首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Convenient and effective methods to determine seasonal changes in individual leaf area (LA) and leaf mass (LM) of plants are useful in research on plant physiology and forest ecology. However, practical methods for estimating LA and LM of elm (Ulmus japonica) leaves in different periods have rarely been reported. We collected sample elm leaves in June, July and September. Then, we developed allometric models relating LA, LM and leaf parameters, such as leaf length (L) and width (W) or the product of L and W (LW). Our objective was to find optimal allometric models for conveniently and effectively estimating LA and LM of elm leaves in different periods. LA and LM were significantly correlated with leaf parameters (P < 0.05), and allometric models with LW as an independent variable were best for estimating LA and LM in each period. A linear model was separately developed to predict LA of elm leaves in June, July and September, and it yielded high accuracies of 93, 96 and 96%, respectively. Similarly, a specific allometric model for predicting LM was developed separately in three periods, and the optimal model form in both June and July was a power model, but the linear model was optimal for September. The accuracies of the allometric models in predicting LM were 88, 83 and 84% for June, July and September, respectively. The error caused by ignoring seasonal variation of allometric models in predicting LA and LM in the three periods were 1–4 and 16–59%, respectively.  相似文献   

2.
We analyzed the growth and photosynthetic responses of Canarium pimela K. D. Koenig (Chinese black olive) and Nephelium topengii (Merr.) H. S. Lo. (Hainan shaozi) to a light gradient to recommend better procedures for optimizing seedling establishment and growth of both species in restoration and agroforestry practices. One-month-old seedlings were exposed to four irradiance levels (46, 13, 2 and 0.2 % full sunlight) inside shade cloth covered shadehouses for 1 year. With decreased sunlight both species displayed trends of decreased relative growth rate (RGR) and leaf area (LA), and increased specific leaf area and leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (Pmax) in 46 and 0.2 % full sunlight were 10.11 and 3.44 μmol CO2 m?2 s?1 for C. pimela and 6.26 and 3.47 μmol CO2 m?2 s?1 for N. topengii, respectively. C. pimela had higher RGR in 46 and 13 % full sunlight than in 2 and 0.2 % full sunlight. Differences in growth rates can be explained by the different values of LA, LAR and leaf mass ratio, as well as by the different values of photosynthetic saturation irradiance and net photosynthetic rate (Pmax) between the two species. Both morphological and physiological responses to shading indicate N. topengii could be rated as “very shade-tolerant,” while C. pimela could be rated as “intermediately shade-tolerant”.  相似文献   

3.
Estimating genetic parameters of parental lines through progeny testing and choosing good hybrid parents are important for genetically improving seed orchard trees. In this study, 24 tetraploid progeny seedlings were used as experimental materials, which came from test cross design: six tetraploid Betula platyphylla lines (Q33, Q13, Q103, Q19, Q83 and Q14) as female parents and four individual B. platyphylla diploid lines (F3, F4, F9 and F11) as male parents were crossed. Variance analysis of height, diameter, height-to-diameter ratio, and internodal distance showed that the differences between hybrid combinations reached highly significant levels. Using multi-objective decisionmaking, we performed a comprehensive assessment of the various hybrid combinations. Using a selection rate of 20 % of the standard, five hybrids were selected; their genetic gains in average height, diameter, height-to-diameter ratio, and internodal distance were 20.95, 6.07, 13.07 and 8.96 %, respectively. We also analyzed the combining ability and genetic parameter effect values of parents and hybrid combinations. The combined analysis revealed that Q13, Q103, Q33 and Q83 were superior females; F3, F4, and F9 were superior males; and F3 × Q13, F4 × Q83 and F9 × Q33 were superior hybrid combinations. The heights and diameters of these progenies were 22.49 and 11.48 % greater than average, respectively.  相似文献   

4.
Cottonwoods, riparian poplars, are dioecious and prior studies have indicated that female poplars and willows can be more abundant than males in low-elevation zones, which are occasionally flooded. We investigated the response to flooding of clonal saplings of 12 male and 9 female narrowleaf cottonwoods (Populus angustifolia) grown for 15 weeks in a greenhouse, along with three females of a co-occurring native hybrid (Populus?×?jackii?=?Populus deltoides?×?Populus balsamifera). Three water-level treatments were provided, with substrate inundation as the flood treatment. In the non-flooded condition, the hybrids produced about four-fold more dry weight (DW) than the narrowleaf cottonwoods (P??P. angustifolia male?>?P.?×?jackii female. This indicates that narrowleaf cottonwoods are relatively flood tolerant and suggests that females are more flood tolerant than males. We propose the concept of 'strategic positioning', whereby the seed-producing females could be better adapted to naturally flooded, low-elevation streamside zones where seedling recruitment generally occurs.  相似文献   

5.
H. T. Tate  T. Page 《New Forests》2018,49(4):551-570
Developing methods for routine clonal propagation of sandalwood (Santalum austrocaledonicum) is important for its domestication and development as a commercial agroforestry species. The amenability of this species to propagation by leafy stem cuttings in low-cost non-mist propagators was assessed in four separate experiments. These experiments evaluated the effects of (1) genotype (15 genotypes from two island provenances), (2) cutting position on the stock plant (apical, medial and basal), (3) cutting size (1-node/400 mm2 and 2-node/800 mm2 leaf area), (4) three propagation media [scoria (5 mm, air-filled porosity (AFP)—29%), vermiculite and perlite (1:1 v/v, AFP—46%) and vermiculite, perlite and peat (2:2:1 v/v/v, AFP—42%)], (5) indole-3-butyric (IBA) (3000, 4000 and 8000 ppm) and (6) irradiance in the propagator [daily light integral (DLI) 5.3, 3.9, 2.6, 2.2 mol m?2 day?1]. IBA, propagation media and cutting size had no significant effect on rooting percentage, root number or root growth. Evidence of provenance-based variation in rooting capacity was recorded with greater rooting success for genotypes from the island of Erromango compared with Tanna. Variation in adventitious root induction was also recorded between individual genotypes from Erromango across all four experiments. Cuttings collected from the apical and medial parts of the shoot on the stock plant had higher rooting percentage than those collected from the base. Differences in rooting capacity between apical and medial shoots were variable between experiments and may be attributed to different levels of hardening. The use of artificial shade (~?70%) to achieve a mean DLI of between 2.6 and 3.9 mol m?2 day?1 increased rooting percentage compared to both lower (2.2 mol m?2 day?1 or?~?90% shade) and higher (5.3 mol m?2 day?1 or?~?50% shade) irradiance treatments. Leaf retention of cuttings in the propagator was positively associated with the percentage of cuttings with adventitious roots, with highest percentage in cuttings with full leaf retention, regardless of original cutting size. This study demonstrated S. austrocaledonicum seedlings can be successfully propagated by cuttings provided the propagation conditions are optimized for each genotype.  相似文献   

6.
The effect of nitrogen addition and weed management on fibre properties of wood from 6.5-year-old Eucalyptus grandis and E. tereticornis from intensively managed short-rotation plantations were investigated. Trees for analyses were sampled from plots with zero nitrogen input (n = 4), plots with high level (187 kg N ha?1) nitrogen input (n = 4), plots from which weed growth was not removed throughout the rotation (n = 4) and plots from which weeds were removed periodically (n = 4). Fibre characteristics were evaluated on wood samples collected from base, breast height, 50, 75 and 100 % of merchantable bole height of trees. Though N input and weed management improved tree growth significantly irrespective of species, the treatment effects did not cause any significant change in fibre characteristics such as fibre length, fibre diameter, lumen width and wall thickness. Longest and widest fibres were observed at the outer most radial portion of wood in all cases. In general, within tree fibre length varied significantly along the radial direction of wood. Fibre diameter, lumen width and wall thickness lacked any specific pattern between species and treatments. Runkel ratio and felting and flexibility coefficients values showed high pulping quality of wood irrespective of species and treatments. The study concluded that the fibre properties that influence pulpwood quality of Eucalyptus have not been affected by silvicultural practices, like fertilizer input and weed management, aimed at improving productivity of short-rotation eucalypt plantations.  相似文献   

7.
Ectomycorrhizal(EM)networks provide a variety of services to plants and ecosystems include nutrient uptake and transfer,seedling survival,internal cycling of nutrients,plant competition,and so on.To deeply their structure and function in ecosystems,we investigated the spatial patterns and nitrogen(N)transfer of EM networks using ~(15)N labelling technique in a Mongolian scotch pine(Pinus sylvestris var.mongolica Litv.)plantation in Northeastern China.In August 2011,four plots(20 × 20 m)were set up in the plantation.125 ml 5 at.%0.15 mol/L ~(15)NH_4 ~(15)NO_3solution was injected into soil at the center of each plot.Before and 2,6,30 and 215 days after the ~(15)N application,needles(current year)of each pine were sampled along four 12 m sampling lines.Needle total N and ~(15)N concentrations were analyzed.We observed needle N and~(15)N concentrations increased significantly over time after ~(15)N application,up to 31 and0.42%,respectively.There was no correlation between needle N concentration and ~(15)N/ ~(14)N ratio(R2=0.40,n=5,P=0.156),while excess needle N concentration and excess needle ~(15)N/~(14)N ratio were positively correlated across different time intervals(R~2=0.89,n=4,P\0.05),but deceased with time interval lengthening.Needle ~(15)N/~(14)N ratio increased with time,but it was not correlated with distance.Needle ~(15)N/ ~(14)N ratio was negative with distance before and 6th day and 30th day,positive with distance at 2nd day,but the trend was considerably weaker,their slop were close to zero.These results demonstrated that EM networks were ubiquitous and uniformly distributed in the Mongolian scotch pine plantation and a random network.We found N transfer efficiency was very high,absorbed N by EM network was transferred as wide as possible,we observed N uptake of plant had strong bias for ~(14)N and ~(15)N,namely N fractionation.Understanding the structure and function of EM networks in ecosystems may lead to a deeper understanding of ecological stability and evolution,and thus provide new theoretical approaches to improve conservation practices for the management of the Earth’s ecosystems.  相似文献   

8.
The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) (medfly) is a polyphagous pest of global economic importance. This study tested the suitability of two different adhesive powders, EntostatTM and an adhesive metal powder, as insecticide carriers for use in a lure and kill pest control system, that would allow the auto-dissemination of insecticide from males to female conspecifics through sexual interactions. Lethal time to 50 % (LT50) irreversible knockdown was calculated for male and female medfly artificially contaminated by five different doses of spinosad insecticide, formulated with each adhesive carrier powder. The formulations with adhesive metal powder resulted in a rapid knockdown of medfly which was too fast for use in an auto-dissemination system. Entostat powder with 2 % spinosad gave the best performance, allowing sufficient time for transfer between conspecifics before knockdown and, therefore, allowing the most auto-dissemination (LT50 4 h). Knockdown through transfer of powder from males to females during mating was confirmed, with knockdown at 70–78 % for mated females, with a LT50 of <40 h. These results indicate that Entostat powder is a suitable carrier powder for the development of an insecticidal auto-dissemination control system.  相似文献   

9.
Authentication of seed provenance is an importance issue to avoid the negative impact of poor adaptation of progenies when planted outside their natural environmental conditions. The objective of this study was to evaluate the potential of near infrared (NIR) spectroscopy as rapid and non-destructive method for authentication of Picea abies L. Karst seed provenances. For this purpose, five seed lots from Sweden, Finland, Poland and Lithuania each were used. NIR reflectance spectra were recorded on individual seeds (n = 150 seeds × 5 seed lots × 4 provenances = 3000 seeds) using XDS Rapid Content Analyzer from 780 to 2500 nm with a resolution of 0.5 nm. Classification model was developed by orthogonal projection to latent structures-discriminant analysis. The performance of the computed classification model was validated using two test sets—internal (the same seed lots as the model but excluded during model development; n = 600 seeds) and external (seed lots not included in the model; n = 1158 seeds). For the internal test, the model correctly recognized 99% of Swedish, Finnish and Polish samples and 97% of Lithuanian seeds. For the external test samples, the model correctly assigned 81% of Swedish, 96% of Finnish, 98% of Lithuanian and 93% of Polish seeds to their respective classes. The mean classification accuracy was 99 and 95% for internal and external test set, respectively. The spectral differences among seed lots were attributed to differences in chemical composition of seeds, presumably fatty acids and proteins, which are the dominant storage reserves in P. abies seeds. In conclusion, the results demonstrate that NIR spectroscopy is a very promising method for monitoring putative seed provenances and in seed certification.  相似文献   

10.
In most woody plants, leaf morphological and physiological characteristics are extremely variable across environmental gradients, particularly across altitudinal gradients. Hippophae rhamnoides L., a dioecious and deciduous shrub species, occupies a wide range of habitats in the Wolong Nature Reserve, southwest China. We measured growth, sex ratio and morphological and physiological characteristics of leaves in male and female H. rhamnoides individuals along an altitudinal gradient. Shoot height (HT), leaf N concentration per unit dry mass (N(mass)), leaf N concentration per unit area (N(area)) and leaf carbon isotope composition (delta(13)C) were higher in males than in females, whereas females had higher specific leaf area (SLA), stomatal length (SL) and stomatal index (SI) (i.e., total stomatal length per unit leaf area) than males along the altitudinal gradient. Females also had higher values of stomatal density (SD) at all altitudes except 2800 m. The male:female ratio (MFR) was biased toward males at all altitudes except at 2800 m. Changes in HT, MFR, SLA, SD, SL, SI, N(mass), N(area) and delta(13)C along the altitudinal gradient were nonlinear. Below 2800 m, HT, SLA, SD, SL and SI increased with increasing altitude, but above 2800 m they decreased with increasing altitude. In contrast, MFR, N(mass), N(area) and delta(13)C showed the opposite patterns with altitude. Consequently, we confirmed our hypotheses: (1) stressful environments have a more negative impact on females than on males in a variety of ways; (2) under optimal growth conditions the sex ratio is even, but becomes male-biased as resources become limited; and (3) there is an optimum altitudinal range at around 2800 m for the growth of H. rhamnoides in the Wolong Nature Reserve.  相似文献   

11.
The transfer of conidia of Metarhizium anisopliae between tsetse flies Glossina morsitans and the effects of fungal inoculation on mating and blood meal feeding behaviors were investigated in the laboratory. Male or female flies were inoculated with fungal conidia (“donors“) and allowed to pair with fungus-free mate of opposite sex (“recipients”) at 1-day-interval up to three mates. Fungus-treated male or female “donor” flies as well as their mates “recipients” died from fungal infection. However, mortality in male “recipient” flies declined with successive mating, from 82.5 to 32.5 %. Fungus-treated males readily located female flies and mating was successful in most cases comparable to the controls. There were no significant differences (P > 0.05) in mean duration of mating, number of jerking movements between fungus-treated and fungus-free males for all the mating lines, except in the number of jerking movements when male flies mated with the 3rd line female flies. Fungus-treated and fungus-free female flies previously mated with treated and non-treated males showed refractoriness during subsequent pairings. The number of fertile female flies was higher (P < 0.05) in fungus-free than in fungus-treated treatments, thus producing more pupae. High concentration of fungus (3.0 × 106 conidia ml?1) significantly (P < 0.05) reduced blood meal intake of flies. This study has shown that fungal infection does not affect the mating behavior of tsetse flies and fly-to-fly contamination does occur during matings. These are important attributes if entomopathogenic fungi have to be used in auto-dissemination strategy and be integrated into sterile insect technique.  相似文献   

12.
Soil and climatic conditions for optimizing aboveground biomass yields of bioenergy short rotation coppices (SRCs) of Salix are not well elucidated. The objective of this study was to identify and quantify the limitations induced by soil and climate, and compare the magnitude of their effects, on annual aboveground yields across ten SRCs of Salix miyabeana SX67 in Quebec, Canada. The effects of weather variation between years on yields were also tested within locations. In five plots per SRC, soil bulk density, particle size, exchangeable cations and bulk composition were analysed, and moisture deficits were estimated using leaf δ13C. For each location, numerous weather variables were simulated for spring, summer and the whole growing season. Climate was calculated by averaging weather variables for growing seasons for which annual yields were available. Annual aboveground biomass yields were modelled using linear regression, partitioning of the variance and mixed models with soil, weather and climate variables as predictors. Across SRCs, silt content, soil organic matter, pH, exchangeable Ca and Mg, and total N and Zn were significantly and positively related to aboveground yields (adj. R 2 ranging from 0.38 to 0.79). Generally, annual yields were negatively related to summer temperature within SRCs (adj. R 2 = 0.92) and drought across SRCs (adj. R 2 = 0.54). Partitioning of the variance revealed that soil variables (~80%) had a greater effect on productivity than did climate variables (~10%). In fact, soil properties buffered or exacerbated water shortages and, thus, had a preponderant effect on yield.  相似文献   

13.
The effect of different host plants including cabbage, cauliflower, mustard, radish, and broccoli on biological parameters of Pieris brassicae (L.) was studied in the laboratory at 28°C, 65 ± 5% RH and 12L:12D photoperiod. Duration of each life stage, longevity, the intrinsic rate of natural increase (r m), net reproductive rate (R 0), mean generation time (T), doubling time (DT), and finite rate of increase (λ) of the cabbage white butterfly on the different cole crops were estimated. Differences in fertility life table parameters of the P. brassicae among host plants were analyzed using pseudo-values, which were produced by Jackknife re-sampling. The results indicating that cabbage might be the most suitable food for P. brassicae due to the shorter development time (16 days), longer adult longevity (12 and 9 days for female and male, respectively), higher fecundity (281 eggs/female), higher intrinsic rate of natural increase (0.1156 females/female/day), lower doubling time (6.00), lower larval mortality (70.33%), and higher yield of adult (30%). Therefore, it can be concluded from the present study that P. brassicae prefers cabbage for fast and healthy development with low larval mortality and highest number of adult yield than other cole crops.  相似文献   

14.
This study investigated near-infrared spectroscopy (NIRS) to rapidly estimate physical and mechanical properties of No. 2 2 × 4 southern pine lumber. A total of 718 lumber samples were acquired from six mills across the Southeast and destructively tested in bending. From each piece of lumber, a 25-mm-length block was cut and diffuse reflectance NIR spectra were collected from the transverse face using a FOSS 5000 scanning spectrometer. Calibrations were created using partial least squares (PLS) regression and their performance checked with a prediction set. Overall moderate predictive ability was found between NIRS and the properties for the calibration and prediction sets: block specific gravity (SG) (R 2 = 0.66 and R p 2  = 0.63), lumber SG (0.54 and 0.53), modulus of elasticity (MOE) (0.54 and 0.58), and modulus of rupture (MOR) (0.5 and 0.4). Model performance for MOE (R p 2  = 0.70) and MOR (R p 2  = 0.50) improved when performing PLS regression on a matrix containing lumber SG and NIR spectra. Overall NIRS predicted MOE better than linear models using lumber SG (R 2 = 0.46), whereas lumber SG (R 2 = 0.51) predicted MOR better than NIRS. Overall NIRS has reasonably good predictive ability considering the small volume of wood that is scanned with the instrument.  相似文献   

15.
Larix olgensis A. Henry (Changbai larch) is a productive commercial species and good candidate for afforestation in northeast China. It is widely planted in lead-stressed soils which can induce oxidative damage in this plant. Increasing tolerance to lead (Pb) stress is therefore of keen interest. A greenhouse experiment was conducted to identify the biomass, physiological responses and Pb accumulation of L. olgensis seedlings to Pb stress under succinic acid (SA) application and to explore the interaction of exogenous SA applications and stress resistance. L. olgensis seedlings were planted in Pb-stressed or unstressed haplic cambisols in pots. In Pb-contaminated soils the seedlings were treated daily with concentrations of SA solutions at a rate approximately equivalent to 0, 0.04, 0.2, 1.0, or 2.0 mmol kg?1 of soil for 10, 20, and 30 days, respectively. Pb treatment induced damage in the seedlings and led to the inhibition of biomass accumulation in roots, stems and leaves, and a rise in Pb accumulation in fine roots and leaves. Malondialdehyde (MDA) content and electrolyte leakage in leaves significantly increased while peroxidase (POD) activities, soluble protein and photosynthetic pigment contents in leaves were all reduced. Physiological toxicity was promoted with increasing Pb treatment times. When Pb-stressed seedlings were exposed to SA (especially 10.0 mmol L?1 over 20 days), the physiological responses for Pb-only were reversed and the biomass of roots, stems, and leaves dramatically increased. SA facilitated Pb uptake in fine roots and leaves but more Pb accumulated in fine roots. The results demonstrate that exogenous SA alleviates Pb-induced oxidative injuries and improves the tolerance of L. olgensis seedlings to Pb stress.  相似文献   

16.
Acer negundo Sarg. (box elder) is a dioecious tree species that dominates riparian systems at mid elevations throughout the southwest and Intermountain West of the United States. Previous studies have shown that female A. negundo trees occur at higher frequencies along stream margins, whereas males occur at higher frequencies in drier microsites. To better understand the adaptive significance of sex ratio biases and their impact on the ecohydrology of riparian ecosystems, we examined whole-plant water relations and hydraulic properties of mature male and female A. negundo trees occurring within 1 m of a perennial stream channel. We hypothesized that (1) females would have significantly greater canopy water fluxes than males (particularly during periods of seed production: May-June), and (2) xylem in females is more hydraulically efficient but more vulnerable to cavitation than xylem in males. Mean sap flux density (J(s)) during the early growing season (May and June) was 43% higher in female trees than in male trees (n = 6 and 7 trees respectively, P < 0.0001). Mean J(s) in July and August remained 17% higher in females than in males (P = 0.0009). Mean canopy stomatal conductance per unit leaf area (g(s,leaf)) in May and June was on average 140% higher in females than in males (P < 0.0001). Mean g(s,leaf) in July and August remained 69% higher in female trees than in male trees (P < 0.0001). Canopy stomatal conductance scaled to basal area was 90 and 31% higher in females relative to males during May-June and July-August, respectively (P < 0.0001 during both periods). Conversely, there were no apparent differences in either branch hydraulic conductance or branch xylem cavitation vulnerability between genders. These results improve our capacity to describe the adaptive forces that shape the spatial distribution of male and female trees in dioecious species, and their consequences for ecohydrological processes in riparian ecosystems.  相似文献   

17.
Young trees were harvested to explore non-destructive methodologies to estimate live branch dry weights in young fast-growing Eucalyptus species under different spacing and fertilizer treatments. Branch growth can vary with silvicultural management such as spacing, fertilizing and thinning, and over relatively short periods in response to environmental conditions. Many published regressions based on standard measurements of height and diameter are site, age and treatment specific. The aim of this study was to improve our capacity to predict woody crown dry weight, based on stem measurements, and to minimize (or eliminate) treatment effects on the resulting model. In young trees, branches are temporary support structures for foliage and are often discarded as the base of the green crown rises. As temporary structures they represent an investment of biomass and nutrient elements, and are subject to selection pressures to maximize the return on investment by the tree. Trees were harvested from existing plantation experiments located in south-eastern Queensland for E. grandis W. Hill ex Maiden (ranging from 0.28 to 15.85 m in height, to 5 years old) and south-western Australia for E. globulus Labill. (0.10–34.4 m in height, to 10.2 years) in order to examine the impact of spacing, nitrogen and phosphorus fertilization on early growth. Relationships to estimate crown woody biomass from non-destructive measurements were developed, and these relationships tended to have different slopes and intercepts for trees with predominantly juvenile foliage and those with intermediate or adult foliage. Dry weight of whole-crown live branch wood (Wbranch) was related to heights and/or diameter at breast height (DBH), but the regressions parameters were different, depending on treatment. The relationships became more generic (i.e. less dependent on treatment effects) between Wbranch and stem sectional area at the height of the base of the green crown (SACB), consistent with the pipe model theory (R2 > 0.91 for the two species for trees with intermediate/adult leaves). However, Wbranch was more closely related again to the stem volume above the base of the green crown and treatment effects were not significant (VCon,gc, R2 > 0.93). Branches exit the stem below the green crown, and for E. grandis the best relationship was on stem volume above the lowest live branch (VCon,llb, R2 0.94). Limited sampling from four other species with similar or contrasting crown characteristics indicated that the relationship could be applied quite generally. Individual E. grandis branch woody dry weight was closely related to the conical volume of the main (first order) branch (Vcon,br, R2 0.98). The whole crown equivalent, branch woody dry weight plus stem dry weight above the lowest live branch, was also closely related to the stem volume within the woody crown (VCon,llb, R2 0.97–0.99). While the slope of this relationship was still significantly different between trees with juvenile and intermediate/adult foliage, it had a similar form, suggesting that trees with juvenile foliage allocated a different proportion of their woody biomass within the crown to branches than older trees.  相似文献   

18.
In many dioecious plants, gender affects economic value, breeding schemes and opportunities for commercial harvests. Hippophae rhamnoides L. is a dioecious plant species in which female genotypes are commercially preferred over male genotypes. Its berries have rich medicinal, nutritional and pharmaceutical properties because of their large amounts of vitamins, essential oils, proteins, fatty acids, free amino acids and flavanoids. Primary limitation for breeding H. rhamnoides L. is its dioecious nature, since gender cannot be identified by traditional methods. Therefore, some reliable and quick methods need to be developed. This communication deals with the development of isozyme and RAPD markers for early sex identification in this dioecious tree. The isozyme analysis was conducted with four enzyme systems, viz. peroxidase, esterase, malate dehydrogenase and catalase. The peroxidase enzyme system produced a female specific sex marker, which successfully differentiated between the staminate and pistillate genotypes of H. rhamnoides L. Thirty five random decamer primers were used in our study and one male sex linked marker was identified. OPD-20 (5′-ACTTCGCCAC-3′) displayed a band at 911 bp that expressed polymorphism between male and female genotypes. The staminate and pistillate genotypes could be distinguished using RAPD marker OPD-20911. These results revealed the immense potential of peroxidase isozyme patterns and RAPD as genetic markers for sex identification in H. rhamnoides L.  相似文献   

19.
We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil’s semiarid region. Among the study sites, two remnants were protected forest reserves, whereas the third was influenced by major anthropogenic activities. Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique. A total of 4750 fungal isolates of 142 taxa were identified. Species richness was higher in litter samples collected during wet season. Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons. Analysis of similarity showed that the differences were statistically significant (R = 0.85; P = 0.0001). Our findings revealed that spatial and temporal heterogeneity, and human activities had significant impacts on the saprobic fungi of V. guianensis leaf litter.  相似文献   

20.
Pollen flow and mating patterns are the most important factors influencing the genetic structure of insect-pollinated forest trees and are essential parts of genetic management in seed orchards. We investigated pollen flow, the mating system and the level of pollen contamination in a clonal seed orchard of Schima superba Gardn. et Champ. In total, 328 open-pollination progenies coming from 11 mother trees were identified using 13 polymorphic microsatellite loci. A total of 203 full-sib families were identified and were nested among the 11 studied seed donors. The male reproductive success rate from 0.49 to 7.77% for most male parents, with an average of 2.44%. More than 80% of the crosses were found within a distance of 60 m, and the most frequent pollination distance between female parent and male parents was approximately 20 m. Mating system analysis showed that the outcrossing level was very high (t m  = 1.000, outcrossing rate = 98.5%) in the seed orchard and that there was an average of 2.3 effective pollen donors (N ep ) per female parent. In addition, the mating success of individual males within neighborhoods was moderately influenced by their fecundity and the direction of their location relative to mother trees. The pollen contamination from outside the seed orchard was high (7.01%). Our findings are valuable for the assessment of seed orchards, and it may be worthwhile to use pollen management strategies to decrease pollen contamination and increase the genetic quality of the seeds produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号