首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Since the occurrence and spread of resistance to quinone outside inhibitors (QoI) in Mycosphaerella graminicola in the early 2000s in Europe, demethylation inhibitors (DMIs) form the backbone for control of Septoria leaf blotch. European monitoring studies, carried out by various research institutes and DMI manufacturers, have shown a shift of the European M. graminicola population towards increased ED50 values for DMI fungicides. Populations of M. graminicola consist of very heterogeneous isolates within a region, and even within a field, in terms of DMI sensitivity. Sensitivity to DMIs is influenced by the haplotype of CYP51, the target of DMIs. New CYP51‐haplotypes have emerged and the frequency of less sensitive haplotypes in Europe has increased in recent years. Studies with efflux transporter inhibitors showed that not only CYP51, but also enhanced efflux, may play a role in the DMI sensitivity response. Sensitivity studies with 5 DMIs registered for Septoria leaf blotch control indicated that sensitivity of isolates to the 5 DMIs is heterogeneous and the overall correlation of sensitivity to the different DMIs is poor. A key requirement for sustainable control and resistance management of Septoria leaf blotch is therefore the continued availability of different DMIs.  相似文献   

2.
Although fungicide resistance in crop pathogens is a global threat to food production, surprisingly little is known about the evolutionary processes associated with the emergence and spread of fungicide resistance. Early stages in the evolution of fungicide resistance were evaluated using the wheat pathogen Zymoseptoria tritici, taking advantage of an isolate collection spanning 20 years in Oregon, USA, and including two sites with differing intensity of fungicide use. Sequences of the mitochondrial cytb protein conferring single‐mutation resistance to QoI fungicides and the nuclear CYP51 gene implicated in multiple‐mutation resistance to azole fungicides were analysed. Mutations associated with resistance to both fungicides were absent in the 1992 isolates, but frequent in the 2012 collection, with higher frequencies of resistance alleles found at the field site with more intensive fungicide use. Results suggest that the QoI resistance evolved independently in several lineages, and resulted in significant mitochondrial genome bottlenecks. In contrast, the CYP51 gene showed signatures of diversifying selection and intragenic recombination among three phylogenetic clades. The findings support a recent emergence of resistance to the two fungicide classes in Oregon, facilitated by selection for mutations in the associated resistance genes.  相似文献   

3.
The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesized that combinations of azoles could slow the evolution of resistance. This work assessed the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre‐ and post‐treatment. Epoxiconazole and metconazole were applied as solo products, in alternation with each other, and as a pre‐formulated mixture. Full and half label doses were tested. Isolates were partially cross‐resistant to the two azoles, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (= 0·1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action.  相似文献   

4.
Zymoseptoria tritici, the causal agent of septoria tritici blotch (STB), remains a significant threat to European wheat production with the continuous emergence of fungicide resistance in Z. tritici strains eroding the economic sustainability of wheat production systems. The life cycle of Z. tritici is characterized by a presymptomatic phase (latent period, LP) after which the pathogen switches to an aggressive necrotrophic stage, when lesions bearing pycnidia quickly manifest on the leaf. As minimal knowledge of the possible role of the LP in supporting STB resistance/susceptibility exists, the goal of this study was to investigate the spatial and temporal association between the LP and disease progression across three locations (Ireland – Waterford, Carlow; UK – Norwich) that represent commercially high, medium and low STB pressure environments. Completed over two seasons (2013–2015) with commercially grown cultivars, the potential of the LP in stalling STB epidemics was significant as identified with cv. Stigg, whose high level of partial resistance was characterized by a lengthened LP (c. 36 days) under the high disease pressure environment of Waterford. However, once the LP concluded it was followed by a rate of disease progression in cv. Stigg that was comparable to that observed in the more susceptible commercial varieties. Complementary analysis, via logistic modelling of intensive disease assessments made at Carlow and Waterford in 2015, further highlighted the value of a lengthened LP in supporting strong partial resistance against STB disease of wheat.  相似文献   

5.
Zymoseptoria tritici, the causal agent of septoria tritici blotch, a serious foliar disease of wheat, is a necrotrophic pathogen that undergoes a long latent period. Emergence of insensitivity to fungicides, and pesticide reduction policies, mean there is a pressing need to understand septoria and control it through greater varietal resistance. Stb6 and Stb15, the most common qualitative resistance genes in modern wheat cultivars, determine specific resistance to avirulent fungal genotypes following a gene‐for‐gene relationship. This study investigated compatible and incompatible interactions of wheat with Z. tritici using eight combinations of cultivars and isolates, with the aim of identifying molecular responses that could be used as markers for disease resistance during the early, symptomless phase of colonization. The accumulation of TaMPK3 was estimated using western blotting, and the expression of genes implicated in gene‐for‐gene interactions of plants with a wide range of other pathogens was measured by qRT‐PCR during the presymptomatic stages of infection. Production of TaMPK3 and expression of most of the genes responded to inoculation with Z. tritici but varied considerably between experimental replicates. However, there was no significant difference between compatible and incompatible interactions in any of the responses tested. These results demonstrate that the molecular biology of the gene‐for‐gene interaction between wheat and Zymoseptoria is unlike that in many other plant diseases, indicate that environmental conditions may strongly influence early responses of wheat to infection by Z. tritici, and emphasize the importance of including both compatible and incompatible interactions when investigating the biology of this complex pathosystem.  相似文献   

6.
Zymoseptoria tritici is the causal agent of septoria tritici blotch (STB), a foliar wheat disease important worldwide. Succinate dehydrogenase inhibitors (SDHIs) have been used in cereals for effective control of STB for several years, but resistance towards SDHIs has been reported in several phytopathogenic fungi. Resistance mechanisms are target‐site mutations in the genes coding for subunits B, C and D of the succinate dehydrogenase (SDH) enzyme. Previous monitoring data in Europe indicated the presence of single isolates of Z. tritici with reduced SDHI sensitivity. These isolates carried mutations leading to amino acid exchanges: C‐T79N, C‐W80S in 2012; C‐N86S in 2013; B‐N225T and C‐T79N in 2014; and C‐V166M, B‐T268I, C‐N86S, C‐T79N and C‐H152R in 2015. The current study provides results from microtitre and greenhouse experiments to give an insight into the impact of different mutations in field isolates on various SDHIs. In microtitre tests, the highest EC50 values for all tested SDHIs were obtained with mutants carrying C‐H152R. Curative greenhouse tests with various SDHIs confirmed the findings of microtitre tests that isolates with C‐H152R are, in general, controlled with lower efficacy than isolates carrying B‐T268I, C‐T79N and C‐N86S. SDHI‐resistant isolates of Z. tritici found in the field were shown to have cross‐resistance towards all SDHIs tested. So far, SDHI‐resistant isolates of Z. tritici have been found in low frequencies in Europe. Therefore, FRAC recommendations for resistance management in cereals, including a limited number of applications, alternation and combination with other MOAs, should be followed to prolong SDHI field efficacy.  相似文献   

7.
Septoria tritici blotch caused by the fungus Zymoseptoria tritici is one of the most devastating foliar diseases of wheat. Knowledge regarding mechanisms involved in resistance against this disease is required to breed durable resistances. This study compared the expression of defence and pathogenicity determinants in three cultivars in semicontrolled culture conditions. The most susceptible cultivar, Alixan, presented higher necrosis and pycnidia density levels than Altigo, the most resistant one. In Premio, a moderately resistant cultivar, necrosis developed as in Alixan, while pycnidia developed as in Altigo. In noninfectious conditions, genes coding for PR1 (pr1), glucanase (gluc) and allene oxide synthase (aos) were constitutively expressed at a higher level in both Altigo and Premio than in Alixan, while chitinase2 (chit2), phenylalanine ammonia‐lyase (pal), peroxidase (pox2) and oxalate oxidase (oxo) were expressed at a higher level in Premio only. Except for aos, all genes were induced in Alixan during the first steps of the symptomless infection phase. Only pox2, oxo, gluc and pal genes in Altigo and pal, chs and lox genes in Premio were up‐regulated at some time points. Basal cultivar‐dependent resistance against Z. tritici could therefore be explained by various gene expression patterns rather than high expression levels of given genes. During the necrotrophic phase, Z. tritici cell wall‐degrading enzyme activity levels were lower in Altigo and Premio than in Alixan, and were associated more with pycnidia than with necrosis. Similar tissue colonization occurred in the three cultivars, suggesting an inhibition of the switch to the necrotrophic lifestyle in Altigo.  相似文献   

8.
Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici continues to be the most economically destructive disease of winter wheat throughout Ireland. Due to the widespread development of fungicide resistance in the Irish Z. tritici population, integrated strategies to control STB are increasingly necessary. A key component of such strategies will be the deployment of winter wheat cultivars with improved levels of STB resistance. Unfortunately, due to the nature of Z. tritici, such resistances are at risk of being overcome by the pathogen. In late summer 2020, foci of STB were observed across a range of winter wheat cultivars under evaluation for recommendation in Ireland. Common amongst these was the cultivar Cougar in each of their pedigree. To determine if the foci observed in 2020 resulted from strains virulent to Cougar, isolate collections were established and virulence screens conducted on Cougar and a range of the cultivars currently under evaluation. These confirmed the presence of Cougar-virulent strains in the Irish Z. tritici population, and that this virulence affects not just Cougar, but also cultivars derived from it. Although the foci observed in 2020 were in both fungicide-untreated and -treated plots, there was no evidence that these strains are more sensitive or resistant to fungicides compared to the wider Irish Z. tritici population, with moderate resistance to the SDHIs and azoles dominating. Combined, the present study confirms the need to ensure a diversity of control measures for STB, including ensuring a range of STB resistances are used.  相似文献   

9.
Septoria tritici blotch (STB) caused by the ascomycete Zymoseptoria tritici (Z. tritici) is currently the most prevalent foliar disease in wheat in the Nordic-Baltic region. Fungicide availability in this region differs greatly and is generally more limited than in other European regions. Monitoring of fungicide sensitivity is an essential tool to survey changes in fungal populations in order to react and be able to adapt recommendations for fungicide use. In this study the authors give an overview of the current situation of 14α-demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) sensitivity of Z. tritici from Scandinavia and the Baltic countries. A total of 985 isolates from the Nordic-Baltic region were investigated for EC50 of DMI epoxiconazole and prothioconazole. Fungicide sensitivity remains at a high level with values ranging from 0.07 to 0.48 mg L?1 for epoxiconazole and 1.17 to 9.47 mg L?1 for prothioconazole. Point mutation I381V in the DMI target gene CYP51 was dominant throughout the region, but mutations D134G, V136A/C and S524T were also detected in the population in 2014. Screening for inserts in the CYP51 promoter region revealed that a ~ 1000 bp insert is predominant in the entire region. Only a single isolate was found in Denmark, harbouring the 120 bp insert, known to reduce fungicide sensitivity. Two Danish isolates which had elevated resistance levels were associated with an enhanced efflux. Significant differences were found across the area for the presence of G143A, conferring QoI resistance. As there is only limited access to results from this area, these findings can serve as reference for future fungicide sensitivity investigations and for evaluation of changes in the Northern European Z. tritici population.  相似文献   

10.
BACKGROUND: Mycosphaerella fijiensis Morelet causes black sigatoka, the most important disease in bananas and plantains. Disease control is mainly through the application of systemic fungicides, including sterol demethylation inhibitors (DMIs). Their intensive use has favoured the appearance of resistant strains. However, no studies have been published on the possible resistance mechanisms. RESULTS: In this work, the CYP51 gene was isolated and sequenced in 11 M. fijiensis strains that had shown different degrees of in vitro sensitivity to propiconazole, one of the most widely used DMI fungicides. Six mutations that could be related to the loss in sensitivity to this fungicide were found: Y136F, A313G, Y461D, Y463D, Y463H and Y463N. The mutations were analysed using a homology model of the protein that was constructed from the crystallographic structure of Mycobacterium tuberculosis (Zoff.) Lehmann & Neumann. Additionally, gene expression was determined in 13 M. fijiensis strains through quantitative analysis of products obtained by RT‐PCR. CONCLUSION: Several changes in the sequence of the gene encoding sterol 14α‐demethylase were found that have been described in other fungi as being correlated with resistance to azole fungicides. No correlation was found between gene expression and propiconazole resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Demethylation inhibitor (DMI) and succinate dehydrogenase inhibitor (SDHI) fungicides are currently relied upon for the control of septoria tritici blotch (STB) in European wheat fields. However, multiple mutations have occurred over time in the genes encoding the targeted proteins that have led to a practical loss of fungicide efficacies. Among the different amino acid substitutions in Zymoseptoria tritici associated with resistance to these fungicides, S524T in CYP51 (DMI target) and H152R in SdhC (SDHI target) are regarded as conferring the highest resistance factors to DMI and SDHI, respectively. To facilitate further studies on the monitoring and selection of these substitutions in Z. tritici populations, a multiplex allele-specific quantitative PCR (qPCR) assay allowing for estimation of both allele frequencies in bulk DNA matrices was developed. The assay was then used on complex DNA samples originating from a spore trap network set up in Belgium, Denmark, Sweden, and Ireland in 2017 and 2018, as well as on leaf samples with symptoms. The S524T allele was present in all field samples and its proportion was significantly higher in Ireland than in Belgium, whereas the proportion of H152R was only sporadically present in both countries. The frequency of S524T varied greatly in the airborne inoculum of all four countries; however, the H152R allele was never detected in the airborne inoculum. The method developed in this study can be readily adopted by other laboratories and used for multiple applications including resistance monitoring in field populations of Z. tritici.  相似文献   

12.
Thirty single-spore isolates of Cercospora beticola, collected from several fields in northern Greece, representing a broad spectrum sensitivity to the sterol demethylation-inhibiting (DMIs) fungicide flutriafol, were tested for sensitivity to eleven other sterol biosynthesis-inhibiting (SBI) fungicides and to the guanidine fungicide dodine. Sensitivity was measured as EC50 values for each fungicide and log-transformed EC50 values to each fungicide were pairwise correlated and the correlation coefficient estimated. These pairwise comparisons showed high correlation coefficients between the DMIs suggesting a cross-resistance relationship between these fungicides. However, the degree of cross-resistance between DMIs varied greatly. Conversely, low correlation coefficients were obtained for the pair-wise comparisons with the morpholine fungicide fenpropimorph suggesting a lack of cross-resistance between morpholines and DMIs in C. beticola. Similarly, there was no correlation between the sensitivity (EC50 values) to dodine and all the other fungicides tested, indicating that there was no negative cross-resistance relationship between dodine and SBIs in C. beticola. Based on these results, combinations or alternations of fungicides which show no cross-resistance relationship should be used to control the disease in areas where reduced sensitivity to DMIs has been already observed.  相似文献   

13.
In France, as in many other European countries, Mycosphaerella graminicola (Fuckel) Schr?ter in Cohn (anamorph Septoria tritici), the causal agent of wheat leaf blotch, is controlled by foliar applications of fungicides. With the recent generalization of resistance to strobilurins (QoIs), reliable control is mainly dependent upon inhibitors of sterol 14 alpha-demethylation (DMIs). To date, strains with reduced sensitivity to DMIs are widespread, but disease control using members of this class of sterol biosynthesis inhibitors has not been compromised. In this study, sensitivity assays based on in vitro effects of fungicides towards germ-tube elongation allowed the characterization of seven DMI-resistant phenotypes. In four of them, cross-resistance was not observed between all tested DMIs; this characteristic concerned prochloraz, triflumizole, fluquinconazole and tebuconazole. Moreover, the highest resistant factors to most DMIs were found only in recent isolates; according to their response towards prochloraz, they were classified into two categories. Molecular studies showed that DMI resistance was associated with mutations in the CYP51 gene encoding the sterol 14 alpha-demethylase. Alterations at codons 459, 460 and 461 were related to low resistance levels, whereas, at position 381, a valine instead of an isoleucine, in combination with the previous changes, determined the highest resistance levels to all DMIs except prochloraz. Mutations in codons 316 and 317 were also found in some isolates exhibiting low resistance factors towards most DMIs.  相似文献   

14.
The failure of chemical control of soybean rust has been related to the selection of less sensitive isolates, and the infection capacity of such isolates could have implications for the management of the disease. The aims of the present study were to compare the sensitivity to tebuconazole and azoxystrobin and the monocycle of soybean rust using isolates of Phakopsora pachyrhizi from two soybean fields with different production systems (organic and conventional) in 2012/13 and 2013/14 seasons, and to monitor mutations in the CYP51 gene. To assess the sensitivity to tebuconazole and azoxystrobin, detached leaf tests and in vitro germination, respectively, were used. To evaluate the monocycle, detached leaves were inoculated with a urediniospore suspension and evaluated daily by counting the number of uredia. The occurrence of the mutations in CYP51 was investigated by a pyrosequencing assay. In both 2012/13 and 2013/14 seasons, the EC50 to tebuconazole was lower for the population from the organic system (0.41 and 0.10 μg mL?1, respectively) compared to the conventional system (1.60 and 4.44 μg mL?1, respectively), while the EC50 to azoxystrobin was similar for both populations. The lower sensitivity to tebuconazole and azoxystrobin was associated with F120L + Y131H mutations in CYP51, and the F129L mutation in CYTB, respectively. The monomolecular model fitted to monocycle data and parameters related to the maximum asymptote and the AUDPC were superior for organic than the conventional system.  相似文献   

15.
Azole resistance in human fungal pathogens has increased over the past twenty years, especially in immunocompromised patients. Similarities between medical and agricultural azoles, and extensive azole (14α‐demethylase inhibitor, DMI) use in crop protection, prompted speculation that resistance in patients with aspergillosis originated in the environment. Aspergillus species, and especially Aspergillus fumigatus, are the largest cause of patient deaths from fungi. Azole levels in soils following crop spraying, and differences in sensitivity between medical and agricultural azoles (DMIs), indicate weaker selection in cropping systems than in patients receiving azole therapy. Most fungi have just one CYP51 paralogue (isozyme CYP51B), but in Aspergillus sp. mutations conferring azole resistance are largely confined to a second paralogue, CYP51A. Binding within the active centre is similar for medical and agricultural azoles but differences elsewhere between the two paralogues may ensure selection depends on the DMI used on crops. Two imidazoles, imazalil and prochloraz, have been widely used since the early 1970s, yet unlike triazoles they have not been linked to resistance in patients. Evidence that DMIs are the origin, or increase the frequency, of azole resistance in human fungal pathogens is lacking. Limiting DMI use would have serious impacts on disease control in many crops, and remove key tools in anti‐resistance strategies. © 2017 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Management of grapevine powdery mildew Erysiphe necator Schw. requires fungicide treatments such as sterol demethylation inhibitors (DMIs) or mitochondrial inhibitors (QoIs). Recently, reduction in the efficacy of DMIs or QoIs was reported in Europe and the United States. The aim of the present study was to develop real‐time qPCR tools to detect and quantify several CYP51 gene variants of E. necator: (i) A versus B groups (G37A) and (ii) sensitive versus resistant to sterol demethylase inhibitor fungicides (Y136F). RESULTS: The efficacy of the qPCR tools developed was better than the CAPS method, with a limit of 2 pg for E necator DNA, 0.06 ng for genetic group A and 1.4 ng for the DMI‐resistant allele. The detection limits of qPCR protocols (LOD) ranged from 0.72 to 0.85%, and the quantification limits (LOQ) ranged from 2.4 to 2.85% for the two alleles G47A and Y136F respectively. The application of qPCR to field isolates from French vineyards showed the presence of DMI‐resistant and/or QoI‐resistant alleles in French pathogen populations, linked to genetic group B. CONCLUSION: The real‐time PCR assay developed in this study provides a potentially useful tool for efficient quantification of different alleles of interest for fungicide monitoring and for population structure of E. necator. Copyright © 2010 Society of Chemical Industry  相似文献   

17.

BACKGROUND

Fenpicoxamid is a new fungicide for control of Zymoseptoria tritici, and is a derivative of the natural product UK‐2A. Its mode of action and target site interactions have been investigated.

RESULTS

UK‐2A strongly inhibited cytochrome c reductase, whereas fenpicoxamid was much less active, consistent with UK‐2A being the fungicidally active species generated from fenpicoxamid by metabolism. Both compounds caused rapid loss of mitochondrial membrane potential in Z. tritici spores. In Saccharomyces cerevisiae, amino acid substitutions N31K, G37C and L198F at the Qi quinone binding site of cytochrome b reduced sensitivity to fenpicoxamid, UK‐2A and antimycin A. Activity of fenpicoxamid was not reduced by the G143A exchange responsible for strobilurin resistance. A docking pose for UK‐2A at the Qi site overlaid that of antimycin A. Activity towards Botrytis cinerea was potentiated by salicylhydroxamic acid, showing an ability of alternative respiration to mitigate activity. Fungitoxicity assays against Z. tritici field isolates showed no cross‐resistance to strobilurin, azole or benzimidazole fungicides.

CONCLUSION

Fenpicoxamid is a Qi inhibitor fungicide that provides a new mode of action for Z. tritici control. Mutational and modeling studies suggest that the active species UK‐2A binds at the Qi site in a similar, but not identical, fashion to antimycin A. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

18.
The hemibiotrophic fungus Cercospora beticola causes leaf spot of sugar beet. Leaf spot control measures include the application of sterol demethylation inhibitor (DMI) fungicides. However, reduced sensitivity to DMIs has been reported recently in the Red River Valley sugar beet-growing region of North Dakota and Minnesota. Here, we report the cloning and molecular characterization of CbCyp51, which encodes the DMI target enzyme sterol P450 14α-demethylase in C. beticola. CbCyp51 is a 1,632-bp intron-free gene with obvious homology to other fungal Cyp51 genes and is present as a single copy in the C. beticola genome. Five nucleotide haplotypes were identified which encoded three amino acid sequences. Protein variant 1 composed 79% of the sequenced isolates, followed by protein variant 2 that composed 18% of the sequences and a single isolate representative of protein variant 3. Because resistance to DMIs can be related to polymorphism in promoter or coding sequences, sequence diversity was assessed by sequencing >2,440 nucleotides encompassing CbCyp51 coding and flanking regions from isolates with varying EC(50) values (effective concentration to reduce growth by 50%) to DMI fungicides. However, no mutations or haplotypes were associated with DMI resistance or sensitivity. No evidence for alternative splicing or differential methylation of CbCyp51 was found that might explain reduced sensitivity to DMIs. However, CbCyp51 was overexpressed in isolates with high EC(50) values compared with isolates with low EC(50) values. After exposure to tetraconazole, isolates with high EC(50) values responded with further induction of CbCyp51, with a positive correlation of CbCyp51 expression and tetraconazole concentration up to 2.5 μg ml(-1).  相似文献   

19.
Cereal eyespot fungi Tapesia acuformis and Tapesia yallundae are closely related species which show different behaviours upon treatment with sterol 14-demethylase inhibitors (DMIs). T. acuformis is naturally resistant to DMIs belonging to the triazole family and susceptible to the imidazole ones, whilst T. yallundae is sensitive to both inhibitors. Cloning of the target enzyme gene, CYP51, from the two species revealed an important polymorphism between them. Further sequencing of CYP51 from sixteen T. acuformis and eleven T. yallundae strains with different phenotypes with regards to resistance to DMIs confirmed that at least eleven variations are species related. Among them, a conserved phenylalanine residue at position 180, found both in T. yallundae and in all known CYP51 proteins from filamentous fungi and yeast, was replaced in T. acuformis by a leucine. Therefore, a leucine at 180 could be possibly involved in natural resistance of T. acuformis to triazoles. Other mutations were observed in some resistant strains, sometimes simultaneously, but in contrast to what was reported for other filamentous fungi, where a mutation at the 136 position of the CYP51 gene product seemed to correlate with resistance to DMIs, we did not find a clear relationship between a given mutation and a particular phenotype. This result suggests that resistance to DMIs could have a polygenic nature in Tapesia. We took advantage of species-related variations to develop a PCR-based assay allowing rapid and easy discrimination between field strains of the two species.  相似文献   

20.
BACKGROUND: Proquinazid is a new quinazolinone fungicide from DuPont registered in most European countries for powdery mildew control in cereals and vines. The aim of this paper is to present baseline sensitivity data in populations of Blumeria graminis f. sp. tritici EM Marchal and Erysiphe necator (Schw) Burr as well as results from cross‐resistance studies with other fungicides. RESULTS: Proquinazid exhibited a high intrinsic activity on B. graminis f. sp. tritici isolates at rates ranging from 0.000078 to 0.02 mg L?1. Erysiphe necator isolates were comparatively less sensitive to proquinazid, with EC50 values ranging from 0.001 to 0.3 mg L?1. Proquinazid controlled equally well B. graminis f. sp. tritici isolates sensitive and resistant or less sensitive to tebuconazole, fenpropimorph, fenpropidin, cyprodinil and kresoxim‐methyl. A positive correlation (r = 0.617) between quinoxyfen and proquinazid sensitivities was found among 51 B. graminis f. sp. tritici isolates. Quinoxyfen‐resistant B. graminis f. sp. tritici isolates were slightly less sensitive to proquinazid than the quinoxyfen‐sensitive isolates; however, proquinazid remained much more active than quinoxyfen on these isolates. A stronger sensitivity relationship (r = 0.874) between proquinazid and quinoxyfen was found among 65 E. necator isolates tested in a leaf disc assay. The sensitivity values for proquinazid were significantly lower than those for quinoxyfen, confirming the higher intrinsic activity of proquinazid on both pathogens. CONCLUSION: Given the history of resistance development in powdery mildew and the observed sensitivity relationship with quinoxyfen, specifically in E. necator, we conclude that the risk of resistance developing to proquinazid might be influenced by the use of quinoxyfen. Based on these results, the authors recommend that proquinazid and quinoxyfen be managed together for resistance management. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号