, 构建了两套BC2F8:9近等基因系, 将qTGW1.2进一步界定在RM212-RM265及其两侧交换区间的区域内。在此基础上, 筛选出5个在目标区间内分离片段缩小且呈阶梯状排列的单株, 衍生了5套BC2F10分离群体, 应用Windows QTL Cartographer 2.5进行QTL分析。结果表明, 每套群体均检测到千粒重QTL, 加性效应为0.13~0.38 g, 来自密阳46的等位基因提高千粒重; 经比较各个群体的分离区间, 将qTGW1.2分解为互引连锁的2个QTL, 其中, qTGW1.2a位于RM11730和RM11762之间934 kb的区域内, 呈加性作用, qTGW1.2b位于RM11800和RM11885之间2.1 Mb的区域内, 呈正向超显性。  相似文献   

9.
Rice tungro disease (RTD) is one of the destructive and prevalent diseases in the tropical region. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Cultivation of japonica rice (Oryza sativa L. ssp japonica) in tropical Asia has often been restricted because most japonica cultivars are sensitive to short photoperiod, which is characteristic of tropical conditions. Japonica1, a rice variety bred for tropical conditions, is photoperiod-insensitive, has a high yield potential, but is susceptible to RTD and has poor grain quality. To transfer RTD resistance into Japonica1, we made two backcrosses (BC) and 8 three-way crosses (3-WC) among Japonica1 and RTSV-resistant cultivars. Among 8,876 BC1F2 and 3-WCF2 plants, 342 were selected for photoperiod-insensitivity and good grain quality. Photoperiod-insensitive progenies were evaluated for RTSV resistance by a bioassay and marker-assisted selection (MAS), and 22 BC1F7 and 3-WCF7 lines were selected based on the results of an observational yield trial. The results demonstrated that conventional selection for photoperiod-insensitivity and MAS for RTSV resistance can greatly facilitate the development of japonica rice that is suitable for cultivation in tropical Asia.  相似文献   

10.
Given that feral transgenic canola (Brassica napus) from spilled seeds has been found outside of farmer’s fields and that B. juncea is distributed worldwide, it is possible that introgression to B. juncea from B. napus has occurred. To investigate such introgression, we characterized the persistence of B. napus C genome chromosome (C-chromosome) regions in backcross progenies by B. napus C-chromosome specific simple sequence repeat (SSR) markers. We produced backcross progenies from B. juncea and F1 hybrid of B. juncea × B. napus to evaluate persistence of C-chromosome region, and screened 83 markers from a set of reported C-chromosome specific SSR markers. Eighty-five percent of the SSR markers were deleted in the BC1 obtained from B. juncea × F1 hybrid, and this BC1 exhibited a plant type like that of B. juncea. Most markers were deleted in BC2 and BC3 plants, with only two markers persisting in the BC3. These results indicate a small possibility of persistence of C-chromosome regions in our backcross progenies. Knowledge about the persistence of B. napus C-chromosome regions in backcross progenies may contribute to shed light on gene introgression.  相似文献   

11.
分别以高抗细菌性条斑病的品种Acc8558和高感的品种H359为供体和受体亲本, 通过回交和分子标记辅助选择, 育成了只渗入5号染色体短臂上单个供体亲本细条病抗性QTL(qBlsr5a)的近等基因系H359-BLSR5a。将该近等基因系与H359杂交, 建立了一个大的F2群体。采用选择极端表型个体并验证其后代(F2:3)株系的方法, 在F2群体中鉴定出目标QTL为抗病纯合基因型的个体。通过对这些个体进行分子标记基因型检测和连锁分析, 将qBlsr5a定位在SSR标记RM153和RM159之间, 大约2.4 cM或290 kb的范围内。  相似文献   

12.
Sheath blight, caused by Rhizoctonia solani, is one of the most serious diseases of rice. Among 33 rice accessions, mainly from National Institute of Agrobiological Sciences (NIAS) Core Collection, we found three landraces from the Himalayas—Jarjan, Nepal 555 and Nepal 8—with resistance to sheath blight in 3 years’ field testing. Backcrossed inbred lines (BILs) derived from a cross between Jarjan and the leading Japanese cultivar Koshihikari were used in QTL analyses. Since later-heading lines show fewer lesions, we used only earlier-heading BILs to avoid association with heading date. We detected eight QTLs; the Jarjan allele of three of these increased resistance. Only one QTL, on chromosome 9 (between markers Nag08KK18184 and Nag08KK18871), was detected in all 3 years. Chromosome segment substitution lines (CSSLs) carrying it showed resistance in field tests. Thirty F2 lines derived from a cross between Koshihikari and one CSSL supported the QTL.  相似文献   

13.
Modern rice varieties that ushered in the green revolution brought about dramatic increase in rice production worldwide but at the cost of genetic diversity at the farmers’ fields. The wild species germplasm can be used for broadening the genetic base and improving productivity. Mining of alleles at productivity QTL from related wild species under simultaneous backcrossing and evaluation, accompanied by molecular marker analysis has emerged as an effective plant breeding strategy for utilization of wild species germplasm. In the present study, a limited backcross strategy was used to introgress QTL associated with yield and yield components from Oryza rufipogon (acc. IRGC 105491) to cultivated rice, O. sativa cv IR64. A set of 12 BC2F6 progenies, selected from among more than 100 BC2F5 progenies were evaluated for yield and yield components. For plant height, days to 50% flowering and tillers/plant, the introgression lines did not show any significant change compared to the recurrent parent IR64. For yield, 9 of the 12 introgression lines showed significantly higher yield (19–38%) than the recurrent parent IR64. Four of these lines originating from a common lineage showed higher yield due to increase in grain weight and another three also from a common lineage showed yield increase due to increase in grain number per panicle. For analyzing the introgression at molecular level all the 12 lines were analyzed for 259 polymorphic SSR markers. Of the total 259 SSR markers analyzed, only 18 (7.0%) showed introgression from O. rufipogon for chromosomes 1, 2, 3, 5, 6 and 11. Graphical genotypes have been prepared for each line and association between the introgression regions and the traits that increased yield is reported. Based on marker trait association it appears that some of the QTL are stable across the environments and genetic backgrounds and can be exploited universally.  相似文献   

14.
Oryza rufipogon (IRGC105491) is a wild relative of cultivated rice, it contains two favorable yield-enhancing genes (yld1.1 and yld2.1) on chromosomes 1 and 2, respectively, which are capable of improving the yield of hybrid rice by 18 and 17%, respectively. SSR markers RM9, RM24, RM5 and RM306 are flanking yld1.1, while RM166 and RM208 are mapped in the close region to yld2.1. These molecular markers tightly linked to the two yield-enhancing genes were used to screen the plants of backcross population between 9311 (one of the top-performing parental lines in super hybrid rice seed production in China) and O. rufipogon. The results were as follows: (1) in BC2F1 population, the percentage of the individuals which contain both of the O. rufipogon alleles at marker loci RM166 and RM9 was 16.8%; (2) 1.5% individuals of total BC3F1 population have all the six linked markers (RM166, RM9, RM5, RM208, RM24, RM306); (3) in BC4F1 population, the percentage of the individuals which contain both of the two O. rufipogon alleles at marker loci RM166 and RM9 was 18.0%. Based on marker genotypes, the individuals, that contain multiple O. rufipogon markers, were selected and used for further backcross and self cross. Many 9311-type lines with yield-enhancing genes and high yield potential were obtained. After three times self-crossing a stable improved 9311 line was obtained. The results indicated that these molecular markers are feasible for marker-assisted selection (MAS) to screen rice individuals with high yield potential.  相似文献   

15.
We constructed a high‐resolution physical map for the qSPP7 QTL for spikelets per panicle (SPP) on rice chromosome 7 across a 28.6‐kb region containing four predicted genes. Using a series of BC7F4 near‐isogenic lines (NILs) derived from a cross between the Korean japonica cultivar ‘Hwaseongbyeo’ and Oryza minuta (IRGC Acc. No. 101144), three QTLs for the number of SPP, grains per panicle and primary branches were identified in the cluster (P ≤ 0.01). All three QTLs were additive, and alleles from the O. minuta parent were beneficial in the ‘Hwaseongbyeo’ background. qSPP7 was mapped to a 28.6‐kb region between the two simple sequence repeat (SSR) markers RM4952 and RM21605. The additive effect of the O. minuta allele at qSPP7 was 23 SPP, and 43.6% of the phenotypic variance was explained by the segregation of the SSR marker RM4952. Colocalization of the three QTLs suggested that this locus was associated with panicle structure and had pleiotropic effects. The NIL populations and molecular markers are useful for cloning qspp7.  相似文献   

16.
水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位   总被引:1,自引:0,他引:1  
通过多菌系接种鉴定及抗谱分析,并与目前国际上已知抗白叶枯病基因比较,证明在水稻抗源C4064中含有一个新的抗白叶枯病基因,暂命名为Xa32(t)。应用分离集团分析法(BSA),借助SSR和EST等分子标记,对该基因进行了分子标记定位。通过对F2分离群体及F3家系单株进行遗传连锁性检测,发现6个位于水稻第11染色体长臂末端的分子标记RM27256、RM27274、RM2064、ZCK24、RM6293和RM5926与Xa32(t)基因连锁。它们与Xa32(t)基因间的遗传距离分别为2.1、1.0、1.0、0.5、1.5和2.6 cM。其中标记RM6293和RM5926位于染色体近端粒一侧,其他4个标记RM27256、RM27274、RM2064和ZCK24位于基因的另一侧。将Xa32(t)定位在水稻第11染色体长臂末端2.0 cM范围内。  相似文献   

17.
The rice cultivar ASD7 (Oryza sativa L. ssp. indica) is resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) and the green leafhopper (Nephotettix virescens Distant). Here, we analyzed multiple genetic resistance to BPH and the green rice leafhopper (GRH; Nephotettix cincticeps Uhler). Using two independent F2 populations derived from a cross between ASD7 and Taichung 65 (Oryza sativa ssp. japonica), we detected two QTLs (qBPH6 and qBPH12) for resistance to BPH and one QTL (qGRH5) for resistance to GRH. Linkage analysis in BC2F3 populations revealed that qBPH12 controlled resistance to BPH and co-segregated with SSR markers RM28466 and RM7376 in plants homozygous for the ASD7 allele at qBPH6. Plants homozygous for the ASD7 alleles at both QTLs showed a much faster antibiosis response to BPH than plants homozygous at only one of these QTLs. It revealed that epistatic interaction between qBPH6 and qBPH12 is the basis of resistance to BPH in ASD7. In addition, qGRH5 controlled resistance to GRH and co-segregated with SSR markers RM6082 and RM3381. qGRH5 is identical to GRH1. Thus, we clarified the genetic basis of multiple resistance of ASD7 to BPH and GRH.  相似文献   

18.
Intergeneric hybridization was performed between Moricandia arvensis and four inbred lines of Brassica rapa following embryo rescue. Three F1 hybrid plants were developed from three cross combinations of M. arvensis × B. rapa, and amphidiploids were synthesized by colchicine treatment. Six BC1 plants were generated from a single cross combination of amphidipolid × B. rapa ‘Ko1-303’ through embryo rescue. One BC2 and three BC3 plants were obtained from successive backcrossing with B. rapa ‘Ko1-303’ employing embryo rescue. Alloplasmic and monosomic addition lines of B. rapa (Allo-MALs, 2n = 21) were obtained from backcrossed progeny of three BC3 plants (2n = 21, 22 and 23) without embryo rescue. An alloplasmic line of B. rapa (2n = 20) degenerated before floliation on 1/2 MS medium due to severe chlorosis. Allo-MALs of B. rapa (2n = 21) showed stable male sterility without any abnormal traits in vegetative growth and female fertility. Molecular analyses revealed that the same chromosome and cytoplasm of M. arvensis had been added to each Allo-MAL of B. rapa. This Allo-MAL of B. rapa may be useful material for producing cytoplasmic male sterile lines of B. rapa.  相似文献   

19.
利用染色体片段代换系定位陆地棉株高QTL   总被引:4,自引:0,他引:4  
以陆地棉中棉所36为轮回亲本和海岛棉海1为供体亲本, 构建染色体片段代换系。为了能检测到稳定的株高QTL,将三个代换系群体(BC5F3, BC5F3:4和BC5F3:5)在5个环境中种植,2009年和2010年分别在河南安阳种植BC5F3单株、BC5F3:4株行, 2011年分别在河南安阳、辽宁辽阳和新疆石河子种植BC5F3:4株系。结果表明,在不同群体环境中株高的超亲比例为53.43%~88.97%。从早期构建的总图距为5088.28 cM, 含有2280个SSR标记位点,覆盖26条染色体的遗传连锁图谱中筛选标记,对408个单株进行的SSR鉴定,结果检测到16个株高QTL,分布在10条染色体上。单个QTL解释的表型变异为7.35%~13.17%。有7个QTL在2个以上环境被检测到。与标记MUSS563紧密连锁的qPH-15-19在一个环境中被检测到,在前人的研究中也有报道。这些结果为进一步精细定位QTL、基因克隆、分子辅助选择等研究奠定基础。  相似文献   

20.
水稻第9染色体上存在1个抗纹枯病QTL,被命名为qSB-9,水稻品种特青在该QTL上携带抗性等位基因qSB-9Tq,而Lemont携带相对感病等位基因qSB-9Le。为精确地评价qSB-9Tq的抗病效应,分析其作用方式,利用分子标记进行前景选择和背景选择,从轮回亲本Lemont与特青回交后代群体中筛选到1个目标单株。连续3年对该单株的扩繁后代(BC6F2)及随后获得的近等基因系采用嵌入法进行接种鉴定试验。田间试验采取2种不同的设计。第一种是完全随机试验,即从BC6F2分离群体中筛选出目标区间为qSB-9TqTq纯合型、qSB-9LeLe纯合型和qSB-9TqLe杂合型个体,并对3种基因型个体间的病级平均数差异进行统计分析。第二种设计为随机区组设计,即在BC6F3和BC6F4代,分别对上述3种基因型的近等基因系群体,按3次重复的随机区组设计进行移栽和接种鉴定试验。结果表明,3年的试验结果表现出一致的趋势,即qSB-9Tq存在于分子标记RM242~Y92.5之间,可减轻病级1.0级(0~9级病情分级系统)左右,且其抗性表现为几乎完全的显性特征。本研究的结果为qSB-9Tq的精细定位和育种利用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号