首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
Emissions of nitrous oxide (N2O) and nitrogen gas (N2) from denitrification were measured using the acetylene inhibition method on drained and undrained clay soil during November 1980-June 1981. Drainage limited denitrification to about 65% of losses from undrained soil. Emissions from the undrained soil were in the range 1 to 12 g N ha–1 h–1 while those from the drained soil ranged from 0.5 to 6 g N ha–1 h–1 giving estimated total losses (N2O + N2) of 14 and 9 kgN ha–1.
Drainage also changed the fraction of nitrous oxide in the total denitrification product. During December, emissions from the drained soil (1.8±0.6 gN ha–1 h–1) were composed entirely of nitrous oxide, but losses from the undrained soil (2.7 ± 1.1 g N ha–1 h–1) were almost entirely in the form of nitrogen gas (the fraction of N2O in the total loss was 0.02). In February denitrification declined in colder conditions and the emission of nitrous oxide from drained soil declined relative to nitrogen gas so that the fraction of N2O was 0.03 on both drainage treatments. The delayed onset of N2O reduction in the drained soil was related to oxygen and nitrate concentrations. Fertilizer applications in the spring gave rise to maximum rates of emission (5–12g N ha–1 h–1) with the balance shifting towards nitrous oxide production, so that the fraction of N2O was 0.2–0.8 in April and May.  相似文献   

2.
Abstract. Tillage displaces large amounts of soil from upper slopes and deposits soil in lower landscape positions, greatly affecting productivity in these areas. The long-term effect of tillage on soil erosion was studied in four field sites growing mainly rainfed wheat. The soil loss from landscape positions with slopes, ranging from 3 to 28%, was estimated by: (a) comparing data of horizon thickness described at the same position at different times; and (b) using soil movement tracers added to the soil. Existing empirical relationships were used for estimating soil loss by tillage and runoff water, and loss in wheat biomass production. The experimental data showed soil losses of 0.4 to 1.4 cm yr–1 depending on slope gradient, plough depth, and tillage direction. In two of the sites, soil depth has been reduced by 24–30 cm in a period of 63 years. The mean soil displacement of the plough layer (30 cm thick), measured by soil movement tracers, ranged from 31 to 95 cm yr–1 depending mainly on slope gradient, corresponding to a rate of soil loss of 0.3 cm to 1.4 cm yr–1. Soil eroded from the upper slopes was deposited on the lower slopes increasing soil thickness by 0.4 cm to 1.4 cm yr–1. The application of empirical relationships, estimating soil loss by tillage and water runoff, showed that soil erosion at the field sites can be mainly attributed to tillage. The loss in wheat biomass production due to erosion was estimated at 26% on upper slopes for a period of 63 years, while a 14.5% increase in wheat production was estimated due to deposition of soil material in the lower landscape.  相似文献   

3.
Abstract. This paper compares nitrate leaching losses from organic farms, which depended on legumes for their nitrogen inputs (66 site years) with those from conventional farms using fertilizers under similar cropping and climatic conditions (188 site years). The conventional farms were within Nitrate Sensitive Areas in England, but sites following special practices associated with that scheme were excluded. Nitrate losses during the organic ley phase (including the winter of ploughing out) were similar (45 kg N ha–1) to those from conventional long-term grass receiving fertilizer N inputs of less than 200 kg N ha–1 (44 kg N ha–1) and from the grass phase of conventional ley-arable rotations (50 kg N ha–1). Losses from conventional grass receiving higher N inputs were greater than from organic or less intensive grass. Nitrate losses following arable crops averaged 47 and 58 kg N ha–1 for the organic and conventional systems respectively, with part of the difference being due to the greater proportion of non-cereal break crops in the latter. Thus under similar cropping, losses from organic systems are similar to or slightly smaller than those from conventional farms following best practice.  相似文献   

4.
Abstract. On organic farms, where the importation of materials to build/maintain soil fertility is restricted, it is important that a balance between inputs and outputs of nutrients is achieved to ensure both short-term productivity and long-term sustainability. This paper considers different approaches to nutrient budgeting on organic farms and evaluates the sources of bias in the measurements and/or estimates of the nutrient inputs and outputs. The paper collates 88 nutrient budgets compiled at the farm scale in nine temperate countries. All the nitrogen (N) budgets showed an N surplus (average 83.2 kg N ha–1 yr–1). The efficiency of N use, defined as outputs/inputs, was highest (0.9) and lowest (0.2) in arable and beef systems respectively. The phosphorus (P) and potassium (K) budgets showed both surpluses and deficits (average 3.6 kg P ha–1 yr–1, 14.2 kg K ha–1 yr–1) with horticultural systems showing large surpluses resulting from purchased manure. The estimation of N fixation and quantities of nutrients in purchased manures may introduce significant errors in nutrient budgets. Overall, the data illustrate the diversity of management systems in place on organic farms, and suggest that used together with soil analysis, nutrient budgets are a useful tool for improving the long-term sustainability of organic systems.  相似文献   

5.
A combination of mathematical analysis and computer simulation, using parameters readily measured in a nitrogen-15 field experiment, is employed to determine rates of mineralization, immobilization and nitrification under a growing crop. The procedure also yields the proportion of crop nitrogen uptake occurring as ammonium and nitrate.
When applied to -results from grass lysimeters receiving 250 or 900 kg N ha–1 a–1 as ammonium nitrate, the analysis suggested that at 250 kgN ha–1 a–1 64–66% of crop nitrogen uptake was as ammonium; at 900 kg N ha–1 a–1 the figure was 43–49%. Nitrification at 250kgNha–1 was only 13–19kgN ha–1 over 160d while at 900 kg N ha–1 between 191 and 232 kg N ha–1 were nitrified.
The results suggested that the apparent inhibition of nitrification in grassland soils may simply reflect poor substrate competition by nitrifying bacteria. Finally, there was a suggestion that mineralization/immobilization was lower at the high fertilizer rate.  相似文献   

6.
The cation composition of solutions and leachates from small-diameter laboratory soil columns was examined over a 23-week period after the addition of lime (0, 3 and 6 t ha–1) and/or nitrogen fertilizer (0 or 200 kg N ha–1) to an acid soil (pH 4.2). Water was applied at regular intervals to the surface of the columns and 17 leachate samples collected. Initially, the pH of the leachate was high (6.6) in all treatments (including those without lime) but fell rapidly to approach a steady value of 3.8. Large losses of calcium occurred from all columns; the total equivalent amounts of lime lost ranged from 0.88 (no addition) to 2.38 (with added lime) t CaCO3 ha–1 High concentrations of aluminium (181–325 μM) were present in leachates from all treatments; the addition of 200 kg N ha–1 increased the leaching of Al by 94%; addition of lime also increased the amounts of Al leached (by 52%).
The pH of the soil solution (separated by centrifugation) was influenced by treatment, especially in the top 0–40 mm of the column. Aluminium concentration was related to pH, but the form of the relationship differed amongst the treatments.  相似文献   

7.
Abstract. Nitrate leaching was measured for four years at the Royal Agricultural College 's Coates Farm in the Cotswolds, England. Coates is a typical Cotswold mixed farm with thin, well-drained calcareous soils especially prone to leaching. Over the duration of this study there were dairy, sheep and arable enterprises on the farm. A 'Farm Gate' nitrogen (N) budget was constructed. Small 120 m × 20 m 'farmlets' were sited in ten fields across the farm, covering all parts of the rotation, as the sites for detailed measurements. Each farmlet received the same management as the rest of the field in which they were situated. Using ceramic probes inserted to 60 cm, soil water was sampled every two weeks throughout the winter drainage season. The annual drainage varied from 135 mm under grassland in 1996/7 to 600 mm under cereals in 1998/9. Average N losses by leaching were determined mostly by rainfall and were 65 kg N ha–1 yr–1, accounting for 25% of the N inputs. Especially leaky parts of the rotation were the ploughing out of a lucerne ley and the grazing of stubble turnips with sheep, both typical Cotswold farm practices. The research highlights some of the difficulties in developing practicable, profitable management practices to decrease nitrate losses.  相似文献   

8.
Abstract. Phosphorus (P) use in UK agriculture is reviewed and a P balance sheet presented. The productive grassland and arable area has accumulated an average P surplus of c. 1000 kg ha–1 over the last 65 years. Over the period 1935–1970, the annual P surplus more than doubled due to an increase in animal numbers and associated requirements for inorganic fertilizers and livestock feeds. Since 1970, surplus P has declined by c . 40% as crop yields and P offtake have continued to increase while fertilizer and manure P inputs have remained relatively constant. In 1993, P use efficiency (P imports/P exports) in UK agriculture was estimated at 25% leading to an average annual surplus of 15 kg P ha–1 yr–1, although the latter has since decreased slightly due to reduced fertilizer use. Intensification and specialization of agriculture has also increased the range in P surpluses that are likely between livestock and arable dominated systems. The largest P surpluses occur in the relatively limited areas of arable soils which receive manure from intensive pig and poultry units, whilst farms without manure inputs generate only small surpluses, or are in balance. The cumulative P surplus has led to a build-up of soil total and easily-exchangeable P, especially in areas receiving both fertilizers and manures. Fundamental differences in P use efficiency, surplus P accumulation and the potential for P loss to water, exist between arable and grassland farms and it is important to separate these, due to the marked regionalization of UK agriculture. More judicial use of feeds and fertilizers is required to further reduce the P surplus and minimize the long-term risk of water eutrophication.  相似文献   

9.
Abstract. Continuous cultivation of soils of the semiarid tropics has led to significant land degradation. Soil erosion and nutrient loss caused by high runoff volumes have reduced crop yields and contributed to offsite damage. We compared a number of soil management practices (tillage, mulch and perennial/annual rotational based systems) for their potential to improve crop production and land resource protection in an Alfisol of the semiarid tropics of India. Runoff and soil erosion were monitored and surface soil and sediment were analysed for nitrogen and carbon to determine enrichment ratios. Amelioration of soils with organic additions (farmyard manure, rice straw) or rotating perennial pasture with annual crops increased soil carbon and nitrogen contents and reduced runoff, soil erosion and nutrient loss. Soil erosion totalled less than 7 t ha–1, but enrichment ratios were often greater than 2 resulting in up to 27 kg N ha–1 and 178 kg C ha–1 being lost in sediment. Up to an extra 250 mm of water per year infiltrated the soil with organic additions and was available for crop water use or percolation to groundwater. The results show that there are good opportunities for reducing degradation and increasing productivity on farms.  相似文献   

10.
Abstract. Long term fallow is no longer possible in densely populated tropical areas, but legume cover crops can help maintain soil fertility. Our work aimed to study changes in soil carbon in a sandy loam Ultisol in Benin, which involved a 12-year experiment on three maize cropping systems under manual tillage: traditional no-input cultivation (T), mineral fertilized cultivation (NPK), and association with Mucuna pruriens (M). The origin of soil carbon was also determined through the natural abundance of soil and biomass 13C. In T, NPK and M changes in soil carbon at 0–40 cm were −0.2, +0.2 and +1.3 t C ha−1 yr−1, with residue carbon amounting to 3.5, 6.4 and 10.0 t C ha−1 yr−1, respectively. After 12 years of experimentation, carbon originating from maize in litter-plus-soil (0–40 cm) represented less than 4% of both total carbon and overall maize residue carbon. In contrast, carbon originating from mucuna in litter-plus-soil represented more than 50% of both total carbon and overall mucuna residue carbon in M, possibly due to accelerated mineralization of native soil carbon (priming effect) and slow mulch decomposition. Carbon originating from weeds in litter-plus-soil represented c. 10% of both total carbon and overall weed residue carbon in T and NPK. Thus mucuna mulch was very effective in promoting carbon sequestration in the soil studied.  相似文献   

11.
Abstract. Preferential flow may enhance phosphorus transport through the soil profile and thereby increase the risks for eutrophication of watercourses. Destruction of continuous macropores in topsoil by tillage provides the possibility for better contact between soil particles and P fertilizer. This is facilitated by incorporation rather than surface application of fertilizer, which should reduce the risk of rapid P transport from the soil surface through the unsaturated zone. To test this hypothesis, undisturbed soil monoliths (0.295 m in diameter and 1.2 m in length) were collected at a field site with a clay soil in which preferential flow is the dominant solute transport mechanism. After three years of observation, average total P loads reached 1.86, 1.59 and 1.25 kg ha–1for no-tillage, conventional tillage, and conventional tillage where the P fertilizer was incorporated, respectively. More than 80% of total losses were in the form of dissolved P. The tillage treatment had no significant effect on P leaching loads compared to no-tillage, but the improved contact between soil particles and P fertilizer resulting from fertilizer incorporation significantly reduced P loads during the first year after application of 100 kg P ha–1. However, after further application of 100 kg P ha–1 two years later, there were no significant differences between the treatments.  相似文献   

12.
Abstract. Nitrate leaching and soil mineral N status under grassland were measured on three contrasting soils, spanning winters 1995/96, 1996/97 and 1997/98, in Western England. The soils investigated were a freely draining silty clay loam (Rosemaund), a well drained loam (IGER 1) and a poorly drained clay loam (IGER 2). The effects of reseeding (ploughing and resowing grass) at IGER 1 and IGER 2 in autumn 1995 or 1996 were compared with undisturbed pasture. Reseeding at Rosemaund, in autumns 1995 or 1996, or spring 1996 was compared with undisturbed pasture of 3 sward ages (2, 5, >50 years).
Nitrate-N leaching losses during the winter immediately following autumn reseeding ranged between 60 and 350 kg N ha–1 in 1995/96, depending on soil type, sward management history and rainfall. Losses were much less in the following winter when treatments were repeated (10–107 kg N ha–1).
Reseeding in spring had little effect on soil mineral N content or leaching losses in the following autumn, compared with undisturbed pasture. Similarly, leaching losses from autumn reseeds in the second winter after cultivation were the same as undisturbed pasture (1-19 kg N ha–1). The effect of ploughing grassland for reseeding was relatively short-term, in contrast to the effect of repeated annual cultivation associated with arable rotations.  相似文献   

13.
Abstract. In the Sahel, promising technologies for agricultural intensification include millet stover mulching and ridging. A four year on-farm experiment was set-up in order to assess the effect of various combinations of these two technologies on soil chemical and physical quality in a millet ( Pennisetum glaucum (L.) R. Br.) –- cowpea ( Vigna unguiculata (L.) Walp.) relay intercropping system. Treatments included bare surface, ridging, a surface applied banded millet stover mulch (2 t ha–1) and a banded millet stover mulch (2 t ha–1) buried in ridges. The latter three treatments were implemented exclusively in the cowpea rows, with an annual rotation between the millet and cowpea rows. Both the bare and ridge plots experienced a rapid loss of organic carbon, acidification and the development of extensive surface crusts but no increase in bulk density or penetration resistance. In the year of application, mulching improved soil quality in the cowpea row with respect to pH, organic carbon and exchangeable K+ and Mg++ content, penetration resistance and bulk density, and it reduced the decline in exchangeable Ca++ and total N content. In the year following mulch application, a general decline in soil chemical quality was observed in the millet row, except for organic carbon content, and a positive residual effect was observed on penetration resistance and bulk density. As a rule, the effects of mulching in the year of application tended to be stronger in the ridged treatment with buried residue than in the banded surface mulch. In the year following application, this tendency was reversed. For the purpose of reducing soil degradation by nutrient mining and wind erosion, a banded surface mulch therefore appeared more effective than buried mulch.  相似文献   

14.
Abstract. Three different management systems were compared in an olive grove on a Vertic soil, near the city of Cordoba, Spain. Rainfall, runoff and soil loss were recorded from experimental plots of 6×12 m for three years. Results indicated that the no-tillage system, which was kept weed-free with herbicides, gave the largest soil loss (8.5 t ha−1 yr−1) and average annual runoff coefficient (21.5%), due to increased soil compaction, particularly outside the canopy projection area. A system that used a grass cover gave the lowest soil losses (1.2 t ha−1 yr−1) and average annual runoff coefficient (2.5%) due to the protective effects of the cover and increased soil aggregate stability. The third system, conventional tillage, gave intermediate results, with a soil loss of 4.0 t ha−1 yr−1 and an average runoff coefficient of 7.4%. The search for alternative soil management to conventional tillage should consider occasional light tillage to establish a grass cover that would keep both soil erosion and runoff losses to a minimum.  相似文献   

15.
Abstract. Lime was applied in summer 1981 at rates up to 201 ha−1 prior to reseeding an unimproved peaty hill soil. A marked pH gradient with depth developed showing that 3 years after application lime had very little effect below a depth of 5 cm. Soil pH values for 0–7.5 cm samples were: nil lime-4.2; 1 t ha−1-pH 4.3; 2 tha−1-pH 4.6; 4 t ha−1-pH 5.0; 6 t ha−1-pH 5.6. In the 0–2.5 cm layer pH values were much higher.
In all years at least 80% of maximum yield was achieved from an initial application of 21 ha−1 lime. Botanical analysis showed that maximum persistence of sown species, perennial ryegrass and timothy, occurred from 2 t ha−1 lime; 6 t ha−1 lime was necessary for maximum persistence of clover. Lime application had only small effects on the mineral composition of the herbage.  相似文献   

16.
Abstract. We examined the effect on soil nutrient status and sustainability of water percolation through an irrigated paddy field in Japan, to the depth of drainage (40 cm). The difference between amounts of nutrients leached by percolation and those supplied by irrigation indicated that 25–130 kg ha−1 Ca, 8–24 kg ha−1 Mg, from −1 to 9 kg ha−1 K, and 8–17 kg ha−1 Fe, respectively, were lost each year from the 0–40 cm soil layer during rice cultivation, when the supply from fertilization and rainfall and the loss in grain harvest were not accounted for. When the supply of K from rainfall and the loss in grain harvest were taken into account, a total K loss of about 10 kg ha−1 was estimated. The electrical neutrality of inorganic ions in the percolating water was always maintained. From these results we estimate that the amounts of exchangeable Ca and Mg in the soil to a depth of 40 cm would decrease by 50% within 50–260 and 30–100 years, respectively, if similar management were continued without fertilization. The total amount of carbon dioxide (ΣCO2) leached in percolating water during the period of rice cultivation was 120–325 kg C ha−1, which corresponded to 0.47–0.94% of the soil organic carbon to 40 cm depth.  相似文献   

17.
Two field experiments commencing in winter (December) and spring (April) were conducted to determine the fate of nitrogen (N) in cattle slurry following application to grassland. In each experiment three methods of application were used: surface application, and injection ± the nitrification inhibitor, nitrapyrin. Slurry was applied at 80t ha−1, (≡248 kg total N ha−1 in the winter experiment, and 262 kg N ha−1 in the spring experiment). From slurry applied to the surface, total losses of N through NH3 volatilization, measured using a system of wind tunnels, were 77 and 53 kg N ha−1 respectively for the winter and spring experiments. Injection reduced the total NH3 volatilization loss to ∼2 kg N ha −1. Following surface application, loss by denitrification, measured using an adaptation of the acetylene-inhibition technique, was 30 and 5 kg N ha−1 for the two experiments. Larger denitrification losses were observed for the injected treatments; in the winter experiment the loss from the injected slurry without nitrapyrin was 53 kgN ha −1, and with nitrapyrin 23 kgN ha−1. Total denitrification losses for the corresponding injected treatments in the spring experiment were 18 and 14 kg N ha −1. Apparent recoveries of N in grass herbage in both experiments broadly reflected the differences between treatments in total gaseous loss.  相似文献   

18.
Abstract. Phosphorus (P) in overland flow is mediated by soil P, added P, erosion, and hydrological processes and their interaction as affected by landscape position and length of flow. We investigated the effect of flow path length (1 to 10 m long plots) on P transport in overland flow with and without a localized dairy manure application (75 kg P ha–1 added to the upslope end [0.5 m] of each plot) and simulated rainfall (7 cm h–1), at two sites within an agricultural watershed in Pennsylvania, USA. Particulate loss in overland flow was c . 20% greater from manured than unmanured plots due to the less dense nature of manure than soil. Increased soil moisture at Site 2 contributed to a greater loss of P compared to Site 1, both with and without manure; with most occurring as particulate P (60 to 90% of total P). Further, the selective erosion of fine particulates (24 to 34% clay) and P loss increased with plot length. From a management perspective our results demonstrate that the forms and amounts of P loss are greatly influenced by flow path length and interactions among antecedent moisture, soil P, and texture.  相似文献   

19.
Abstract. In Australia, stubble burning and tillage are two of the major processes responsible for the decline of soil organic carbon concentration in cropped soils, and the resulting soil degradation. However, the relative importance of these two practices in influencing the soil organic carbon concentration and the long-term impact on soil quality and productivity are not clear. The effects of stubble burning as practised by farmers in southeastern Australia were evaluated in two field trials, one of 19 years duration, the other of 5 years. Conventional tillage (three tillage passes) led to greater loss of soil organic carbon than stubble burning. Loss of total soil organic carbon attributed to stubble burning in the 0–10 cm layer was estimated to be 1.75 t C ha−1 over the period of the 19-year trial, equivalent to 29% of that lost due to tillage. In the 5-year trial, no change in soil organic carbon due to stubble burning was detectable. Changes in soil quality associated with stubble burning detected in the longer trial included a reduction in macro-aggregate stability, and increases in pH and exchangeable K+. Only the latter two were detected in the shorter trial. A higher mean wheat yield (average 0.15 t ha−1) following stubble burning was observed in the 19-year trial but not in the 5-year trial. Research to monitor the longer term effects of stubble burning is needed, and to identify conditions where loss of soil organic carbon is minimized.  相似文献   

20.
Abstract. When over exploited and coupled with climatic conditions, tropical soils are subject to increased erosion and a loss of soil organic matter. Countermeasures include the incorporation of organic materials such as crop and animal residues. We studied the effect of adding crop residues and manure to soil, at five sites in Ethiopia, on carbohydrate properties, aggregate stability and the C and N distribution within water-stable aggregates. The effects of organic amendments varied between sites. The largest content of carbohydrates was obtained in the control treatment at Holeta, Ginchi (90 kg ha–1 mustard meal), Jimma (5 t ha–1 cow dung + 9 t ha–1 coffee husk), Awassa (forested soil), and Sirinka (soil alley-cropped with Leuceanae ). The aggregate stability of these soils was highly correlated with the OM content but not with carbohydrates. The smaller aggregates (<1.00 mm) accumulated more carbohydrates than the larger (>1.00 mm), thereby suggesting a protecting effect within the finer soil fractions. A protecting role played by humified OM components was also indicated by the C and N distribution as well as the C:N ratios which showed preferential accumulation in small rather than in large aggregates. The isotopic 13C-OC values of carbohydrate extracts were generally low, suggesting that OM was from plants with C3 photosynthetic pathways. Soil treatments with maize alone or combined with coffee husks at Jimma decreased the δ13C‰ values slightly, revealing that maize contributed a share of the labile OM. Despite the improvement in the soil OM content, neither the carbohydrate content nor the aggregate stability were increased to the level of the forested sites, suggesting that the additions of crop residues and manure were not alone sufficient to restore the soil physical quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号