首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plant Production Science》2013,16(4):419-426
Abstract

Soybean requires more nitrogen (N) than gramineous crops because it accumulates a large amount of N in seeds, and its photosynthetic rate per leaf N is low. The supernodulating genotype Sakukei 4 has a superior symbiotic N2 fixation capability, and thereby is potentially high-yielding. In our previous study, Sakukei 4 was characterized by having a superior ability to maintain high leaf N content and high photosynthetic rate. The objectives of this study were to know photosynthetic characteristics of Sakukei 4 in detail, especially, the responses to CO2 concentration and light intensity, and to elucidate how the photosynthetic characteristics of Sakukei 4 are associated with the amounts of photosynthesis-related N compounds (chlorophyll and Rubisco). The three genotypes (Sakukei 4 - supernodulating cultivar derived from Enrei, Enrei - normally nodulating cultivar, En1282-non-nodulating line derived from Enrei) were grown at various N levels in this study. The CO2 exchange rate (CER) in Sakukei 4 was higher than, or equal to that in Enrei at wide ranges of CO2 concentrations (150-700 μmol mol-1) and light intensities (200-1,500 μmol m-2 s-1 PPFD). Sakukei 4 had higher leaf N (Nl), chlorophyll (ChlL) and Rubisco (RubL) contents per leaf area, but lower chlorophyll and Rubisco contents per leaf N content (ChlL/Nl, RubL/Nl) than Enrei. The specific leaf weight (SLW) and leaf area trended to be lower in Sakukei 4 than in Enrei. These results indicate that the superior photosynthetic rate in Sakukei 4 is attributed to higher total N, chlorophyll and Rubisco contents per leaf area, but not to high rate of allocation of total N to these N compounds.  相似文献   

2.
不同基因型小麦产量和氮利用效率的差异及其相互关系   总被引:4,自引:0,他引:4  
为给氮高效利用小麦品种的选育提供科学依据,通过土培盆栽试验,以河南省大面积种植的20个小麦品种为材料,比较分析了不施氮(N0)、施纯氮180 kg·hm-2 (N180)、360 kg·hm-2 (N360)三种施氮水平下不同基因型小麦产量、氮素积累量、氮利用效率和氮响应度的差异及其相互关系.结果表明,在同一施氮水平下,不同基因型间、相同基因型不同施氮水平间小麦产量、氮积累总量、氮利用效率和氮响应度存在显著差异.与N0相比,施氮处理的籽粒产量、生物学产量、籽粒氮素积累量、氮素积累总量均显著提高,大多数品种的收获指数表现为施氮处理大于不施氮处理,但多数小麦品种的氮素收获指数却随施氮水平增加而降低.相关分析表明,籽粒产量与氮素积累量呈极显著正相关(rN0=0.944**,rN180=0.919**,rNs60=0.981**),氮利用效率与氮素积累量之间亦呈极显著正相关(rN0=0.944*,rN180 =0.919*,rN360=0.982*).以氮利用效率和氮响应度为指标进行系统聚类分析,将供试基因型划分为高效弱响应、高效强响应、低效弱响应和低效强响应4种类型.由此说明,在现代高产小麦的育种过程中,高肥育种兼顾低肥水平下的表现,在一定范围内可同时对小麦氮高效利用和氮强响应型进行遗传选择.  相似文献   

3.
Drought stress which often occurs during early growth stage is one constraint in sugarcane production. In this study, the response of sugarcane to drought and nitrogen application for physiological and agronomical characteristics was investigated. Two water regimes (well-watered and drought stress from 60 to 120 day after transplanting) and four nitrogen levels (0, 4.4, 8.8 and 13.2 g pot?1 equivalent to 0, 90, 180 and 270 kg ha?1, respectively) were assigned in a Split-plot design with three replications. The results showed that photosynthetic responses to light intensity and intercellular CO2 concentrations of sugarcane were different between fertilized and non-fertilized treatments. Photosynthetic rates of 180 and 270 N treatments, normally, were significantly higher than that of 90 N, but not significant at drought conditions. Photosynthetic rates of 0 N treatment were the lowest under both conditions. Higher nitrogen application supported higher photosynthetic rate, stomatal conductance, and chlorophyll content because of higher nitrogen concentration accumulated into the leaf. Drought significantly reduced the potential photosynthetic rate, stomatal conductance, SPAD, leaf area, and biomass production. Higher nitrogen applications with larger root system could support higher photosynthetic activities to accumulate more dry mass. Strong positive coefficient between photosynthetic and biomass nitrogen use efficiency and drought tolerance index may suggest that higher nitrogen use efficiency could help plants have higher ability to tolerate drought stress.  相似文献   

4.
A simple multiplicative model using temperature, foliage nitrogen (N) concentration and water status was developed to predict the maximum photosynthetic rate (Pmax) of field‐grown cocksfoot (Dactylis glomerata L.) leaves when none, one, two or all the factors were limiting. The highest Pmax was 27·4 μmol CO2 m–2 s?1 in non‐limited conditions, which was defined as the standardized Pmax value dimensionless (Pmaxs=1). Pmaxs increased 0·058 units per °C from 10°C to the optimum range (19–23°C) (Pmaxs=1) and then declined 0·077 units of Pmaxs per °C from 23 to 31°C. Pmaxs=1 was also measured from 59 to 52 g N kg?1 dry matter (DM) foliage N. Pmaxs then decreased at the rate of 0·115 units per 10 g N kg?1 DM from 52 to 26 g N kg?1 DM, and 0·409 units of Pmaxs per 10 g N kg?1 DM from 26 to 15 g N kg?1 DM. For predawn leaf water potential (ψlp), Pmaxs=1 was measured from ?0·1 to ?1·2 bar but declined linearly at a rate of 0·078 units per bar of ψlp from ?1·2 to ?14·0 bar because of a linear decrease in stomatal conductance. An interaction between low N content (≤20 g N kg?1 DM) and high temperature (>23°C) was also detected. Together, this multiplicative model accounted for 0·82 of the variation in Pmaxs.  相似文献   

5.
To facilitate the maintenance and restoration of semi‐natural grasslands, it is important to understand their relationships with soil properties. Semi‐natural grasslands typically have a high incidence of stress‐tolerant species (measured here by high stress radius values), but not all have high species richness. Species richness and stress radius values were related to soil pH, Olsen extractable phosphorus (P), extractable potassium (K) and magnesium (Mg), total nitrogen (N) and organic matter (OM) at 571 sites representing a wide range oftemperate grasslands. Highest species richness (>30 m?2) occurred at pH > 6 and 4–15 mg l?1 P, but species richness was also highly variable at 4–15 mg l?1 P. At pH < 5, species richness was low (<20 m?2). Stress radius values were highest (mainly calcareous and heath grasslands and mires) at pH c. 8·0 and < 5·0, and at the lowest soil P levels (<5 mg l?1). A wide range of stress radius values occurred at low soil P levels because appropriate management is also needed to maintain semi‐natural grasslands. Reducing soil P is difficult in practice, so grassland restoration in the presence of elevated soil‐extractable P levels merits re‐assessment.  相似文献   

6.
Commercial micropropagation of plants is enhanced with the use of liquid media cultures; however the presence of hyperhydricity is commonly observed in cultures of the succulent plant Agave tequilana Weber cultivar azul, this phenomenon persists even with the use of temporary immersion systems (TIS). Thin cell suspension layer technology is proposed to solve this problem. This technology fuses the advantages of a liquid culture made through cellular dissociation, and the use of solid medium for somatic embryogenesis expression of the species. The technology was evaluated by means of two experiments in order to know the influence of gelling agent phytagel®, and of sucrose concentrations through interaction with three cellular suspension densities. It was clear that concentrations of phytagel at 6, 8, 10 or 12 g l?1 are not significant for embryoid expression of A. tequilana. On the other hand, sucrose at 30 and 60 g l?1 have statistically superior values than concentration of 120 g l?1. A larger cellular density (161 × 103 cells ml?1) gave a statistical difference in number of embryoids. The advantages of thin cell suspension layer were remarkable: it encouraged complete expression of embryoids without transfer to extra media cultures, and a higher number of generated embryoid was obtained. Absence of hyperhydricity was observed in all regenerants.  相似文献   

7.
A highly efficient regeneration protocol for oilseed crop Crambe abyssinica has been developed using hypocotyls as explants in this study. Crambe is a potential engineering oilseed crop for industrial purposes as it contains 55-60% erucic acid in its oil and, more importantly, it does not outcross with any food oil seed crops. However, the low regeneration frequency with the currently available protocols is still a limiting factor for genetic modification of Crambe. In this study, we investigated the effects of N-source, C-source, AgNO3, cultural conditions as well as the concentration and combination of plant growth regulators (PGR) on the regeneration frequency of C. abyssinica. The results showed that all these factors, especially the N-source and PGR concentrations and combinations, played an important role in shoot regeneration. Among all the factors tested, the combination of using hypocotyls from C. abyssinica cv. galactica, the Lepiovre basal medium supplemented with 16 g l−1 glucose, 0.5 g l−1 AgNO3, 2.2 mg l−1 thidiazuron (TDZ), 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 2.5 g l−1 Gelrite, seeds germinated in dark for 3 days and explants cultured in light, gave the best regeneration frequency (over 95%). The results also suggest that reducing the content of NH4+ or keeping a suitable NO3/NH4+ ratio in the regeneration medium would be crucial to Crambe shoot regeneration.  相似文献   

8.
In vitro clonal propagation of Clitoria ternatea has been achieved by employing decapitated embryonic axes (DEAs) explants. The explants induced multiple shoots on cytokinin-containing medium. Several cytokinins [6-benzylaminopurine (BAP), 6-furfuryl aminopurine (KIN) and thidiazuron (TDZ)] were assayed. The best response was achieved with 2 mg l−1 BAP in which 100% of cultures produced 6.0 ± 0.14 shoots per explant. MS + 1 mg l−1 gibberellic acid (GA3) was the most suitable for shoot elongation. Regenerated shoots were rooted in half-strength Murashige and Skoog (MS) medium with 0.2 mg l−1 indole-3-butyric acid (IBA). Plantlets were successfully acclimatized and established in soil, and they were morphologically indistinguishable from the source plant. The plantlets attained maturity and flowered normally. The efficient regeneration protocol reported here provides an important method of micropropagation of this plant. Furthermore, this protocol may be used for genetic transformation of this valuable medicinal plant for its further improvement.  相似文献   

9.
《Field Crops Research》2005,92(1):61-74
One of the main sources of considerable amounts of chloride to soils is irrigation water. The responses of tobacco (Nicotiana tabacum L.) to chloride are varied and inconsistent depending on the tobacco type, variety and methods of fertilization, cultivation and harvesting used. In this work, the impact of the interaction between four chloride levels (10, 20, 40, 80 mg L−1) in irrigation water and three nitrogen fertilizer forms (NO3–N 100%, NH4–N 100% and NO3–N 50%:NH4–N 50%) on growth, agronomic and chemical characteristics of Virginia tobacco was evaluated over 2 years (1999, 2000) in an outdoor pot experiment. The results showed that the adverse influence of chloride in irrigation water on plant height and number of leaves per plant was already substantial above 40 mg L−1, within 30 days after transplanting. In this period, visual toxicity symptoms of chloride appeared on the lower leaves of plants treated with ammonium nitrogen. In addition, the effect of chloride on flowering time, chlorophyll content of leaves, aboveground fresh weight of plant, total cured product yield and chemical characteristics, depended on the form of nitrogen, with nitrate nitrogen restricting the detrimental effects of chloride in irrigation water up to 40 mg L−1. The reduced yield of cured product at 80 mg L−1 was the result of the adverse effects of chloride on the leaves of the middle and upper stalk position. Leaf chloride concentration was highest in the upper leaves and increased linearly with the increase of chloride level in irrigation water at each leaf position on the stalk and this increase was more rapid as ammonium nitrogen percentage was increased. Chloride increased the concentration of reducing sugars in cured leaves at each leaf position, in all nitrogen forms and nicotine mainly in plants treated with nitrate nitrogen. The changes in total nitrogen and ash content are considered as minimal. We conclude that the optimum chloride level in irrigation water is below 20 mg L−1, whereas the level of 40 mg L−1 in combination with nitrate nitrogen fertilizers can be considered as the upper threshold to avoid adverse effects on Virginia tobacco.  相似文献   

10.
J. Vos  M. Bom 《Potato Research》1993,36(4):301-308
Summary A field experiment with potato (Solanum tuberosum L., cv. Vebeca) was conducted on a sandy soil near Wageningen (52° North) in 1992. The treatments included a zero-nitrogen control and combinations of three amounts of nitrogen, viz. 110, 180 and 250 kg N ha−1, and splitting of the N dose in one (early May), two (early May and June) or three (early May, June, July) applications. The chlorophyll content of the uppermost fully grown leaves was assessed with a SPAD-502 chlorophyll meter (Minolta, Osaka, Japan) throughout the season. The pattern of change with time in SPAd-values differed between treatments. SPAD-502 readings correlated well with laboratory measurements of the chlorophyll content and with the nitrogen concentration in leaves (r 2>0.95). Data on the nitrate concentration in petiole sap (included as a reference) showed that this variable responded much more to split nitrogen applications than the SPAD-value. Future research will need to consider other factors which may affect the chlorophyll content of the foliage.  相似文献   

11.
Potato is grown worldwide, in some cases in very acid soils. Aluminum (Al) is a major limiting factor for crop productivity in acid soils. Al toxicity was studied mainly on plant roots, while less attention was given to its effects on leaves. Al tolerance observed in solution cultures has rarely been correlated with Al tolerance in acid soils. Al tolerance was assessed in 12 potato cultivars grown in nutrient solutions containing 0, 25, and 50 μmol Al L?1 by its relative root elongation (RRE). The effect of acid soil with high level of exchangeable Al on leaf mineral content, chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, water use efficiency (WUE), and light use efficiency (LUE) was studied on cultivars, with the greatest differences in RRE (cv. Tresor, 63.1 and 42.5% and cv. Canberra, 23.3 and 19.2%, for the 25 and 50 μmol Al L?1 treatments, respectively), grown for 49 days after planting (DAP) in acid and limed soil. Growth in acid soil significantly reduced concentrations of nitrogen (?18.51%) and magnesium (?27.17%) in the leaves in cv. Canberra and concentrations of potassium and copper in both cultivars. Canberra grown in acid soil showed a significant decrease in chlorophyll content and photosynthetic rate, from 28 to 49 DAP, and in transpiration rate and LUE when averaged across all measurements, while cv. Tresor was not affected. Physiological disorders observed on leaves of plants grown in acid soil can be correlated with the differences in Al tolerance observed in nutrient solutions.  相似文献   

12.
为给"小麦-玉米"轮作体系下不同土壤肥力麦田的小麦施氮量提供参考,选择开封八里湾(土壤肥力水平高)、郑州(土壤肥力水平中等)和开封水稻乡(土壤肥力水平低)为试验地点,3个试验地点均设置4个施氮水平(即小麦季0、180、240和300 kg·hm~(-2);玉米季0、225、300和375kg·hm~(-2)),研究不同施氮量对小麦光合特性及产量的影响。结果表明,施氮处理增加了冬小麦的光合速率、叶绿素含量、全氮含量和Rubisco活性,与不施氮处理相比,分别增加22.4%~183.3%、37.9%~306.2%、49.6%~359.3%和27.4%~59.5%;不同肥力试点施氮后,产量增加幅度不同,与N0施氮水平相比,高肥力试点各施氮水平处理增产幅度为10.8%~54.9%,中肥力试点为125.3%~165.8%,低肥力试点为63.3%~288.2%;在定位试验进行3年后,高、中、低肥力试点在4个施氮处理下的平均产量分别提高36.1%(2014-2015年度)、136.4%(2014-2015年度)和288.2%(2016-2017年度),表明施氮增产效应与土壤肥力密切相关,高肥力麦田土壤基础肥力高,土壤贡献产量大,对氮肥依赖性低,施氮增产效果不明显。从产量构成因素看,产量由低产到中高产水平主要依靠穗数增加,由中高产到高产水平主要依靠穗粒数增加。因此,为充分发挥氮肥的增产效应,在低肥力麦田,应少量多次施氮;在中肥力麦田,应提倡稳氮,以促穗数为主,施氮量为240kg·hm~(-2);在高肥力麦田,应注意控氮,以增粒为主,施氮量为180 kg·hm~(-2)。  相似文献   

13.
Application time of nitrogen (N) fertilizer can significantly influence the yield and quality of potato tubers. The objective of this experiment was to assess the effects of N application time on dry matter accumulation in foliage and tubers, as well as on marketable tuber ratio, dry matter concentration, and specific gravity of the Chinese cultivar KX 13. The four treatments were as follows: all the 150 kg?N?ha?1 applied at planting (T1); 100 kg N ha?1 applied at planting and 50 kg N ha?1 applied 1 week before tuber initiation (20 days after emergence, DAE) (T2); 100 kg N ha?1 applied at planting and 50 kg N ha?1 applied 1 week before tuber bulking stage (35 DAE) (T3); and 100 kg?N?ha?1 applied at emergence and 50 kg N ha?1 applied 1 week before tuber bulking stage (35 DAE) (T4). For all treatments, 90 kg P2O5 ha?1 ((NH4)2HPO4) and 150 kg K2O ha?1 (K2SO4) were applied at planting. Thirty tons per hectare of marketable tuber yield was achieved with T3, while 23 t ha?1 marketable yield was achieved by applying all 150 kg N ha?1 at planting (T1). Relative to treatment T1, T3 also significantly increased harvest index (HI) from 0.76 to 0.86 and marketable tuber ratio from 64.8% to 79.2%. Applying N at planting in conjunction with dressing at 20 DAE (T2) gave a high marketable tuber ratio (74%) and HI (0.86), but the lower total tuber yield led to a lower marketable tuber yield. Without N application at planting (T4), N dressing did not increase the yield and HI. Treatments with N dressing had no significant effect on specific gravity or dry matter concentration of tubers.  相似文献   

14.
A field experiment was conducted over a 4‐year period to determine NO3 leaching losses from grassland on a freely draining sandy soil. The experiment consisted of all combinations of five defoliation systems; cutting‐only (CO), rotational grazing (GO), mixed systems with one (MSI) or two silage cuts (MSII) plus subsequent rotational grazing, and simulated grazing (SG), four mineral nitrogen (N) application rates (0, 100, 200, and 300 kg N ha?1 year?1), and two slurry levels (0 and 20 m3 slurry ha?1 year?1). Due to the high N return by grazing animals, leaching losses in the rotational grazing systems generally were associated with NO3‐N concentrations which exceeded the EU limit for drinking water. NO3 leaching losses in a rotational grazing system could be reduced by lowering the N fertilizer intensity and the inclusion of one or two silage cuts in spring. However, even in the unfertilized mixed systems, N fixation by white clover exceeded the amounts of N removed via animal products, which resulted in NO3‐N concentrations well above the EU limit for drinking water. In terms of leaching losses, the cutting‐only system was the most advantageous treatment. NO3 leaching losses on grassland could be predicted by the amount of soil mineral N at the end of the growing season and by the N surplus calculated from N balances at the field scale. From the results obtained a revised nitrogen fertilization policy and a reduced grazing intensity by integrating silage cuts are suggested.  相似文献   

15.
Summary Boron (B) requirements differ widely among plant species and the concentration range between toxicity and deficiency is less for B than for any other nutrient. Excess B can adversely affect calcium (Ca) uptake and plant growth. Potato cvs Bintje and Norland plantlets were micropropagated on Murashige & Skoog (MS) nutrient medium, supplemented with 3 (MS control level) or 9 mM Ca, and a range of H3BO3 levels (0.025 to 0.300 mM B). Medium B levels of 0.100 and 0.300 mM decreased Ca content in leaves and shoots of cv. Norland, but not Bintje. Medium B level of 0.025 mM, which is 25% of the control MS level, enhanced Ca uptake in cv. Norland and did not compromise normal plantlet growth in either cultivar. This lower H3BO3 level (0.025 mM B), and a B-free gelling agent such as Gelrite, could be used for micropropagation of potato and possibly other species susceptible to Ca defifiency disorders.  相似文献   

16.
There is a growing concern about health hazards linked to nitrate (NO3) toxicity in groundwater due to overuse of nitrogen fertilizers in rice production systems of northern Iran. Simple-cost-effective methods for quick and reliable prediction of NO3 contamination in groundwater of such agricultural systems can ensure sustainable rural development. Using 10-year time series data, the capability of adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM) models as well as six geostatistical models was assessed for predicting NO3 concentration in groundwater and its noncarcinogenic health risk. The dataset comprised 9360 water samples representing 26 different wells monitored for 10 years. The best predictions were found by SVM models which decreased prediction errors by 42–73 % compared with other models. However, using well locations and sampling date as input parameters led to the best performance of SVM model for predicting NO3 with RMSE = 4.75–8.19 mg l?1 and MBE = 3.3–5.2 mg l?1. ANFIS models ranked next with RMSE = 8.19–25.1 mg l?1 and MBE = 5.2–13.2 mg l?1 while geostatistical models led to the worst results. The created raster maps with SVM models showed that NO3 concentration in 38–97 % of the study area usually exceeded the human-affected limit of 13 mg l?1 during different seasons. Generally, risk probability went beyond 90 % except for winter when groundwater quality was safe from nitrate viewpoint. Noncarcinogenic risk exceeded the unity in about 1.13 and 6.82 % of the study area in spring and summer, respectively, indicating that long-term use of groundwater poses a significant health risk to local resident. Based on the results, SVM models were suitable tools to identify nitrate-polluted regions in the study area. Also, paddy fields were the principal source of nitrate contamination of groundwater mainly due to unmanaged agricultural activities emphasizing the importance of proper management of paddy fields since a considerable land in the world is devoted to rice cultivation.  相似文献   

17.
为了解小麦叶片衰老与缺氮诱导及碳氮平衡之间的关系,以两个缺氮衰老响应敏感品种(周麦24和运旱618)和两个缺氮衰老响应不敏感小麦品种(衡观35和西农979)为材料,分析了小麦苗期低氮诱导下表征叶片衰老的叶绿素含量、F_v/F_m、净光合速率,以及表征碳氮平衡的全氮和非结构性碳水化合物(可溶性糖、淀粉)比值。结果表明,低氮胁迫后,4个小麦品种叶片的净光合速率、叶绿素含量和F_v/F_m显著降低,说明低氮诱导和加速了小麦叶片的衰老,而缺氮衰老响应敏感品种的衰老程度显著高于不敏感品种。缺氮衰老响应敏感和不敏感小麦品种叶片氮含量在低氮胁迫后均显著降低,同时碳累积量(可溶性糖和淀粉含量)均显著升高。进一步分析表明,缺氮诱导的小麦叶片衰老可能并非受独立的氮缺乏和碳累积调控,而可能与碳氮平衡(碳氮比例)有关,即碳氮平衡可能参与了低氮诱导的叶片衰老调控,而缺氮下耐衰老品种的叶片维持碳氮代谢平衡的能力较强。  相似文献   

18.
Summary The effect of inorganic nitrogen nutrition on the induction and development of microtubers by cytokinin-induced tuberization was studied in four potato genotypes belonging to different maturity groups. The objective of this study was to investigate whether a reduction in total nitrogen level in the Murashige & Skoog medium would improve cytokinin-induced tuberization rate. The effect of three levels of total nitrogen (15, 30 and 45 meq) on tuberization was studied at constant (20 meq K) and varying potassium levels approximating to 5, 10 and 15 meq. Reducing the total nitrogen supply increased the number but decreased the size of nitrogen level on the rate of assimilate partitioning (harvest index) during cytokinin-induced microtuberization.  相似文献   

19.
The effectiveness of forages to prevent post‐calving hypocalcaemia, when used as a feed source for non‐lactating dairy cows, can be predicted by the dietary cation–anion difference (DCAD). Three to four weeks before calving, the ration of non‐lactating dairy cows should have a DCAD around ?50 mmolc kg?1 DM. In an experiment, swards, based on Timothy (Phleum pratense L.), were used to (i) evaluate the impact of two types (CaCl2 and NH4Cl) and four application rates of chloride fertilizer per season (0, 80, 160 and 240 kg Cl ha?1) in combination with two N application rates (70 and 140 kg N ha?1) on mineral concentrations and DCAD in the herbage, and (ii) determine the economically optimal rate of chloride fertilizer (Clop) for DCAD in herbage. Chloride and N fertilizers were applied in the spring and, after the first harvest in 2003 and 2004 at four locations that differed in K content of their soils. Two harvests were taken during each year. Averaged across N‐fertilizer application rates, harvests and locations, the highest rate of chloride fertilizer increased chloride concentration in herbage by 8·5 g kg?1 dry matter (DM) and decreased DCAD in herbage by 190 mmolc kg?1 DM to values as low as ?9 mmolc kg?1 DM. Both types of chloride fertilizer had the same effect on chloride concentration and DCAD in herbage and had no effect on DM yield. When no chloride fertilizer was applied on soils with a high content of available K, application of N fertilizer increased DCAD in herbage by 47 mmolc kg?1 DM at both harvests. Herbage DCAD was lower in summer than in spring by 47–121 mmolc kg?1 DM depending on the location. Application of chloride fertilizer can effectively lower the DCAD of Timothy‐based herbages; the economically optimal rate of chloride fertilizer in the spring varied from 78 to 123 kg Cl ha?1, depending on soil K and chloride contents and expected DM yield.  相似文献   

20.
Gymnema sylvestre is an important medicinal plant which bears bioactive compound namely gymnemic acids. The present work deals with optimization of cell suspension culture system of G. sylvestre for the production of biomass and gymnemic acid and we investigated effects of macro elements (NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 - 0.0, 0.5, 1.0, 1.5 and 2.0× strength) and nitrogen source [NH4+/NO3 ratio of: 0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20 and 14.38/37.60 (mM)] of Murashige and Skoog medium on accumulation of biomass and gymnemic acid content. The highest accumulation of biomass (165.00 g l−1 FW and 15.42 g l−1 DW) was recorded in the medium with 0.5× concentration of NH4NO3 and the highest production of gymnemic acid content was recorded in the medium with 2.0× KH2PO4 (11.32 mg g−1 DW). The NH4+/NO3 ratio also influenced cell growth and gymnemic acid production; both parameters were greater when the NO3 concentration was higher than that of NH4+. Maximum biomass growth (159.72 g l−1 of FW and 14.95 g l−1 of DW) was achieved at an NH4+/NO3 ratio of 7.19/18.80, and gymnemic acid production was also greatest at the same concentration of NH4+/NO3 ratio (11.35 mg g−1 DW).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号