首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The soilborne fungi Sclerotinia sclerotiorum, Rhizoctonia solani and the oomycete Pythium ultimum are among the most destructive pathogens for lettuce production. The application of the biocontrol agent Paenibacillus alvei K165 to the transplant soil plug of lettuce resulted in reduced S. sclerotiorum, R. solani and P. ultimum foliar symptoms and incidence compared to untreated controls, despite the suppressive effect of the pathogens on the rhizosphere population of K165. In vitro, K165 inhibited the growth of S. sclerotiorum and R. solani but not P. ultimum. Furthermore, the expression of the pathogenesis‐related (PR) gene PR1, a marker gene of salicylic acid (SA)‐dependent plant defence, and of the Lipoxygenase (LOX) and Ethylene response factor 1 (ERF1) genes, markers of ethylene/jasmonate (ET/JA)‐dependent plant defence was recorded. K165‐treated plants challenged with P. ultimum showed up‐regulation of PR1, whereas challenge with R. solani resulted in up‐regulation of LOX and ERF1, and challenge with S. sclerotiorum resulted in up‐regulation of PR1, LOX and ERF1. This suggests that K165 triggers the SA‐ and the ET/JA‐mediated induced systemic resistance against P. ultimum and R. solani, respectively, while the simultaneous activation of the SA and ET/JA signalling pathways is proposed for S. sclerotiorum.  相似文献   

2.
3.
Rhizoctonia solani is an important soilborne and seedborne fungal pathogen of potato (Solanum tuberosum). The initial infection of sprouts prior to emergence causes lesions and may be lethal to the sprout or sprout tip, which results in initiation and compensatory growth of new sprouts. They emerge successfully and do not suffer significant damage. The mechanism behind this recovery phenomenon is not known. It was hypothesized that infection may induce pathogen defense in sprouts, which was investigated in the present study. Tubers were sprouted in cool and moist conditions in darkness to mimic conditions beneath soil. The basal portion of the sprout was isolated from the apical portion with a soft plastic collar and inoculated with highly virulent R. solani. Induction of defense-related responses was monitored in the apical portion using microarray and quantitative polymerase chain reaction techniques at 48 and 120 h postinoculation (hpi) and by challenge-inoculation with R. solani in two experiments. Differential expression of 122 and 779 genes, including many well-characterized defense-related genes, was detected at 48 and 120 hpi, respectively. The apical portion of the sprout also expressed resistance which inhibited secondary infection of the sprouts. The observed systemic induction of resistance in sprouts upon infection with virulent R. solani provides novel information about pathogen defense in potato before the plant emerges and becomes photosynthetically active. These results advance our understanding of the little studied subject of pathogen defense in subterranean parts of plants.  相似文献   

4.
5.
When the biocontrol agent Pythium oligandrum (PO) colonizes the rhizosphere, it suppresses bacterial wilt disease in tomato (Solanum lycopersicum cv. Micro‐Tom) caused by Ralstonia solanacearum, and a homogenate of its mycelia exhibits elicitor activity, inducing an ethylene (ET)‐dependent defence response in Micro‐Tom. Since salicylic acid (SA) and jasmonic acid (JA) play an important role in plant defence responses to pathogens, the involvement of SA‐ and JA‐dependent signal transduction pathways in resistance to R. solanacearum was investigated in tomato roots treated with a mycelial homogenate of PO. Bacterial wilt disease was also suppressed in tomato cv. Moneymaker treated with the PO homogenate. However, the SA‐inducible PR‐1(P6) gene was not up‐regulated in either Micro‐Tom or Moneymaker. SA did not accumulate in homogenate‐treated roots in comparison with distilled water‐treated controls, even 24 h after inoculation. Induced resistance against R. solanacearum was not compromised in SA‐non‐accumulating NahG transgenic plants treated with the PO homogenate. On the other hand, the expression of the JA‐responsive gene for the basic PR‐6 protein was induced in both tomato cultivars treated with the PO homogenate. Furthermore, quantitative disease assays showed that the induced resistance against R. solanacearum was compromized in PO homogenate‐treated jai1‐1 mutant plants defective in JA signalling. These results indicated that the JA‐dependent signalling pathway is required for PO‐induced resistance against R. solanacearum in tomato.  相似文献   

6.
Phytophthora infestans is the causal agent of potato late blight. This pathogen is usually controlled by fungicides, but new European regulations have imposed changes in crop protection management that have led to a search for alternative control measures. The induction of plant defence responses by elicitors is a promising new strategy compatible with sustainable agriculture. This study investigated the effect of eliciting a defence response in potato against P. infestans using a formulation of the COS‐OGA elicitor that combines cationic chitosan oligomers (COS) and anionic pectin oligomers (OGA). Trials were conducted under greenhouse conditions to assess the ability of COS‐OGA to control P. infestans. The results showed that three foliar applications with this elicitor significantly increased potato protection against late blight in controlled conditions. The activation of potato defence genes was also evaluated by RT‐qPCR during these trials. Two pathogenesis‐related proteins, basic PR‐1 and acidic PR‐2, were rapidly and significantly up‐regulated by the elicitor treatment. Therefore, these results suggest that the COS‐OGA elicitor increases the protection of potato against P. infestans and that this protection could be explained by an increase in the expression of potato defence genes rather than by biocide activity.  相似文献   

7.
Isolates (a total of 129) of Rhizoctonia solani were collected from black scurf on potato tubers from different potato‐growing regions in New Zealand. Sequence analysis of the nuclear ribosomal DNA internal transcribed spacer (rDNA–ITS) regions from these isolates identified three anastomosis groups (AGs), AG‐3PT, AG‐2‐1 and AG‐5. Isolates classified as AG‐3PT were widely distributed, whereas AG‐2‐1 and AG‐5 were confined to distinct locations. Sequence heterogeneity was identified in the ITS regions of 100 AG‐3PT and AG‐2‐1 isolates. Variation in the sequence and length of the rDNA–IGS1 region was also observed for selected isolates of AG‐3PT and AG‐2‐1. Phylogenetic studies found all AG‐2‐1 isolates belong to AG‐2Nt, a subset of AG‐2‐1 previously associated with solanaceous crops in other countries. AG‐2‐1 isolates were consistently more aggressive than those of AG‐3PT. Delayed emergence, severe infection on stolons, formation of aerial tubers and considerable yield losses were associated with AG‐2‐1, but they caused negligible black scurf. In contrast, AG‐3PT caused black scurf on progeny tubers but variable effects on stem emergence and stolons. Furthermore, AG‐2‐1 isolates caused severe tuber malformation, but isolates of other AGs did not. This is the first report on the AG composition, genetic variability and pathogenicity of R. solani isolates associated with black scurf of New Zealand potatoes.  相似文献   

8.
Biological control of Rhizoctonia solani with Trichoderma harzianum has been demonstrated in several studies. However, none have reported the dynamics of expression of defence response genes. Here we investigated the expression of these genes in potato roots challenged by R. solani in the presence/absence of T. harzianum Rifai MUCL 29707. Analysis of gene expression revealed an induction of PR1 at 168 h post-inoculation (hpi) and PAL at 96 hpi in the plants inoculated with T. harzianum Rifai MUCL 29707, an induction of PR1, PR2 and PAL at 48 hpi in the plants inoculated with R. solani and an induction of Lox at 24 hpi and PR1, PR2, PAL and GST1 at 72 hpi in the plants inoculated with both organisms. These results suggest that in the presence of T. harzianum Rifai MUCL 29707, the expression of Lox and GST1 genes are primed in potato plantlets infected with R. solani at an early stage of infection. Mycothèque de l’Université catholique de Louvain of S. Cranenbrouck's affiliation is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).  相似文献   

9.
A polynucleate Rhizoctonia isolate (R3) was analysed for virulence, growth characteristics, enzyme production and presence of dsRNAs. Taxonomic position was assessed morphologically and by anastomosis group (AG) testing and ITS sequence analysis. Results indicated that R3 is a hypovirulent R. solani AG 4. Mechanisms underlying biocontrol towards virulent R. solani and Botrytis cinerea were investigated and plant-mediated resistance was followed using biochemical markers of defence (PR1, laminarinase, chitinase). Control apparently relies on spatial and nutrient competition in soil, and on systemic induced resistance. This is the first report on induction of systemic resistance and of defence markers by a hypovirulent strain of R. solani.  相似文献   

10.
In this study peroxynitrite (ONOO?) is proposed as an important player in defence responses during the interaction of potato (Solanum tuberosum) and the oomycete pathogen Phytophthora infestans. The potato–avr P. infestans model system exhibited a transient programme of boosted ONOO? formation correlated in time with the burst of nitric oxide (NO) and superoxide during the first 6 h post‐inoculation (hpi). The early ONOO? over‐accumulation was not accompanied by TPx gene expression. In contrast, the compatible interaction revealed a 24 h delay of ONOO? formation; however, an enhanced level of NO and superoxide correlated with TPx up‐regulation was recorded within the earlier stages of pathogen infection. Peroxynitrite over‐accumulation in the susceptible potato coincided with an enhanced level of protein tyrosine nitration starting from 24 hpi. Surprisingly, the nitroproteome profile of the resistant potato did not show any visible difference after inoculation, apart from one band containing subtilisin‐like protease‐like proteins, which appeared 48 h after pathogen attack. An additional pharmacological approach showed that treatment of the susceptible genotype with ONOO? followed by inoculation with P. infestans contributed to slowing down of the colonization of host tissues by the pathogen via a faster and stronger up‐regulation of the key defence markers, including the PR‐1 gene. Taken together, the results obtained indicate that a precise control of emitted NO and superoxide in cooperation with thioredoxin‐dependent redox sensors in sites of pathogen ingress could generate a sufficient threshold of ONOO?, triggering defence responses.  相似文献   

11.
Brachypodium distachyon (Bd) is increasingly being used as a model for cereal diseases and to study cereal root architecture. Rhizoctonia solani AG 8 is a necrotrophic root pathogen that infects wheat soon after germination resulting in reduced plant growth and yield loss. Genetic resistance to R. solani AG 8 is not available in commercial wheat cultivars, although some quantitative levels of resistance have previously been found in mutant lines and grass relatives. Resistance mechanisms in cereals remain unknown. The ability to use Bd as a model to study the wheat–R. solani AG 8 pathosystem was investigated. The results presented show that Bd is susceptible to R. solani AG 8 and that the pathogen infects both species to a similar degree, producing comparable disease symptoms. Root length reduction was the primary indicator of disease, with shoots also affected. The second objective was to develop a repeatable phenotyping method to screen Bd populations for resistance to R. solani AG 8. Results of a preliminary experiment provide evidence for variation in resistance between Bd inbred lines. This is the first report showing the potential of Bd as a model plant for discovery of quantitative genetic variation in resistance to a necrotrophic cereal root pathogen.  相似文献   

12.
The position of plants withRhizoctonia solani sclerotia (black scurf) on progeny tubers was mapped for an experimental field at Haren where potatoes were grown continuously and in rotation with other crops for five successive years, and for another field at Borgercompagnie with a 12 frequency of potatoes during three potato crops. Initially, the distribution of plants with black scurf on both fields was rather dense and homogeneous. In the following years the distribution became heterogeneous and patchy. The local decline ofR. solani AG 3 (the common potato pathogen) in Haren was apparently caused by an unknown factor selectively suppressingR. solani AG 3, while simultaneouslyR. solani AG 5 increased in mass. This AG 5 type proved to be an inferior competitor of AG 3 on the potato plant in a laboratory experiment. The specificR. solani antagonistVerticillium biguttatum did not play a role. A similar factor could have reduced the formation of black scurf in the experimental field at Borgercompagnie, whereV. biguttatum was also too infrequent to account for the decline.R. solani AG 5 was not present here and could not indicate the presence of a selective factor against AG 3.  相似文献   

13.
Rhizoctonia solani anastomosis group 4 (AG‐4) is a serious pathogen causing damping off and root rot in many important crop plants. A total of 190 isolates of R. solani AG‐4 HG‐I were collected from host fields in five provinces of Iran. The genetic structure of this pathogen was evaluated using seven microsatellite loci, focusing particularly on geographic differentiation. Most of the multilocus genotypes (MLGTs) were unique, with few MLGTs shared among populations. High to moderate levels of gene flow among populations was indicated by low to moderate differentiation between pairs of populations based on the fixation index (FST). Gametic equilibrium of most pairs of microsatellite loci and moderate genotypic diversity were found for two out of five populations, indicating that these populations were sexually recombining in structure. High genotypic diversity, moderate clonal fractions and site‐specific genotypes were consistent with mixed reproductive systems for the remaining populations. The findings of departures from Hardy–Weinberg (HW) equilibrium, gametic disequilibrium and a significant excess of homozygotes in half or more than half of the loci were probably caused by the presence of null alleles and the Wahlund effect. This is the first study to consider the population genetics of the root and crown rot pathogen R. solani AG‐4.  相似文献   

14.
The effect of soil solarization and Trichoderma harzianum on induced resistance to grey mould (Botrytis cinerea) and powdery mildew (Podosphaera xanthii) was studied. Plants were grown in soils pretreated by solarization, Tharzianum T39 amendment or both, and then their leaves were inoculated with the pathogens. There was a significant reduction in grey mould in cucumber, strawberry, bean and tomato, and of powdery mildew in cucumber, with a stronger reduction when treatments were combined. Bacillus, pseudomonad and actinobacterial communities in the strawberry rhizosphere were affected by the treatments, as revealed by denaturing gradient gel electrophoresis fingerprinting. In tomato, treatments affected the expression of salicylic acid (SA)‐, ethylene (ET)‐ and jasmonic acid (JA)‐responsive genes. With both soil treatments, genes related to SA and ET – PR1a, GluB, CHI9 and Erf1 – were downregulated whereas the JA marker PI2 was upregulated. Following soil treatments and B. cinerea infection, SA‐, ET‐, and JA‐related genes were globally upregulated, except for the LOX genes which were downregulated. Upregulation of the PR genes PR1a, GluB and CHI9 in plants grown in solarized soil revealed a priming effect of this treatment on these genes' expression. The present study demonstrates the capacity of solarization and T. harzianum to systemically induce resistance to foliar diseases in various plants. This may be due to either a direct effect on the plant or an indirect one, via stimulation of beneficial microorganisms in the rhizosphere.  相似文献   

15.
Plants express different defence mechanisms in response to pathogens. Understanding the recognition of pathogen‐associated molecular patterns (PAMPs) by specific receptors, and the role of endogenous signals such as AtPep1 that regulate expression of genes in Arabidopsis thaliana, has aided the understanding of the defence mechanisms in different species. The aim of this study was to identify possible orthologous sequences of AtPROPEPs in tomato (Solanum lycopersicum) and characterize its role in resistance to necrotrophic pathogens. The presence of an orthologue of the A. thaliana AtPROPEP1 gene in S. lycopersicum, SlPROPEP, by in silico analysis, is reported here. This has 96% identity with the C‐terminal region of a previously described potato peptide, another possible orthologue of AtPep1. A virus‐induced gene silencing (VIGS) system was employed to investigate the role of the SlPROPEP. Silencing of SlPROPEP in tomato made plants more susceptible to Pythium dissotocum; approximately 30% of SlPROPEP‐silenced plants showed stem constriction compared with 4% in control plants. Furthermore, quantification of P. dissotocum by qPCR revealed that the increase in symptom severity in SlPROPEP‐silenced plants was associated with a 15 times increase in growth of the pathogen compared to control plants. Silencing of SlPROPEP also resulted in decreased expression of genes involved in plant defence against pathogens, such as PR‐1, PR‐5, ERF1, LOX‐D and DEF2. These results suggest that SlPROPEP is involved in tomato resistance to P. dissotocum and probably acts as a pathogen‐associated molecular pattern through signalling pathways mediated by jasmonic acid/ethylene (JA/ET).  相似文献   

16.
To understand the distribution pattern and divergence of Rhizoctonia solani in a field over a 4-year period, R. solani AG1-IA isolates were collected from diseased tissues of several crops. Pairing tests between isolates to detect hyphal anastomosis and vegetatively compatible population (VCP) groupings were done on 2% water agar and potato dextrose agar. A single VCP of R. solani AG1-IA dominated a large upland crop field at the Institute of Plant Breeding, University of the Philippines at Los Ba?os. The VCP changed more slowly and at a lower frequency as compared to other reports. Received 27 September 1999/ Accepted in revised form 3 February 2000  相似文献   

17.
The soilborne pathogen Verticillium dahliae invades its host via the root, and spreads systemically throughout the plant. Although a functional root system of appropriate size is essential for water and nutrient uptake, to date, effects of pathogens on root morphology have not been frequently investigated. Therefore, this study aims to improve knowledge of how V. dahliae infection impairs root morphological characteristics of tomato, considering plant growth and physiological responses, particularly those involved in defence in roots and leaves over a growing period of up to 28 days post‐inoculation. Verticillium dahliae infection suppressed the growth of both shoot and root. Diseased plants developed a smaller leaf area, and exhibited a reduction in the rate of photosynthesis and stomatal conductance. An early response to pathogen invasion in the host root was the up‐regulation of several defence‐related genes, such as proteinase inhibitor II (Pin2), β‐1,3‐glucanase A (GluA) and two pathogenesis‐related genes (PR‐1a, PR‐1b). However, this response did not prevent colonization of the roots by the pathogen. Although a high variability in pathogen density was found within the root system, a significant increase of both the specific root length and surface area was observed in response to pathogen invasion; these traits correlated with water use efficiency. Morphological changes of the root may represent an adaptive response evolved to sustain the supply of both water and nutrients in the presence of the pathogen.  相似文献   

18.
L. Ma  J. Li  L. Ma  J. Wu  J. Wu 《Plant pathology》2017,66(2):277-284
The phytohormone ethylene plays an important role in plant defence responses to pathogen attack. When infected by the necrotrophic fungal pathogen Alternaria alternata (tobacco pathotype), which causes severe diseases in Nicotiana species, the wild tobacco plant Nicotiana attenuata accumulates a high amount of the jasmonate (JA)‐dependent phytoalexin scopoletin to defend itself against this fungal pathogen. However, it is still not known whether ethylene signalling is also involved in scopoletin biosynthesis and the resistance of N. attenuata. After infection, ethylene biosynthetic genes were highly elicited. Furthermore, plants strongly impaired in ethylene biosynthesis or perception had dramatically decreased scopoletin levels, and these plants became more susceptible to the fungus, while A. alternata‐elicited JA levels were increased, indicating that the decreased defence responses were not due to lower JA levels. Thus, it is concluded that after infection, ethylene signalling is activated together with JA signalling in N. attenuata plants and this subsequently regulates scopoletin biosynthesis and plant resistance.  相似文献   

19.
A polynucleate Rhizoctonia isolate (R3) was analysed for virulence, growth characteristics, enzyme production and presence of dsRNAs. Taxonomic position was assessed morphologically and by anastomosis group (AG) testing and ITS sequence analysis. Results indicated that R3 is a hypovirulent R. solani AG 4. Mechanisms underlying biocontrol towards virulent R. solani and Botrytis cinerea were investigated and plant-mediated resistance was followed using biochemical markers of defence (PR1, laminarinase, chitinase). Control apparently relies on spatial and nutrient competition in soil, and on systemic induced resistance. This is the first report on induction of systemic resistance and of defence markers by a hypovirulent strain of R. solani.  相似文献   

20.
Sheath blight, caused by anastomosis group 1-IA of Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris (Frank) Donk), is one of the most destructive rice diseases worldwide. The pathogen is able to infect plants belonging to more than 27 families, including many economically important monocots and dicots such as rice, wheat, alfalfa, bean, peanut, soybean, cucumber, papaya, corn, potato, tomato and sugar beet. It is a soil borne necrotrophic fungus that survives in plant debris as sclerotia, which are small brown-to-black, rocklike reproductive structures. The sclerotia can survive in the soil for several years and infect rice plants at the water-plant interface in the flooded field by producing mycelia. Management of rice sheath blight requires an integrated approach based on the knowledge of each stage of the disease and cytomolecular aspects of rice defence responses against R. solani. This review summarizes current knowledge on molecular aspects of R. solani pathogenicity, genetic structure of the pathogen populations, and the rice-R. solani interaction with emphasis on cellular and molecular defence components such as signal transduction pathways, various plant hormones, host defence genes and production of defence-related proteins involved in basal and induced resistance in rice against sheath blight disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号