首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Plant water status is a key factor impacting crop growth and agricultural water management. Crop water stress may alter canopy temperature, the energy balance, transpiration, photosynthesis, canopy water use efficiency, and crop yield. The objective of this study was to calculate the Crop Water Stress Index (CWSI) from canopy temperature and energy balance measurements and evaluate the utility of CWSI to quantify water stress by comparing CWSI to latent heat and carbon dioxide (CO2) flux measurements over canopies of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.). The experiment was conducted at the Yucheng Integrated Agricultural Experimental Station of the Chinese Academy of Sciences from 2003 to 2005. Latent heat and CO2 fluxes (by eddy covariance), canopy and air temperature, relative humidity, net radiation, wind speed, and soil heat flux were averaged at half-hour intervals. Leaf area index and crop height were measured every 7 days. CWSI was calculated from measured canopy-air temperature differences using the Jackson method. Under high net radiation conditions (greater than 500 W m−2), calculated values of minimum canopy-air temperature differences were similar to previously published empirically determined non-water-stressed baselines. Valid measures of CWSI were only obtained when canopy closure minimized the influence of viewed soil on infrared canopy temperature measurements (leaf area index was greater than 2.5 m2 m−2). Wheat and maize latent heat flux and canopy CO2 flux generally decreased linearly with increases in CWSI when net radiation levels were greater than 300 W m−2. The responses of latent heat flux and CO2 flux to CWSI did not demonstrate a consistent relationship in wheat that would recommend it as a reliable water stress quantification tool. The responses of latent heat flux and CO2 flux to CWSI were more consistent in maize, suggesting that CWSI could be useful in identifying and quantifying water stress conditions when net radiation was greater than 300 W m−2. The results suggest that CWSI calculated by the Jackson method under varying solar radiation and wind speed conditions may be used for irrigation scheduling and agricultural water management of maize in irrigated agricultural regions, such as the North China Plain.  相似文献   

2.
Regulated deficit irrigation (RDI) strategies, often applied in tree crops, require precise monitoring methods of water stress. Crop water stress index (CWSI), based on canopy temperature measurements, has shown to be a good indicator of water deficits in field crops but has seldom been used in trees. CWSI was measured on a continuous basis in a Central California mature pistachio orchard, under full and deficit irrigation. Two treatments—control, returning the full evapotranspiration (ETc) and RDI—irrigated with 40% ETc during stage 2 of fruit grow (shell hardening). During stage 2, the canopy temperature—measured continuously with infrared thermometers (IRT)—of the RDI treatment was consistently higher than the control during the hours of active transpiration; the difference decreasing after irrigation. The non-water-stressed baseline (NWSB), obtained from clear-sky days canopy–air temperature differential and vapour pressure deficit (VPD) in the control treatment, showed a marked diurnal variation in the intercept, mainly explained by the variation in solar radiation. In contrast, the NWSB slope remained practically constant along the day. Diurnal evolution of calculated CWSI was stable and near zero in the control, but showed a clear rising diurnal trend in the RDI treatment, increasing as water stress increased around midday. The seasonal evolution of the CWSI detected large treatment differences throughout the RDI stress period. While the CWSI in the well-irrigated treatment rarely exceeded 0.2 throughout the season, RDI reached values of 0.8–0.9 near the end of the stress period. The CWSI responded to irrigation events along the whole season, and clearly detected mild water stress, suggesting extreme sensitivity to variations in tree water status. It correlated well with midday leaf water potential (LWP), but was more sensitive than LWP at mild stress levels. We conclude that the CWSI, obtained from continuous nadir-view measurements with IRTs, is a good and very sensitive indicator of water stress in pistachio. We recommend the use of canopy temperature measurements taken from 1200 to 1500 h, together with the following equation for the NWSB: (T c − T a) = −1.33·VPD + 2.44. Measurements of canopy temperature with VPD < 2 kPa are likely to generate significant errors in the CWSI calculation and should be avoided.  相似文献   

3.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

4.
Application of a new method to evaluate crop water stress index   总被引:1,自引:0,他引:1  
Optimum water management and irrigation require timely detection of crop water condition. Usually crop water condition can be indicated by crop water stress index (CWSI), which can be estimated based on the measurements of either soil water or plant status. Estimation of CWSI by canopy temperature is one of them and has the potential to be widely applied because of its quick response and remotely measurable features. To calculate CWSI, the conventional canopy-temperature-based model (Jackson’s model) requires the measurement or estimation of the canopy temperature, the maximum canopy temperature (T cu), and the minimum canopy temperature (T cl). Because extensive measurements are necessary to estimate T cu and T cl, its application is limited. In this study, by introducing the temperature of an imitation leaf (a leaf without transpiration, T p) and based on the principles of energy balance, we studied the possibility to replace T cu by T p and reduce the included parameters for CWSI calculation. Field experiments were carried out in a winter wheat (Triticum aestivum L.) field in Luancheng area, Hebei Province, the main production area of winter wheat in China. Six irrigation treatments were established and soil water content, leaf water potential, soil evaporation rate, plant transpiration rate, biomass, yield, and regular meteorological variables of each treatment were measured. Results indicate that the values of T cu agree with the values of T p with a regression coefficient r=0.988. While the values of CWSI estimated by the use of T p are in agreement with CWSI by Jackson’s method, with a regression coefficient r=0.999. Furthermore, CWSI estimated by the use of T p has good relations with soil water content and leaf water potential, showing that the estimated CWSI by T p is a good indicator of soil water and plant status. Therefore, it is concluded that T cu can be replaced by T p and the included parameters for CWSI calculation can be significantly reduced by this replacement.  相似文献   

5.
Summary The measurement of water consumption in the field is normally restricted to research purposes, although the development of practical field criteria for timing water application is required to improve crop productivity. To develop such criteria irrigation experiments on Soybean were conducted from flowering to grain filling at four locations which differed in their soil properties and the convective contribution of their climates to potential evapotranspiration. The energy balance, predawn leaf water potential (PLWP), soil moisture depletion, and a crop water stress index (CWSI) based on foliage temperature were measured. The range of soil, atmospheric, phenological and irrigation conditions, produced a common, linear relation between relative evapotranspiration (rET) and the logarithm of -PLWP. Correlation with the temperature based CWSI was weak. A similar relation with PLWP for other C3 plants was also derived from data in the literature. This relation could be helpful for irrigation scheduling once the critical values of rET for crop productivity are known.  相似文献   

6.
This study was conducted to develop the relationship between canopy-air temperature difference and vapour pressure deficit for no stress condition of wheat crop (baseline equations), which was used to quantify crop water stress index (CWSI) to schedule irrigation in winter wheat crop (Triticum aestivum L.). The randomized block design (RBD) was used to design the experimental layout with five levels of irrigation treatments based on the percentage depletion of available soil water (ASW) in the root zone. The maximum allowable depletion (MAD) of the available soil water (ASW) of 10, 40 and 60 per cent, fully wetted (no stress) and no irrigation (fully stressed) were maintained in the crop experiments. The lower (non-stressed) and upper (fully stressed) baselines were determined empirically from the canopy and ambient air temperature data obtained using infrared thermometry and vapour pressure deficit (VPD) under fully watered and maximum water stress crop, respectively. The canopy-air temperature difference and VPD resulted linear relationships and the slope (m) and intercept (c) for lower baseline of pre-heading and post-heading stages of wheat crop were found m = −1.7466, c = −1.2646 and m = −1.1141, c = −2.0827, respectively. The CWSI was determined by using the developed empirical equations for three irrigation schedules of different MAD of ASW. The established CWSI values can be used for monitoring plant water status and planning irrigation scheduling for wheat crop.  相似文献   

7.
A subsurface drip irrigation study with cotton used canopy temperature to determine signals for irrigation control during 2002–2004. Timing of irrigation applications was controlled by the biologically identified optimal temperature interactive console (BIOTIC) protocol, which used stress time (ST) and a crop-specific optimum temperature to indicate water stress. ST was the cumulative daily time quantity when cotton canopy temperature exceeded 28°C. STs between 5.5 and 8.5 h in 1 h increments were irrigation signal criteria, which produced different irrigation regimes. This investigation examined the association among ST, daily average canopy temperature (T c), canopy and air temperature difference (T cT a), and the relative crop water stress index (RCWSI) including their relationship with lint yield. Number of irrigation signals decreased linearly with ST at the rate of −10.2 and −8.7 irrigations per 1 h increase of ST in 2003 and 2004. There were significant curvilinear relationships between ST and the average daily stress on days with irrigation signals and for days without irrigation signals across years. The percentage of positive daily (T cT a) values increased with ST level. ST and T c were positively related in all irrigation signal treatments with 5.5 and 6.5 h being significant in 2003 and 2004. Yield declined at the rate of 343 kg lint/ha for each 1 h increase of ST for days with irrigation signals. ST, mathematically the most simple of the canopy temperature-based parameters, provided the most consistent estimate of crop water stress and correlation with lint yield. The power of ST to characterize water stress effects on crop productivity evolves from being an integrated value of time while canopy temperature exceeds a physiologically based threshold value.
D. F. WanjuraEmail: Phone: +1-806-7235241Fax: +1-806-7235272
  相似文献   

8.
A study was conducted to determine the water stress effect on yield and some physiological parameters including crop water stress index for drip irrigated second crop watermelon. Irrigations were scheduled based on replenishment of 100, 75, 50, 25, and 0% soil water depletion from 90 cm soil depth with 3-day irrigation interval. Seasonal crop evapotranspiration (ET) for I100, I75, I50, I25, and I0 were 660, 525, 396, 210, and 70 mm in 2003 and 677, 529, 405, 221, and 75 mm in 2004. Fruit yield was significantly lowered by irrigation water stress. Average water-yield response factor for both of the years was 1.14. The highest yield was obtained from full irrigated treatment as 34.5 and 38.2 t ha−1 in 2003 and 2004, respectively. Lower ET rates and irrigation amounts in water stress treatments resulted in reductions in all measured parameters, except water-soluble dry matter concentrations (SDM). Canopy dry weights, leaf relative water content, and total leaf chlorophyll content were significantly lowered by water stress. Yield and seasonal ET were linearly correlated with mean CWSI values. An average threshold CWSI value of 0.17 before irrigation produced the maximum yield and it could be used to initiate the irrigation for watermelon.  相似文献   

9.
Upper and lower crop water stress index (CWSI) baselines adaptable to different environments and times of day are needed to facilitate irrigation scheduling with infrared thermometers. The objective of this study was to develop dynamic upper and lower CWSI baselines for corn and soybean. Ten-minute averages of canopy temperatures from corn and soybean plots at four levels of soil water depletion were measured at North Platte, Nebraska, during the 2004 growing season. Other variables such as solar radiation (R s), air temperature (T a), relative humidity (RH), wind speed (u), and plant canopy height (h) were also measured. Daily soil water depletions from the research plots were estimated using a soil water balance approach with a computer model that used soil, crop, weather, and irrigation data as input. Using this information, empirical equations to estimate the upper and lower CWSI baselines were developed for both crops. The lower baselines for both crops were functions of h, vapor pressure deficit (VPD), R s, and u. The upper baselines did not depend on VPD, but were a function of R s and u for soybean, and R s, h, and u for corn. By taking into account all the variables that significantly affected the baselines, it should be possible to apply them at different locations and times of day. The new baselines developed in this study should facilitate the application of the CWSI method as a practical tool for irrigation scheduling of corn and soybean.  相似文献   

10.
The application of a single-layer canopy temperature energy balance (CTEB) model for determining integrated daily ET rates was tested, with possible applications towards determining irrigation requirements (“how much to irrigate”) as a complement to crop water stress index (CWSI) measurements (“when to irrigate”), an irrigation scheduling tool which uses much of the same data. Evapotranspiration (ET) rates estimated using the CTEB model were compared to Bowen ratio energy balance (BREB) measurements made over substantial portions of the growing seasons of corn and potato crops. Canopy temperature, net radiation and soil heat flux data were collected and analyzed at 20-minute intervals, and ET for each interval was summed to obtain daily and multi-day estimations. Only full canopy conditions were examined. Two methods for atmospheric stability correction were applied to the aerodynamic resistance required by the CTEB model; an iterative procedure proposed by Campbell, and a second procedure proposed by Monteith which uses an adjustment coefficient. To reduce instrumentation requirements for combined CTEB/CWSI data collection, estimates of ET were also determined using net radiation and soil heat flux values estimated from solar radiation measurements. Results showed that uncorrected CTEB ET estimates agreed reasonably well with BREB measurements over corn and potato canopies (RMSE = 0.5 to 0.7 mm day for observed average ET ranging from 4.8 to 5.5 mm day, with a trend toward seasonal overprediction with corn. Stability corrections usually lowered the daily RMSE 0.1 to 0.2 mm day, with seasonal ET more in agreement with BREB ET. The Monteith-based adjustment gave slightly better results. CTEB ET model with estimated net radiation and soil heat flux terms produced similar average and total ET, but somewhat larger daily errors (RMSE=0.5 to 0.9 mm day). Seasonal total ET by the uncorrected CTEB model generally overestimated within 10% (ranging from 1% to 10%) of the observed BREB total ET, an acceptable error for most irrigation practices. Stability corrections generally caused seasonal ET to be underestimated within 1% to 9%.  相似文献   

11.
Accurate irrigation scheduling is important to ensure maximum yield and optimal water use in irrigated cotton. This study hypothesizes that cotton water stress in relatively humid areas can be detected from crop stress indices derived from canopy reflectance or temperature. Field experiments were conducted in the 2003 and 2004 crop seasons with three irrigation treatments and multiple cultivars to study cotton response to water stress. The experiment plots were monitored for soil water potential (SWP), canopy reflectance and canopy temperature. Four crop stress indices namely normalized difference vegetative index (NDVI), green NDVI (GNDVI), stress time (ST) index and crop water stress index (CWSI) were evaluated for their ability to indicate water stress. These indices were analyzed with classic mixed regression models and spatial regression models for split-plot design. Rainfall was plentiful in both seasons, providing conditions representative of irrigated agriculture in relatively wet regions. Under such wet weather conditions, excessive irrigation decreased lint yield, indicating the necessity for accurate irrigation scheduling. The four crop stress indices showed significant responses to irrigation treatments and strong correlation to SWP at shallow (0.2 m) depth. Spatial regression models were able to accurately explain the effect of irrigation treatment, while classic split-plot ANOVA models were confounded by collinearity in data across space and time. The results also verified that extreme humidity can mask canopy temperature differences with respect to ambient temperature, adding errors to canopy temperature-based stress indicators.
Sreekala G. BajwaEmail:
  相似文献   

12.
Vast rainfed rice area (12 million ha) of eastern India remains fallow after rainy season rice due to lack of appropriate water and crop management strategies inspite of having favourable natural resources, human labourers and good market prospects. In this study, a short duration crop, maize, was tried as test crop with different levels of irrigation during winter season after rainy season rice to increase productivity and cropping intensity of rainfed rice area of the region. Maize hybrid of 120 days duration was grown with phenology based irrigation scheduling viz., one irrigation at early vegetative stage, one irrigation at tassel initiation, two irrigation at tassel initiation + grain filling, three irrigation at early vegetative + tassel initiation + grain filling and four irrigation at early vegetative + tassel initiation + silking + grain-filling stages. Study revealed that one irrigation at tassel initiation stage was more beneficial than that of at early vegetative stage. Upto three irrigation, water use efficiency (WUE) was increased linearly with increased number of irrigation. With four irrigations, the yield was higher, but WUE was lower than that of three irrigations, which might be due to increased water application resulted in increase crop water use without a corresponding increase of yield for the crop with four irrigations. The crop coefficients (Kc) at different stages of the crop were derived after computing actual water use using field water balance approach. The crop coefficients of 0.42–0.47, 0.90–0.97, 1.25–1.33, and 0.58–0.61 were derived at initial, development, mid and late season, respectively with three to four irrigation. Study showed that leaf area index (LAI) was significantly correlated with Kc values with the R2 values of 0.93. When LAI exceeded 3.0, the Kc value was 1. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

13.
In humid regions, the timing and quantity of a complementary irrigation regime is challenging because of the irregularity of rainfalls events. In this study, we tested the use of a thermal infrared derived empirical crop water stress index (CWSIe) as an in situ measurement of the water status of sugarcane, to better monitor the irrigation scheduling. To do this, we set up a 2-year experiment in Reunion Island, on a trial with plots under different water conditions (rainfed and irrigated). Crop surface temperature was measured daily with infrared radiometers (Apogee Instruments) installed above the canopy, and soil moisture and drainage measurements were used to derive the ratio between actual and maximum evapotranspiration (AET/MET) values that were then averaged on “hydrically homogeneous” time periods (between 7 and 25 days). Only the thermal data acquired on clear days and 1 h after noon in 2007 were used to define the empirical lower and upper baselines required for the calculation of empirical CWSI. The data set acquired in 2008 was used to test the robustness of the method as we used the upper and lower baselines defined in 2007 to calculate CWSIe. The linear regression between AET/MET and (1 − CWSIe) averaged on the same periods (values ranging between 0.4 and 1) showed a significant correlation for both experimental years (global R2 = 0.75 and RMSE = 0.12). This result indicates the effectiveness of the CWSIe to measure the water status of the sugarcane crop, even in humid conditions with a vapor pressure deficit (VPD) between 0.5 and 2.1. We conclude the study by discussing the complementarity of this remote water stress index (CWSIe) with OSIRI water balance modelling tool currently used in Reunion Island for monitoring sugarcane crop irrigation.  相似文献   

14.
Continuous cropping of winter wheat and summer maize is the main cropping pattern in North China Plain lying in a seasonal frost area. Irrigation scheduling of one crop will influence soil water regime and irrigation scheduling of the subsequent crop. Therefore, irrigation scheduling of winter wheat and maize should be studied as a whole. Considering the meteorological and crop characteristics of the area lying in a seasonal frost area, a cropping year is divided into crop growing period and frost period. Model of simultaneous moisture and heat transfer (SMHT) for the frost period and model of soil water transfer (SWT) for the crop growing period were developed, and used jointly for the simulation of soil water dynamics and irrigation scheduling for a whole cropping year. The model was calibrated and validated with field experiment of winter wheat and maize in Beijing, China. Then the model was applied to the simulation of water dynamics and irrigation scheduling with different precipitation and irrigation treatments. From the simulation results, precipitation can meet the crop water requirement of maize to a great extent, and irrigation at the seeding stage may be necessary. Precipitation and irrigation had no significant influence on evaporation and transpiration of maize. On the other hand, irrigation scheduling of winter wheat mainly depends on irrigation standard. Irrigation at the seeding stage and before soil freezing is usually necessary. For high irrigation standard, four times of irrigation are required after greening. While for medium irrigation, only once (rainy year) or twice (medium and dry years) of irrigation is required after greening. Transpiration of winter wheat is very close for high and medium irrigation, but it decreases significantly for low irrigation and will result in a reduction of crop yield. Irrigation with proper time and amount is necessary for winter wheat. Considering irrigation quota and crop transpiration comprehensively, medium irrigation is recommended for the irrigation of winter wheat in the studying area, which can reduce the irrigation quota of over 150 mm with little water stress for crop growth.  相似文献   

15.
In this study, a regional irrigation schedule optimization method was proposed and applied in Fengqiu County in the North China Plain, which often suffers serious soil water drainage and nitrogen (N) leaching problems caused by excessive irrigation. The irrigation scheduling method was established by integrating the ‘checkbook irrigation method’ into a GIS-coupled soil water and nitrogen management model (WNMM) as an extension. The soil water and crop information required by the checkbook method, and previously collected from field observations, was estimated by the WNMM. By replacing manually observed data with simulated data from WNMM, the application range of the checkbook method could be extended from field scale to regional scale. The WNMM and the checkbook irrigation method were both validated by field experiments in the study region. The irrigation experiment in fluvo–aquic soil showed that the checkbook method had excellent performance; soil water drainage and N leaching were reduced by 83.1 and 85.6%, respectively, when compared with local farmers’ flood irrigation. Using the validated WNMM, the performance of checkbook irrigation in an entire winter wheat and summer maize rotation was also validated: the average soil water drainage and N leaching in four types of soils decreased from 331 to 75 mm year−1 and 47.7 to 9.3 kg ha−1 year−1, respectively; and average irrigation water use efficiency increased from 26.5 to 57.2 kg ha−1 mm−1. The regional irrigation schedule optimization method based on WNMM was applied in Fengqiu County. The results showed a good effect on saving irrigation water, decreasing soil water drainage and then saving agricultural inputs. In a typical meteorological year, it could save >110 mm of irrigation water on average, translating to >7.26 × 107 m3 of agricultural water saved each year within the county. Annual soil water drainage was reduced to <143 mm and N leaching to <27 kg ha−1 in most soils, all of which were significantly lower than local farmers’ flood irrigation. In the mean time, crop yield also had an average increase of 2,890 kg ha−1 when checkbook irrigation was applied.  相似文献   

16.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

17.
Water consumption of table grapevines (Vitis vinifera cv. Superior Seedless) trained to a large open-canopy gable system was measured during six growing seasons (1999, 2001–2005) using 12 drainage lysimeters. The lysimeters (1.3 m3 each) were installed as part of a one-hectare vineyard in a semi-arid region in southern Israel. Water consumption of the lysimeter-grown vines (ETc) was used as the basis for the calculation of irrigation applications in the vineyard. Three irrigation treatments, 80% (high), 60% (medium) and 40% (low) of ETc of the lysimeter-grown vines, were applied in the vineyard. Reference evapotranspiration (ETo) was calculated from regional meteorological data according to the Penman–Monteith equation. Seasonal curves for the crop coefficient (K c) were calculated as K c = ETc/ETo. Maximum ETc values in different seasons ranged from 7.26 to 8.59 mm day−1 and seasonal ETc (from DOY 91 through DOY 304) ranged from 1,087 to 1,348 mm over the six growing seasons. Leaf area index (LAI) was measured monthly using the SunScan Canopy Analysis System. Maximum LAI ranged from 4.2 to 6.2 m2 m−2 for the 2002–2005 seasons. A second-order polynomial curve relating K c to LAI (R2 = 0.907, P < 0.0001) is proposed as the basis for efficient irrigation management. The effects of the irrigation treatments on canopy growth and yield are presented. The high ETc and K c values that were observed are explained by the wide canopy layout that characterize the large open-gable trellis system.  相似文献   

18.
Research was conducted in northern Colorado in 2011 to estimate the crop water stress index (CWSI) and actual transpiration (T a) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that empirical baselines required for CWSI calculation are transferable within regions with similar climatic conditions, eliminating the need to develop them for each irrigation scheme. This means that maize CWSI can be determined using only two instruments: an infrared thermometer and an air temperature/relative humidity sensor. Reference evapotranspiration data obtained from a modified atmometer were similar to those estimated at a standard weather station, suggesting that maize T a can be calculated based on CWSI and by adding one additional instrument: a modified atmometer. Estimated CWSI during four hourly periods centered on solar noon was largest during the 2 h after solar noon. Hence, this time window is recommended for once-a-day data acquisition if the goal is to capture maximum stress level. Maize T a based on CWSI during the first hourly period (10:00–11:00) was closest to T a estimates from a widely used crop coefficient model. Thus, this time window is recommended if the goal is to monitor maize water use. Average CWSI over the 2 h after solar noon and during the study period (early August to late September, 2011) was 0.19, 0.57, and 0.20 for plots under full, low-frequency deficit, and high-frequency deficit irrigation regimes, respectively. During the same period (50 days), total maize T a based on the 10:00–11:00 CWSI was 218, 141, and 208 mm for the same treatments, respectively. These values were within 3 % of the results of the crop coefficient approach.  相似文献   

19.
Crop water stress index relationships with crop productivity   总被引:1,自引:0,他引:1  
Summary Field experiments between 1983 and 1987 were used to study the effect of crop development on crop water stress index (CWSI) parameters and the relationship of CWSI with the yield of cotton and grain sorghum. The absolute slopes of nonstressed baselines (NSBL) generally increased until canopy cover reached 70% (Table 1). NSBL derived from data collected when canopy temperature exceeded 27.4 °C had greater absolute slopes and higher R 2-values than NSBL that included all diurnal measurements (Table 1). Average CWSI values of cotton and grain sorghum grown under varying soil water regimes were negatively correlated with yield. Grain sorghum yield was more sensitive to CWSI values than was cotton lint yield (Figs. 1 and 2). Multiyear data analysis indicated that yields from cotton that experienced a completely stressed condition during part of each day during the boll setting period would be 40% of those from completely nonstressed cotton (Fig. 3). Negative values of CWSI computed for cotton growing under non-water stressed conditions were associated with uncertainties in calculations of aerodynamic resistance (r aand in estimating canopy resistance at potential evapotranspiration (r cp).  相似文献   

20.
Based on evaporation from a 20 cm diameter pan placed above the crop canopy, sprinkler irrigation scheduling of winter wheat was studied in the North China Plain (NCP) in the 2001–2004 winter wheat seasons. Results showed that pan evaporation (E pan,C) was closely related to actual evapotranspiration (ET) measured using weighing lysimeters. The combined pan–crop coefficient (K c,pan), the ratio of ET to E pan,C, was closely related to leaf area index (LAI ) and plant height. Data from the 2002–2003 season were used to establish the relationships between K c,pan and LAI (method A) or plant height (method B), and used to determine the crop coefficient (method C). ET computed by the three methods was compared with measured ET using lysimeters in the 2001–2002 and 2003–2004 seasons. Mean relative error of estimated daily ET by the three methods ranged from 20 to 30%, and the relative error in cumulative ET in the experimental periods ranged from 1 to 19%. Among the three methods, results from methods A and B were not significantly different from each other (P > 0.01), and were closer to the lysimeter data than results from method C (P < 0.001). Method B, being easier to measure, was recommended for ET estimation in NCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号