首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest soils may become an increasingly important source of N2O, due to disturbances to the forest ecosystem (e.g. fertilization to increase growth, or atmospheric deposition of air-borre nitrogen compounds such as NH3, NO3 and NOx). A lysimeter experiment was used to study the effects of different amounts of N input [0 (control), 30 kg (Medium) and 90 kg (High) N ha?1 y?1 as NH4NO3] on fluxes of N2O, measured by the close chamber method. The estimated annual N2O flux were about 0.4 kg N2O-N ha?1 for control, 0.9 kg N2O-N ha?1 for medium N and 1.8 kg N2O-N ha?1 for high N treatments. The relation between the estimated annual N2O flux and fertilizer dose showed an almost perfect proportionality between fertilizer dose and the increase in N2O flux. This is important, since one crucial question is wether we can extrapolate results from high N-doses to situations with low amounts of N inputs prevailing in forests exposed to moderate input of N. The increase in N2O fluxes from the control to the fertilised treatments corresponds to 1.7% of the annual N input in the medium N treatments and 1.6% of the annual input in the high N treatment.  相似文献   

2.
Long-term and short-term N deposition effects on N2O and NO emissions from forest soils were compared. Long-term NH3 deposition (> 20 years) from a poultry farm to a downwind woodland (decreasing from 73 to 18 kg N ha-1 y-1, 30 to 110 m downwind of the farm) resulted in the re-emission of 6% and 14% of NH3-N deposited as N2O-N and NO-N, respectively. However, when in short-term (2-3 years) field experiments the atmospheric N deposition to mature conifer plantations was raised by fumigation with NH3 to 15 kg N ha-1 y-1 or by acid mist to 48 and 96 kg N ha-1 y-1 the N deposited was immobilised. In the acid mist experiment more than 2 years of acid mist (48 and 96 kg N ha-1 y-1) were required to significantly increase N2O emissions from -0.3 μg N2O-N m-2 h-1 (control) to 0.5 and 5.7 μg N2O-N m-2 h-1, respectively. This suggests, that N deposition simulation studies in soil ecosystems, which have previously not been exposed to high rates of N (by deposition or fertilisation), need to be long-term. Also, measurements of N2O and/or NO may be a non-destructive, quick indicator of the N status of the soil.  相似文献   

3.
Base cation (BC) concentrations of rain, throughfall, percolation from leaf litter, and soil solution were periodically measured in two forests: Kannondai (red pine stand on volcanic soil) and Yasato (deciduous stands on granitic soil). Calculation of a BC budget gave the rate of BC release from soils; the BCs originated from mineral weathering and cation exchange. Weathering rates under field conditions were estimated from the Sr isotope ratios (87Sr/86Sr) of water and soil samples. Isotope ratios decreased in the order rain > throughfall > percolation > soil solution. Clay and silt had extremely high isotope ratios; this suggests that the sandy fraction, whose isotope ratio was smaller than that of the soil solution, was the main contributor to mineral weathering. Estimated BC weathering rates (kmolc·ha?1y?1) were 1.16 for Ca and 0.57 for Mg at Kannondai, and 0.82 for Ca and 0.51 for Mg at Yasato. The unexpected high weathering rate of granitic soil in Yasao was due to the wide coverage of the original parent material by volcanic ash. The contribution of cation exchange derived by subtraction was a little smaller than the weathering rates and was similar to the values estimated from a dynamic model that we developed.  相似文献   

4.
The objectives of this 2-year field study were to assess the effects of irrigation and nitrogen (N) application on nitrous oxide (N2O). Soil N2O flux was determined using open-bottomed chambers. Nitrous oxide concentrations were determined with gas chromatography. The results showed that in 2008, N2O emission rates ranged from 2.0 to 50.0 g N ha?1 d?1 in the alternating furrow irrigation and N application treatments (AFINA) and from 2.4 to 68.4 g N ha?1 d?1 in the conventional every-furrow irrigation and fertilization treatment (CIF). In 2009, cumulative N2O-N loss in the optimal combination with greater yields and lower N2O emission in AFINA was 1277 g N ha?1 compared to 1695 g N ha?1 with CIF. The study indicated that AFINA practices combined with optimum N fertilizer and irrigation rates could reduce soil N2O emission and water input compared to CIF practices without causing a decline in corn yield.  相似文献   

5.
Abstract

Nitrous oxide (N2O) and methane (CH4) fluxes from a fertilized timothy (Phleum pratense L.) sward on the northern island of Japan were measured over 2?years using a randomized block design in the field. The objectives of the present study were to obtain annual N2O and CH4 emission rates and to elucidate the effect of the applied material (control [no nitrogen], anaerobically digested cattle slurry [ADCS] or chemical fertilizer [CF]) and the application season (autumn or spring) on the annual N2O emission, fertilizer-induced N2O emission factor (EF) and the annual CH4 absorption. Ammonium sulfate was applied to the CF plots at the same application rate of NH4-N to the ADCS plots. A three-way ANOVA was used to examine the significance of the factors (the applied material, the application season and the year). The ANOVA for the annual N2O emission rates showed a significant effect with regard to the applied material (P?=?0.042). The annual N2O emission rate from the control plots (0.398?kg N2O-N ha?1?year?1) was significantly lower than that from the ADCS plots (0.708?kg N2O-N ha?1?year?1) and the CF plots (0.636?kg N2O-N ha?1?year?1). There was no significant difference in the annual N2O emission rate between the ADCS and CF plots. The ANOVA for the EFs showed insignificance of all factors (P?>?0.05). The total mean?±?standard error of the EFs (fertilizer-induced N2O-N emission/total applied N) was 0.0024?±?0.0007 (kg N2O-N [kg N]?1), which is similar to the reported EF (0.0032?±?0.0013) for well-drained uplands in Japan. The CH4 absorption rates differed significantly between years (P?=?0.014). The CH4 absorption rate in the first year (3.28?kg CH4?ha?1?year?1) was higher than that in the second year (2.31?kg CH4?ha?1?year?1), probably as a result of lower precipitation in the first year. In conclusion, under the same application rate of NH4-N, differences in the applied materials (ADCS or CF) and the application season (autumn or spring) led to no significant differences in N2O emission, fertilizer-induced N2O EF and CH4 absorption.  相似文献   

6.
To understand spatial and temporal variations of nitrous oxide (N2O) fluxes, we chose to measure N2O emissions from three plant stands (Kobresia tibetica, Carex muliensis, and Eleocharis valleculosa stands) in an open fen on the northeastern Qinghai?CTibetan plateau during the growing seasons from 2005 to 2007. The overall mean N2O emission rate was about 0.018?±?0.056?mg?N?m?2?h?1 during the growing seasons from 2005 to 2007, with highly spatiotemporal variations. The hummock (K. tibetica stand) emitted N2O at the highest rate about 0.025?±?0.051?mg?N?m?2?h?1, followed by the hollow stands: the E. valleculosa stand about 0.012?±?0.046?mg?N?m?2?h?1 and the C. muliensis stand about 0.017?±?0.068?mg?N?m?2?h?1. Within each stand, we also noted significant variations of N2O emission. We also observed the significant seasonal and inter-annual variation of N2O fluxes during the study period. The highest N2O emission rate was all recorded in July or August in each year from 2005 to 2007. Compared with the mean value of 2005, we found the drought of 2006 significantly increased N2O emissions by 104 times in the E. valleculosa stand, 45 times in K. tibetica stand, and 18 times in the C. muliensis stand. Though there was no significant relation between standing water depths and N2O emissions, we still considered it related to the spatiotemporal dynamics of soil water regime under climate change.  相似文献   

7.
Abstract

To determine the means and variations in CH4 uptake and N2O emission in the dominant soil and vegetation types to enable estimation of annual gases fluxes in the forest land of Japan, we measured monthly fluxes of both gases using a closed-chamber technique at 26 sites throughout Japan over 2 years. No clear seasonal changes in CH4 uptake rates were observed at most sites. N2O emission was mostly low throughout the year, but was higher in summer at most sites. The annual mean rates of CH4 uptake and N2O emission (all sites combined) were 66 (2.9–175) µg CH4-C m?2 h?1 and 1.88 (0.17–12.5) µg N2O-N m?2 h?1, respectively. Annual changes in these fluxes over the 2 years were small. Significant differences in CH4 uptake were found among soil types (P < 0.05). The mean CH4 uptake rates (µg CH4-C m?2 h?1) were as follows: Black soil (95 ± 39, mean ± standard deviation [SD]) > Brown forest soil (60 ± 27) ≥ other soils (20 ± 24). N2O emission rates differed significantly among vegetation types (P < 0.05). The mean N2O emission rates (µg N2O-N m?2 h?1) were as follows: Japanese cedar (4.0 ± 2.3) ≥ Japanese cypress (2.6 ± 3.4) > hardwoods (0.8 ± 2.2) = other conifers (0.7 ± 1.4). The CH4 uptake rates in Japanese temperate forests were relatively higher than those in Europe and the USA (11–43 µg CH4-C m?2 h?1), and the N2O emission rates in Japan were lower than those reported for temperate forests (0.23–252 µg N2O-N m?2 h?1). Using land area data of vegetation cover and soil distribution, the amount of annual CH4 uptake and N2O emission in the Japanese forest land was estimated to be 124 Gg CH4-C year?1 with 39% uncertainty and 3.3 Gg N2O-N year?1 with 76% uncertainty, respectively.  相似文献   

8.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

9.
Abstract

Nitrous oxide (N2O) emissions were measured monthly over 1 year in three ecosystems on tropical peatland of Sarawak, Malaysia, using a closed-chamber technique. The three ecosystems investigated were mixed peat swamp forest, sago (Metroxylon sagu) and oil palm (Elaeis guineensis) plantations. The highest annual N2O emissions were observed in the sago ecosystem with a production rate of 3.3 kg N ha?1 year?1, followed by the oil palm ecosystem at 1.2 kg N ha?1 year?1 and the forest ecosystem at 0.7 kg N ha?1 year?1. The N2O emissions ranged from –3.4 to 19.7 µg N m?2 h?1 for the forest ecosystem, from 1.0 to 176.3 µg N m?2 h?1 for the sago ecosystem and from 0.9 to 58.4 µg N m?2 h?1 for the oil palm ecosystem. Multiple regression analysis showed that N2O production in each ecosystem was regulated by different variables. The key factors influencing N2O emissions in the forest ecosystem were the water table and the NH+ 4 concentration at 25–50 cm, soil temperature at 5 cm and nitrate concentration at 0–25 cm in the sago ecosystem, and water-filled pore space, soil temperature at 5 cm and NH+ 4 concentrations at 0–25 cm in the oil palm ecosystem. R2 values for the above regression equations were 0.57, 0.63 and 0.48 for forest, sago and oil palm, respectively. The results suggest that the conversion of tropical peat swamp forest to agricultural crops, which causes substantial changes to the environment and soil properties, will significantly affect the exchange of N2O between the tropical peatland and the atmosphere. Thus, the estimation of net N2O production from tropical peatland for the global N2O budget should take into consideration ecosystem type.  相似文献   

10.
Vegetable‐production systems often show high soil mineral‐N contents and, thus, are potential sources for the release of the climate‐relevant trace gas N2O from soils. Despite numerous investigations on N2O fluxes, information on the impact of vegetable‐production systems on N2O emissions in regions with winter frost is still rare. This present study aimed at measuring the annual N2O emissions and the total yield of a lettuce–cauliflower rotation at different fertilization rates on a Haplic Luvisol in a region exposed to winter frost (S Germany). We measured N2O emissions from plots fertilized with 0, 319, 401, and 528 kg N ha–1 (where the latter three amounts represented a strongly reduced N‐fertilization strategy, a target value system [TVS] in Germany, and the N amount fertilized under good agricultural practices). The N2O release from the treatments was 2.3, 5.7, 8.8, and 10.6 kg N2O‐N ha–1 y–1, respectively. The corresponding emission factors calculated on the basis of the total N input ranged between 1.3% and 1.6%. Winter emission accounted for 45% of the annual emissions, and a major part occurred after the incorporation of cauliflower residues. The annual N2O emission was positively correlated with the nitrate content of the top soil (0–25 cm) and with the N surpluses of the N balance. Reducing the amount of N fertilizer applied significantly reduced N2O fluxes. Since there was no significant effect on yields if fertilization was reduced from 528 kg N ha–1 according to “good agricultural practice” to 401 kg N ha–1 determined by the TVS, we recommend this optimized fertilization strategy.  相似文献   

11.
Nitrous oxide (N2O) is a high‐impact greenhouse gas. Due to the scarcity of unmanaged forests in Central Europe, its long‐term natural background emission level is not entirely clear. We measured soil N2O emissions in an unmanaged, old‐growth beech forest in the Hainich National Park, Germany, at 15 plots over a 1‐year period. The average annual measured N2O flux rate was (0.49 ± 0.44) kg N ha–1 y–1. The N2O emissions showed background‐emission patterns with two N2O peaks. A correlation analysis shows that the distance between plots (up to 380 m) does not control flux correlations. Comparison of measured data with annual N2O flux rates obtained from a standard model (Forest‐DNDC) without site‐specific recalibration reveals that the model overestimates the actual measured N2O flux rates mainly in spring. Temporal variability of measured N2O flux was better depicted by the model at plots with high soil organic C (SOC) content. Modeled N2O flux rates were increased during freezing only when SOC was > 0.06 kg C kg–1. The results indicate that the natural background of N2O emissions may be lower than assumed by most approaches.  相似文献   

12.
Abstract

To develop an advanced method for estimating nitrous oxide (N2O) emission from an agricultural watershed, we used a closed-chamber technique to measure seasonal N2O and nitric oxide (NO) fluxes in cornfields, grassland, pastures and forests at the Shizunai Experimental Livestock Farm (467 ha) in southern Hokkaido, Japan. From 2000 to 2004, N2O and NO fluxes ranged from –137 to 8,920 µg N m?2 h?1 and from –12.1 to 185 µg N m?2 h?1, respectively. Most N2O/NO ratios calculated on the basis of these N2O and NO fluxes ranged between 1 and 100, and the log-normal N2O/NO ratio was positively correlated with the log-normal N2O fluxes (r 2 = 0.346, P < 0.01). These high N2O fluxes, therefore, resulted from increased denitrification activity. Annual N2O emission rates ranged from –1.0 to 81 kg N ha?1 year?1 (average = 6.6 kg N ha?1). As these emission values varied greatly and included extremely high values, we divided them into two groups: normal values (i.e. values lower than the overall average) and high values (i.e. values higher than average). The normal data were significantly positively correlated with N input (r 2 = 0.61, P < 0.01) and the “higher” data from ungrazed fields were significantly positively correlated with N surplus (r 2 = 0.96, P < 0.05). The calculated probability that a high N2O flux would occur was weakly and positively correlated with precipitation from May to August. This probability can be used to represent annual variation in N2O emission rates and to reduce the uncertainty in N2O estimation.  相似文献   

13.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

14.
The present study aimed to elucidate the atmosphere–forest exchange of ammoniacal nitrogen (NHX-N) at a young larch ecosystem. NHX-N exchanges were measured at a remote site in northernmost Japan where 4-year-old larches were growing after a pristine forest had been clear-cut and subsequent dense dwarf bamboo (Sasa) had been strip-cut. The site was a clean area for atmospheric ammonia with mean concentrations of 0.38 and 0.11 μg N m?3 in snowless and snow seasons, respectively. However, there was a general net emission of NHX-N. The annual estimated emission of NHX-N of 4.8 kg N ha?1 year?1 exceeded the annual wet deposition of 2.4 kg N ha?1 year?1, but the weekly exchange fluxes may have been underestimated by 28–60%. The main cause of the ammonia loss from the young larch ecosystem was probably enhanced nitrogen supply stimulated by the cutting of the pristine forest and Sasa, in particular, the Sasa.  相似文献   

15.
ABSTRACT

Identification of the combination of tillage and N fertilization practices that reduce agricultural Nitrous oxide (N2O) emissions while maintaining productivity is strongly required in the Indian subcontinent. This study investigated the effects of tillage in combination with different levels of nitrogen fertilizer on N2O emissions from a rice paddy for two consecutive seasons (2013–2014 and 2014–2015). The experiment consisted of two tillage practices, i.e., conventional (CT) and reduced tillage (RT), and four levels of nitrogen fertilizer, i.e., 0 kg N ha–1 (F1), 45 kg N ha–1 (F2), 60 kg N ha–1 (F3) and 75 kg N ha–1 (F4). Both tillage and fertilizer rate significantly affected cumulative N2O emissions (p < 0.05). Fertilizer at 45 and 60 kg N ha–1 in RT resulted in higher N2O emissions over than did the CT. Compared with the recommended level of 60 kg N ha?1, a 25% reduction in the fertilizer to 45 kg N ha?1 in both CT and RT increased nitrogen use efficiency (NUE) and maintained grain yield, resulting in the lowest yield-scaled N2O-N emission. The application of 45 kg N ha?1 reduced the cumulative emission by 6.08% and 6% in CT and RT practices, respectively, without compromising productivity.  相似文献   

16.
Our previous research showed large amounts of nitrous oxide (N2O) emission (>200?kg?N?ha?1?year?1) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a three-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5–80?cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1607?kg?N?ha?1?year?1. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858?kg?N?ha?1?year?1, respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15?cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space (WEPS). These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil.  相似文献   

17.
Abstract

We developed a new and improved method, the ‘high-emission-incorporation (HEI) method’, for estimating soil nitrous oxide (N2O) emission rates at a watershed level based on nitrogen (N) input (consisting of fertilizer, manure, slurry and excreta N) and N surplus (calculated by subtracting the amount of crop yield and consumed N from the N input) of different sites in a livestock farm located in a watershed. The main characteristic of this method is the inclusion of extremely high N2O emission rates, ‘outlier’, which are normally excluded from estimation. High N2O emission rates were estimated using the regression model obtained from the measured N2O values and the amounts of N surplus; normal N2O emission rates were estimated using the regression model obtained from the measured values and the amount of N input. The probability of occurrence of a high flux was used to incorporate calculated high and normal N2O emissions into one. The annual N2O emission rate from the livestock farm in the watershed (467?ha), estimated using the HEI method, was 1156?±?147?kg?N?year?1 over a 5-year period. The annual N2O emission rates calculated using the site-specific emission factor (EF?=?0.0789) and the emission factor of the Intergovernmental Panel on Climate Change (EF?=?0.01) were 1838?±?585?kg?N?year?1 and 673 (522–1103) kg?N?year?1, respectively. The estimated value using the measure-and-multiply method, in which each land-use area is multiplied by the representative emission rate for each land-use type, was 964 (509–1610) kg?N?year?1. The N2O emission rates estimated by our newly developed method were consistent with the values calculated by the measure-and-multiply method and offered improvement over this measure because the new measure can also predict future N2O emission rates from the watershed.  相似文献   

18.
We investigated the effect of increasing soil temperature and nitrogen on greenhouse gas (GHG) emissions [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] from a desert steppe soil in Inner Mongolia, China. Two temperature levels (heating versus no heating) and two nitrogen (N) fertilizer application levels (0 and 100?kg?N?ha?1?year?1) were examined in a complete randomized design with six replications. The GHG surface fluxes and their concentrations in soil (0 to 50?cm) were collected bi-weekly from June 2006 to November 2007. Carbon dioxide and N2O emissions were not affected by heating or N treatment, but compared with other seasons, CO2 was higher in summer [average of 29.6 versus 8.6?mg carbon (C) m?2?h?1 over all other seasons] and N2O was lower in winter (average of 2.6 versus 4.0?mg?N?m?2?h?1 over all other seasons). Desert steppe soil is a CH4 sink with the highest rate of consumption occurring in summer. Heating decreased CH4 consumption only in the summer. Increasing surface soil temperature by 1.3°C or applying 100?kg?ha?1?year?1 N fertilizer had no effect on the overall GHG emissions. Seasonal variability in GHG emission reflected changes in temperature and soil moisture content. At an average CH4 consumption rate of 31.65?µg?C?m?2?h?1, the 30.73 million ha of desert steppe soil in Inner Mongolia can consume (sequestrate) about 85?×?106?kg CH4-C, an offset equivalent to 711?×?106?kg CO2-C emissions annually. Thus, desert steppe soil should be considered an important CH4 sink and its potential in reducing GHG emission and mitigating climate change warrants further investigation.  相似文献   

19.
In a laboratory incubation experiment, nitrification potential, methane oxidation, N2O and CO2 release were studied in the organic soil layer (0–10 cm) of field lysimeters containing re-established soil profiles from a 100-year-old Scots pine (Pinus sylvestris) forest of Norway. The experiment was designed as a full factorial (3 factors; N fertilisation rates, soil acidification, and plants), with three replicates. The more acidic irrigation (pH 3) significantly reduced nitrification potential and N2O fluxes, methane oxidation and CO2 release. We concluded that the reduction in soil N2O release by severe acid deposition is partly due to reduction in nitrification potential. The highest N2O fluxes were observed in the combination of fertilised planted and less acidic pH treatment. N fertilisation (90 kg N ha?1 y?1 with NH4NO3) increased soil N2O release by a factor of 8 and decreased CH4 oxidation by 60–80%. Plant effects on soil nitrification potential and methane oxidation rates are discussed.  相似文献   

20.
Wood ash has been used to alleviate nutrient deficiencies and acidification in boreal forest soils. However, ash and nitrogen (N) fertilization may affect microbial processes producing or consuming greenhouse gases: methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Ash and N fertilization can stimulate nitrification and denitrification and, therefore, increase N2O emission and suppress CH4 uptake rate. Ash may also stimulate microbial respiration thereby enhancing CO2 emission. The fluxes of CH4, N2O and CO2 were measured in a boreal spruce forest soil treated with wood ash and/or N (ammonium nitrate) during three growing seasons. In addition to in situ measurements, CH4 oxidation potential, CO2 production, net nitrification and N2O production were studied in laboratory incubations. The mean in situ N2O emissions and in situ CO2 production from the untreated, N, ash and ash + N treatments were not significantly different, ranging from 11 to 17 μg N2O m?2 h?1 and from 533 to 611 mg CO2 m?2 h?1. However, ash increased the CH4 oxidation in a forest soil profile which could be seen both in the laboratory experiments and in the CH4 uptake rates in situ. The mean in situ CH4 uptake rate in the untreated, N, ash and ash + N plots were 153 ± 5, 123 ± 8, 188 ± 10 and 178 ± 18 μg m?2 h?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号