首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
An automatic tillage system for inter- and intra-row weed control based on real-time kinematic GPS navigation and control has been used to address the problem of mechanically removing weeds within rows of precision seeded crops. The system comprised a side-shifting frame with an attached tine-rotor (cycloid hoe) with eight sigmoid-shaped, vertically directed tines. The individual tines can be released for individual rotation in order to avoid collision with geo-referenced crop plants. The system navigated with reference to pre-defined waypoints for tillage parallel to crop rows and around individual crop plants. The system evaluation was based on quantification of treated areas for uprooting and burial and the corresponding prediction of weed control efficiencies. A single pass of an 80 mm wide row band provided tillage of 30–49% of the intra-row area, with highest coverage at a speed of 0.32 m s−1 and at even plant spacing. A double pass, once on each side of the row in opposite directions, provided higher soil disturbance intensity and resulted in tillage of 31–58% of the intra-row area with highest coverage at a speed of 0.32 m s−1. The intra-row weed control effect was predicted to be up to 20% for a single pass and up to 29% for a 2-way pass treatment both at the white thread to the two-leaf stage of weeds. The result of the prediction is of crucial importance for the considerations of tool designs at the current conceptual stage of the system.  相似文献   

2.
Farmers account for yield and soil variability to optimize their production under mainly economic considerations using the technology of precision farming. Therefore, understanding of the spatial variation of crop yield and crop yield development within arable fields is important for spatially variable management. Our aim was to classify landform units based on a digital elevation model, and to identify their impact on biomass development. Yield components were measured by harvesting spring barley (Hordeum vulgare, L.) in 1999, and winter rye (Secale cereale, L.) in 2000 and 2001, respectively, at 192 sampling points in a field in Saxony, Germany. The field was stratified into four landform units, i.e., shoulder, backslope, footslope and level. At each landform unit, a characteristic yield development could be observed. Spring barley grain yields were highest at the level positions with 6.7 t ha−1 and approximately 0.15 t ha−1 below that at shoulder and footslope positions in 1999. In 2000, winter rye harvest exhibited a reduction at backslope positions of around 0.2 t ha−1 as compared to the highest yield obtained again at level positions with 11.1 t ha−1. The distribution of winter rye grain yield across the different landforms was completely different in 2001 from that observed in 2000. Winter rye showed the highest yields at shoulder positions with 11.1 t ha−1, followed by the level position with 0.5 t ha−1 less grain yield. Different developments throughout the years were assumed to be due to soil water and meteorological conditions, as well as management history. Generally, crop yield differences of up to 0.7 t ha−1 were found between landform elements with appropriate consideration of the respective seasonal weather conditions. Landform analysis proved to be helpful in explaining variation in grain yield within the field between different years.  相似文献   

3.
Soil water status mapping and two variable-rate irrigation scenarios   总被引:1,自引:0,他引:1  
Irrigation is the major user of allocated global freshwaters, and scarcity of freshwater threatens to limit global food supply and ecosystem function—hence the need for decision tools to optimize use of irrigation water. This research shows that variable alluvial soil ideally requires variable placement of water to make the best use of irrigation water during crop growth. Further savings can be made by withholding irrigation during certain growth stages. The spatial variation of soil water supplied to (1) pasture and (2) a maize crop was modelled and mapped by relating high resolution apparent electrical conductivity maps to soil available water holding capacity (AWC) at two contrasting field sites. One field site, a 156-ha pastoral farm, has soil with wide ranging AWCs (116–230 mm m−1); the second field site, a 53-ha maize field, has soil with similar AWCs (161–164 mm m−1). The derived AWC maps were adjusted on a daily basis using a soil water balance prediction model. In addition, real-time hourly logging of soil moisture in the maize field showed a zone where poorly drained soil remained wetter than predicted. Variable-rate irrigation (VRI) scenarios are presented and compared with uniform-rate irrigation scenarios for 3 years of climate data at these two sites. The results show that implementation of VRI would enable significant potential mean annual water saving (21.8% at Site 1; 26.3% at Site 2). Daily soil water status mapping could be used to control a variable rate irrigator.  相似文献   

4.
The wheat × maize system is one of the most effective ways to produce haploids in wheat. Whether and how it could be successfully applied in practical breeding mostly depends upon the efficiency of haploid embryo production. To perfect the protocols of haploid embryo induction, the efficiency of haploid embryo production between in vitro culture of cut plant and intact plant growth for hybrid spikes with two F1 wheat hybrids and two maize varieties was compared. Effects of different cutting plant times and formulas of nutrient solutions for cut plant culture on haploid embryo formation were also studied. Results indicated that the embryo rate of in vitro culture was 3.29 times that of intact plant growth, with the figures of 31.6% vs 9.6%, respectively. The optimal time for cut plant culture was 24 h after pollination. Formulas of nutrient solutions significantly affected the efficiency of haploid embryo induction. With an embryo rate of 0–35.5%, adding calcium phosphate in the culture solution at 3 g·L−1 could raise the caryopsis and embryo rates. According to this study, the best medium for cut plant culture was: 100 mg·L−1 2,4-D+ 40 g·L−1 sucrose + 10 mg·L−1 silver nitrate + 8 mL·L−1 sulfurous acid + 3 g·L−1 calcium phosphate, with which a caryopsis rate of 95% and an embryo rate of about 30% could be obtained. __________ Translated from Journal of Triticeae Crops, 2008, 28(1): 1–5 [译自: 麦类作物学报]  相似文献   

5.
The North China Plain (NCP) is a major grain production area in China, but the current winter wheat-summer maize system has resulted in a large water deficit. This water-shortage necessitates the improvement of crop water productivity in the NCP. A crop water model, AquaCrop, was adopted to investigate yield and water productivity (WP) for rain-fed summer maize on the piedmont of the NCP. The data sets to calibrate and validate the model were obtained from a 3-year (2011–2013) field experiment conducted on the Yanshan piedmont of the NCP. The range of root mean square error (RMSE) between the simulated and measured biomass was 0.67–1.25 t·hm−2, and that of relative error (RE) was 9.4%–15.4%, the coefficient of determination (R2) ranged from 0.992 to 0.994. The RMSE between the simulated and measured soil water storage at depth of 0–100 cm ranged from 4.09 to 4.39 mm; and RE and R2 in the range of 1.07%–1.20% and 0.880–0.997, respectively. The WP as measured by crop yield per unit evapotranspiration was 2.50–2.66 kg·m3. The simulated impact of long-term climate (i.e., 1980–2010) and groundwater depth on crop yield and WP revealed that the higher yield and WP could be obtained in dry years in areas with capillary recharge from groundwater, and much lower values elsewhere. The simulation also suggested that supplementary irrigation in areas without capillary groundwater would not result in groundwater over-tapping since the precipitation can meet the water required by both maize and ecosystem, thus a beneficial outcome for both food and ecosystem security can be assured.  相似文献   

6.
Spring barley was grown for 4 years (2001–2004) in field trials at two sites on morainic soil in central SE Norway, with five N level treatments: 0, 60, 90, 120 and 150 kg N ha-1. Regression analyses showed that a selection of soil properties could explain 95–98% of the spatial yield variation and 47–90% of the yield responses (averaged over years). A strategy with uniform fertilizer application of 120 kg N ha−1 (U N120) was compared with two variable-rate (VR) strategies, with a maximum N rate of either 150 kg N ha−1 (VRN150) or 180 kg N ha−1 (VRN180). These strategies were tested using either Norwegian prices (low price ratio of N fertilizer to yield value; PN/PY), or Swedish prices (high PN/PY). The VRN180 strategy had the highest potential yield and net revenue (yield value minus N cost) at both sites and under both price regimes. Using this strategy with Norwegian prices would increase the profit of barley cropping as long as at least 40 and 31% of the estimated potential increase in net revenue was realized, respectively. Using Swedish prices, uniform application appeared to be as good as or even better economically than the VR methods, when correcting for extra costs of VR application. The environmental effect of VR compared with uniform application, expressed as N not accounted for, showed contrasting effects when using Norwegian prices, but was clearly favourable using Swedish prices, with up to 20% reduction in the amount of N not accounted for.  相似文献   

7.
The efficient acceptors for maize transgenic engineering are currently insufficient in China. Seed production by male sterility is the best method for advancing the authenticity of maize hybrid. Maize inbred line 18–599 (white) is an antivirus high-quality maize inbred line in China, which has been used for lots of maize hybrid cultivars. The establishment of high efficiency transgenic acceptors is necessary for advancing the transgenic efficiency in maize transformation work. In this study, the efficient transgenic acceptors were optimized and established. 18–599 (white) was studied in state, types of culture mediums, times of callus regeneration and concentration of the screening reagent, Basta. The results showed that N6-4 medium was the best in 8 types of mediums for the immature embryo of 18–599 (white), 1.6 mm length was the feasible length of immature embryos for tissue culture in establishing the transgenic acceptor system, and it was within 5 times for suitable callus subculture. With the optimized transgenic acceptors, barnase gene was translated successfully into 18–599 (white) by a particle gun using bar as a marker gene. Basta was used as the screening reagent, its lethal concentration was 8 mg·L−1 and its working concentration for screening was 6, 8 and 6 mg·L−1 in 3 turns for callus regeneration, respectively. In this work, a transgenic plant with male sterility was obtained through molecule detection and observation in the field. The result has an important significance for the creation of new male sterility inbred lines in maize in the future. __________ Translated from Acta Agronomica Sinica, 2007, 33(5): 738–743 [译自: 作物学报]  相似文献   

8.
Influence of maize straw amendment on soil-borne diseases of winter wheat   总被引:2,自引:0,他引:2  
A field experiment was conducted during the 2006–2007 wheat growing season at Baoding, Hebei Province, China, aiming at exploring the influence of different amendment rates of maize straw on winter wheat soil-borne diseases induced by Rhizoctonia cereali, Gaeumannomyces graminis and Bipolaris sorokiniana in field conditions. Wheat root vitality, ion infiltration, SOD activity, MDA content and microbial population of the tillage layer were measured. The results showed that the occurrence of three soil-borne diseases tested was significantly different under different amendment rates. During the greening stage and jointing stage, the disease indexes of three soil-borne diseases were reduced significantly by treatments at the maize straw amendment rates of 7500 kg · hm−2 and 3750 kg · hm−2. However, disease indexes of wheat common rot and sharp eyespot increased dramatically when the amendment rate increased to 15000 kg · hm−2. At the amendment rate of 15000 kg · hm−2, wheat root vigor and SOD activity decreased, and ion infiltration and cell membrane-lipid peroxidation level increased, respectively. In the meantime, higher amounts of bacteria and actinomycetes were recorded in the 7500 kg · hm−2 amendment rate treatment, while a higher amount of fungi was recorded in the 15000 kg · hm−2 amendment rate treatment.  相似文献   

9.
LiDAR (Light Detection And Ranging) is a remote-sensing technique for the measurement of the distance between the sensor and a target. A LiDAR-based detection procedure was tested for characterisation of the weed vegetation present in the inter-row area of a maize field. This procedure was based on the hypothesis that weed species with different heights can be precisely detected and discriminated using non-contact ranging sensors such as LiDAR. The sensor was placed in the front of an all-terrain vehicle, scanning downwards in a vertical plane, perpendicular to the ground, in order to detect the profile of the vegetation (crop and weeds) above the ground. Measurements were taken on a maize field on 3 m wide (0.45 m2) plots at the time of post-emergence herbicide treatments. Four replications were assessed for each of the four major weed species: Sorghum halepense, Cyperus rotundus, Datura ferox and Xanthium strumarium. The sensor readings were correlated with actual, manually determined, height values (r2 = 0.88). With canonical discriminant analysis the high capabilities of the system to discriminate tall weeds (S. halepense) from shorter ones were quantified. The classification table showed 77.7% of the original grouped cases (i.e., 4800 sampling units) correctly classified for S. halepense. These results indicate that LiDAR sensors are a promising tool for weed detection and discrimination, presenting significant advantages over other types of non-contact ranging sensors such as a higher sampling resolution and its ability to scan at high sampling rates.  相似文献   

10.
Maximum benefit of a precise nitrogen application system for wheat   总被引:1,自引:0,他引:1  
Research is ongoing to develop sensor-based systems to determine crop nitrogen needs. To be economic and to achieve wide adoption, a sensor-based site-specific application system must be sufficiently efficient to overcome both the cost disadvantage of dry and liquid sources of nitrogen relative to applications before planting of anhydrous ammonia and possible losses if weather prevents applications during the growing season. The objective of this study is to determine the expected maximum benefit of a precision N application system for winter wheat that senses and applies N to the growing crop in the spring relative to a uniform system that applies N before planting. An estimate of the maximum benefit would be useful to provide researchers with an upper bound on the cost of delivering an economically viable precision technology. Sixty five site-years of data from two dryland winter wheat nitrogen fertility experiments at experimental stations in the Southern Plains of the U.S.A. were used to estimate the expected returns from both a conventional uniform rate anhydrous ammonia (NH3) application system before planting and a precise topdressing system to determine the value of the latter. For prices of $0.55 and $0.33 kg−1 N for urea-ammonium nitrate (UAN) and NH3, respectively, the maximum net value of a system of precise sensor-based nitrogen application for winter wheat was about $22–$31 ha−1 depending upon location and assumptions regarding the existence of a plateau. However, for prices of $1.10 and $0.66 kg−1 N for UAN and NH3, respectively, the value was approximately $33 ha−1. The benefit of precise N application is sensitive to both the absolute and relative prices of UAN and NH3.This is journal paper AEJ-260 of the Oklahoma Agricultural Experiment Station, project H-2574.  相似文献   

11.
One of the most important tasks in precision farming is the site-specific application of fertilisers and pesticides in heterogeneous large-area fields. For such site-specific crop management, effective remote sensing methods for the detection of crop diseases and nutrient deficiencies are required. The aim of the present work was to compare laser-induced fluorescence (LIF) parameters from nitrogen-deficient and pathogen (rust and mildew)-infected winter wheat (Triticum aestivum L.) plants and to assess the potential of LIF to detect and discriminate between these types of stress. Both long term nitrogen deficiency and pathogen infection resulted in an increase of the ratio of fluorescence at 686 and 740 nm (F686/F740) accompanied by a reduction of leaf chlorophyll content to approximately 35 μg cm−2. A linear negative correlation between chlorophyll content and F686/F740 ratio (r= 0.78) was found for leaves with chlorophyll content ranging between 17 and 52 μg cm−2. Since chlorophyll breakdown appeared an unspecific symptom to both nitrogen deficiency and pathogen infection, it was not possible to discriminate between these types of stress only by means of the F686/F740 ratio. Specific for the pathogen-infected leaves was a large heterogeneity in the records of their spectral parameters caused by inhomogeneous, discrete lesions of fungi infection. Nitrogen-deficient plants with homogeneous reduction in chlorophyll content showed, in contrast, more uniform readings of the spectral parameters. Thus, mildew- and rust-infected plants, grown under sufficient nitrogen fertilisation could be distinguished from those grown under reduced nitrogen supply by the higher variance of their spectral readings. The simultaneous scanning multipoint mode measurements of LIF and laser light reflection characteristics with parallel estimation of their heterogeneity is proposed for the discrimination between nitrogen deficiency and pathogen infection under field conditions.  相似文献   

12.
Lack of automatic weed detection tools has hampered the adoption of site-specific weed control in cereals. An initial object-oriented algorithm for the automatic detection of broad-leaved weeds in cereals developed by SINTEF ICT (Oslo, Norway) was evaluated. The algorithm (“WeedFinder”) estimates total density and cover of broad-leaved weed seedlings in cereal fields from near-ground red–green–blue images. The ability of “WeedFinder” to predict ‘spray’/‘no spray’ decisions according to a previously suggested spray decision model for spring cereals was tested with images from two wheat fields sown with the normal row spacing of the region, 0.125 m. Applying the decision model as a simple look-up table, “WeedFinder” gave correct spray decisions in 65–85% of the test images. With discriminant analysis, corresponding mean rates were 84–90%. Future versions of “WeedFinder” must be more accurate and accommodate weed species recognition.  相似文献   

13.
Understanding spatial variability of indigenous nitrogen (N) supply (INS) is important to the implementation of precision N management (PNM) strategies in small scale agricultural fields of the North China Plain (NCP). This study was conducted to determine: (1) field-to-field and within-field variability in INS; (2) the potential savings in N fertilizers using PNM technologies; and (3) winter wheat (Triticum aestivum L.) N status variability at the Feekes 6 stage and the potential of using a chlorophyll meter (CM) and a GreenSeeker active crop canopy sensor for estimating in-season N requirements. Seven farmer’s fields in Quzhou County of Hebei Province were selected for this study, but no fertilizers were applied to these fields. The results indicated that INS varied significantly both within individual fields and across different fields, ranging from 33.4 to 268.4 kg ha−1, with an average of 142.6 kg ha−1 and a CV of 34%. The spatial dependence of INS, however, was not strong. Site-specific optimum N rates varied from 0 to 355 kg ha−1 across the seven fields, with an average of 173 kg ha−1 and a CV of 46%. Field-specific N management could save an average of 128 kg N ha−1 compared to typical farmer practices. Both CM and GreenSeeker sensor readings were significantly related to crop N status and demand across different farmer’s fields, showing a good potential for in-season site-specific N management in small scale farming systems. More studies are needed to further evaluate these sensing technology-based PNM strategies in additional farmer fields in the NCP.  相似文献   

14.
Site-specific weed management can include both limiting herbicide application to areas of the field where weed pressure is above the economic threshold (patch spraying) and varying the choice of herbicide for most cost-effective weed control of local populations. The benefits of patch spraying with several, postemergence herbicides in irrigated corn were evaluated in simulation studies using weed counts from 16 fields. Patch spraying with one, two or the number of herbicides that maximized net return for a field was simulated. With patch spraying of one herbicide, the average area of a field left untreated is 34.5%. Net return increases by $3.09 ha−1 compared to a uniform application without decreasing crop yield. Additional herbicides increase the average benefits with just 4% more of the field treated. With two herbicides, the increase in net return is almost tripled and herbicide use is reduced nearly 10-fold compared to patch spraying with one herbicide, and weed control is better than the uniform application in 10 fields. Using more than two herbicides for patch spraying further reduces weed escapes, but herbicide use is greater than a uniform application in 10 fields. Growers might be more willing to adopt patch spraying if more than one herbicide is used in a field.  相似文献   

15.
To counter the actual problems of forage shortage and low quality existing in the agriculture-animal husbandry ecotone in North China, a research was conducted to study the effects of plastic-film mulching and nitrogen application on the production of forageoriented maize with the aim of producing water-saving forage with high-yield and good quality. Field experiments combined with laboratory experimental estimation and analysis was adopted. Plastic-film mulching increased the dry biomass of forage-oriented maize by 23.8% with effectively improving the maize’s nitrogen absorption so that the apparent utilization ratio and output-input ratio of nitrogen were enhanced. The content of crude protein in maize plant was increased and thus, forage nutritive quality was improved. Plastic-film mulching remodeled the maize field water consumption scheduling pattern and increased the water use efficiency by over 10%. Nitrogen application to forage-oriented maize co-improved the biomass and the nutritive quality with the nutritive matter (percentage and yield) several times of the biomass. Nitrogen application increased maize biomass production by 36.1%–39.5% and it increased the contents of crude protein and crude fat in maize plant by 109% and 145%, respectively. The yields of the two nutritive matters increased by 160% and 210%. Nitrogen application at the rate of about 200 kg·hm−2 to the uncovered field and the rate less than 300 kg·hm−2 to the field with film mulching were considered as the most proper rates to guarantee high yield and good quality of forage-oriented maize and were the rates to keep the available nitrogen balanced in the soil. Plastic-film mulching and nitrogen fertilizer application to forage-oriented maize was an effective way of producing forage with high yield and good quality, relieving the shortage of animal forage and accelerating ecological recovery and economic development in this ecotone in North China. __________ Translated from Scientia Agricultura Sinica, 2006, 40(6): 1206–1213 [译自: 中国农业科学]  相似文献   

16.
In sugar beet, maize and soybean, weeds are usually controlled by herbicides uniformly applied across the whole field. Due to restrictions in herbicide use and negative side effects, mechanical weeding plays a major role in integrated weed management (IWM). In 2015 and 2016, eight field experiments were conducted to test the efficacy of an OEM Claas 3-D stereo camera® in combination with an Einböck Row-Guard® hoe for controlling weeds. Ducks-foot blades in the inter-row were combined with four different mechanical intra-row weeding elements in sugar beet, maize and soybean and a band sprayer in sugar beet. Average weed densities in the untreated control plots were from 12 to 153 plants m?2 with Chenopodium album, Polygonum convolvulus, Thlapsi arvense being the most abundant weed species. Camera steered hoeing resulted in 78% weed control efficacy compared to 65% using machine hoeing with manual guidance. Mechanical intra-row elements controlled up to 79% of the weeds in the crop rows. Those elements did not cause significant crop damage except for the treatment with a rotary harrow in maize in 2016. Weed control efficacy was highest in the herbicide treatments with almost 100% followed by herbicide band-applications combined with inter-row hoeing. Mechanical weed control treatments increased white sugar yield by 39%, maize biomass yield by 43% and soybean grain yield by 58% compared to the untreated control in both years. However, yield increase was again higher with chemical weed control. In conclusion, camera guided weed hoeing has improved efficacy and selectivity of mechanical weed control in sugar beet, maize and soybean.  相似文献   

17.
The objectives of this study were to evaluate the performance of the cropping system model (CSM)-CERES-Rice to simulate growth and development of an aromatic rice variety under irrigated conditions in a semiarid environment of Pakistan and to determine the impact of various plant densities and nitrogen (N) application rates on grain yield and economic return. The crop simulation model was evaluated with experimental data collected in experiments that were conducted in 2000 and 2001 in Faisalabad, Punjab, Pakistan. The experimental design was a randomized complete block design with three replications and included three plant densities (one seedling hill−1, PD1; two seedlings hill−1, PD2; and three seedlings hill−1, PD3) and five N fertilizer regimes (control, N0; 50 kg ha−1, N50; 100 kg ha−1, N100; 150 kg ha−1, N150; and 200 kg ha−1, N200). To determine the most appropriate combination of plant density and N levels, four plant densities from one seedling hill−1 to four seedlings hill−1 and 13 N levels ranging from 0 to 300 kg N ha−1 (52 scenarios) were simulated for 35 years of historical daily weather data under irrigated conditions. The evaluation of CSM-CERES-Rice showed that the model was able to simulate growth and yield of irrigated rice in the semiarid conditions, with an average error of 11% between simulated and observed grain yield. The results of the stimulation analysis result showed that two seedlings hill−1 along with 200 kg N ha−1 (PD2N200) produced the highest yield as compared to all other scenarios. Furthermore, the economic analysis through the mean gini dominance also showed the dominance of this treatment (PD2N200) compared to the other treatment combinations. Thus, the management scenario that consisted of two seedlings hill−1 and 200 kg N ha−1 was the best for high yield and monitory return of irrigated rice in the semiarid environment. The mean monetary returns ranged from 291 US $ ha−1 to 1 460 US $ ha−1 to 1 460 US  ha−1 among the 52 production options that were simulated. This approaching was demonstrated as effective way to optimize the density and N management for high yield and monetary return. It will help the rice production.  相似文献   

18.
The development of precision farming needs methods for automatic identification of individual plant species. We have earlier shown that chlorophyll fluorescence induction curves can be reliably used for automatical identification of plants (Tyystjärvi et al., 1999). In the present study we show that a high accuracy of recognition can be obtained even if the teaching set for pattern recognition is collected several weeks before identifying a test batch of plants. It is also shown that very simple fluorescence traces can be used for the identification, and that dark pre-incubation of the plants can be shortened to a few seconds without seriously compromising the power of the method. The method is even more powerful if the aim is only to distinguish one crop species from weeds. The data shown here suggest that the fluorescence fingerprint can be developed to a method of practical importance for precision farming.  相似文献   

19.
Spatial and temporal variability of soil nitrogen (N) supply together with temporal variability of plant N demand make conventional N management difficult. This study was conducted to determine the impact of residual soil nitrate-N (NO3-N) on ground-based remote sensing management of in-season N fertilizer applications for commercial center-pivot irrigated corn (Zea mays L.) in northeast Colorado. Wedge-shaped areas were established to facilitate fertigation with the center pivot in two areas of the field that had significantly different amounts of residual soil NO3-N in the soil profile. One in-season fertigation (48 kg N ha−1) was required in the Bijou loamy sand soil with high residual NO3-N versus three in-season fertigations totaling 102 kg N ha−1 in the Valentine fine sand soil with low residual NO3-N. The farmer applied five fertigations to the field between the wedges for a total in-season N application of 214 kg N ha−1. Nitrogen input was reduced by 78% and 52%, respectively, in these two areas compared to the farmer’s traditional practice without any reductions in corn yield. The ground-based remote sensing management of in-season applied N increased N use efficiency and significantly reduced residual soil NO3-N (0–1.5 m depth) in the loamy sand soil area. Applying fertilizer N as needed by the crop and where needed in a field may reduce N inputs compared to traditional farmer accepted practices and improve in-season N management.  相似文献   

20.
A study was conducted to evaluate the accuracy of different weed sampling scales to accurately describe populations in soybean. Three soybean fields were sampled at 8 and 6 weeks after planting in 1998 and 1999, respectively. All weed species were counted on a 10 m grid, using a 0.58-m2 quadrat. Data were eliminated from the original 10 m grid sample of weeds for each field to develop 40 m, 60 m, and 80 m independent data sets. Distribution and population maps were interpolated using an inverse distance weighted method. Data were extracted from the interpolated maps at known coordinates so that the observed population and the predicted population could be compared. The 10 m grid served as a standard to which all others were compared. No differences in population accuracies between each scale were detected when results were compared on a per weed basis, except when weed populations were very high, generally exceeding 400 plants ha–1. When the weed density was not at an extreme, the results from these data indicate the ability to describe or account for the weed population fairly accurately, when using coarser grid sizes. These results also suggest that when using a regular grid coordinate system as the sampling structure, an increase from a 10 m scale to an 80 m scale will not cause a significant loss of information when weed populations were not extreme and will provide the necessary information for making suitable weed treatment decisions. However, some small weed patches were not detected with the coarser sampling scales, and the larger sampling scales would not meet their needs if the producers objective is complete control of a species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号